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Abstract: We consider the notion of an isomorphism between two hyperdgzbras and obtain all of the hyper BCl-algebras of
order 3. It is shown that there exist 14 proper hyper BCldallgse and 5 proper weak hyper BCl-algebras of order 3 up toasainism.
Finally, further study on the theory of hyper BCl-algebral as related hyper structure and applications of our resalinformation
sciences are discussed.
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1 Introduction well-established branch in algebraic theory, and there are
extensive applications in many branches of mathematics

nd applied sciences, such as Euclidian and Non
?uclidian geometries, graphs and hyper-graphs, binary
relations, lattices, fuzzy and rough sets, automata,

Logic algebras are the algebraic foundation of reasonin
mechanism in many fields such as computer science
information sciences, cybernetics and artificial intell- o ; . .
igence. BCK-logic and BCl-logic were originated from cryptography, codes, probabilities, information science
A-calculus and combinators in combinational logic. BCK- a1d s0 0n12,13,14,15,16,17).
algebra and BCl-algebra are algebraic representation of
BCK-system and BCI-system, respectively. The concepts In [7], Y.B. Jun et al. introduced the concept of hyper
of BCK/BCl-algebras were firstly formulated in 1966 by BCK-algebras which is a generalization of BCK-algebras
K. Iski as a generalization of the concepts of set-theoretichrough applying the hyper-structure to BCK-algebras,
difference and propositional calculd§[BCl-algebras are  and they gave the relations between hyper BCK-ideas and
the generalization of BCK-algebras. After that many weak hyper BCK-ideals in hyper BCK-algebras. Ir]]
researches worked in this area and lots of literatures hak.L. Xin introduced the concept of hyper BCl-algebras
been produced about the theory of BCK/BCl-algebra. Onwhich is a generalization of BCl-algebras, and he proved
the theory of BCK/BCl-algebras, please s2g3]. that every hyper BCK-algebra is a hyper BCl-algebra. In
fact, hyper K-algebras, hyper BCC-algebras, hyper BCI-
The hyper-structure theory (called also multi- algebras all are the generalization of hyper BCK-algebras.
algebras) was introduced by F. Marty in 1934 at theSince then, these algebraic hyper-structures were extens-
eighth congress of Scandinavian mathematicdns[ ively investigated by many researchers. It should be
Algebraic hyper-structure was suitable generalization ofpointed out that the research of hyper BCl-algebras seems
classical algebraic structure. In a classical algebraido have been focused on the ideal theory. 1d]] X.L.
structure, the composition of two elements is an elementXin introduced the concepts of hyper BCl-ideals, weak
while the composition of two elements is a set of hyper BCl-ideals, strong hyper BCl-ideals and reflexive
elements in an algebraic hyper-structure. F. Martyhyper BCl-ideals in hyper BCl-algebras, and he gave the
introduced the concept of hyper-group ,[since then relations among these hyper BCl-ideals. 11][ F. Nisar
other classic hyper-structures had been introduced, sucét al. introduced the notion of Bi-polar-valued Fuzzy
as hyper-ringdj], hyper-fieldsp], hyper-latticesp], hyper  hyper subalgebra (briefly BFHS) based on Bi-polar-
BCK-algebras]], hyper K-algebrad]], hyper BCC- valued fuzzy set, and they stated Bi-polar-value fuzzy
algebras),10], hyper BCl-algebrad[1] and so on. Now, characteristic hyper subalgebras. I} the concepts of
the theory of algebraic hyper-structure has become dhe distributive hyper BCl-ideals and fuzzy distributive
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hyper BCl-algebras were introduced, and the related3 Weak hyper BCl-algebra

properties were established. [20, N. Palaniappan et al.

investigated the relations between intuitionistic fuzzy

distributive hyper BCl-algebras and the distributive hype
BCl-algebras of a hyper BCl-algebra.

2 Preliminaries

Let H be a non-empty set anda function formH x H
to P(H)\{@}, whereP(H) denotes the power set Bff. For
two subset#\ andB of H, denote byAo B the se{aobjac
H,b e H}. Then we call , o) a hyper groupoid and
a hyperoperation. We also definex y by 0 € xoy and
for everyA B C H, A < B means that for alh € A there
is b € H such thata < b. We shall usexoy instead of
xo{y}, {x} oy, or {x} o {y}. In such case, we calk” the
hyperorder oH.

Definition 2.1 [7] By a hyper BCK-algebra we mean a
hyper groupoid(H,o) that contains a constant 0 and
satisfies the following axioms for atly,z€ H

(HK1) (xoz)o(yoz) < XoYy,

(HK2) (xoy)oz= (Xxo0Zz)oYy,

(HK3) xoH < {x},

(HK4) x < yandy < ximply x=y.
Definition 2.2 [11] By a hyper BCl-algebra we mean a
hyper groupoid(H,o) that contains a constant 0 and
satisfies the following axioms for atly,z€ H

(HI1) (xo0z)o (yo2z) < XoV,

(HI2) (xoy)oz=(XoZ) oYy,

(HI3) x < %,

(HI4) x < yandy < ximply x =,

(HI5) 00 (0o Xx) < X.
Definition 2.3 [9] By a hyper BCC-algebra we mean a
nonempty subsetl endowed with a hyper operatior™
and a constant 0 satisfying the following axioms for all
X,y,ze H

(HC1) (Xo Z) o (yo Z) <K Xoy,

(HC2)x < X,

(HC3)xoy K X,

(HC4)x < yandy < ximply x=y.
Proposition 2.4 [11] Let (H,o) be a hyper BCK-algebra,

Definition 3.1[9] By a hyper BCl-algebra we mean a
hyper groupoid(H,o) that contains a constant 0 and
satisfies the following axioms for ally,z€ H

(HI1) (x0Z) o (yoZz) < XoVy,

(HI2) (xoy)oz= (Xo0Zz)0Yy,

(HI3) x < X,

(H14) x < yandy < ximply x =,

(HI5*) 0 0 (0o x) < x,x #£ 0.

In fact, this definition is different from the original
concept of hyper BCl-algebra by X.L. Xin i1 ]]. For the
convenience of discussion, hyper BCl-algebras that F.
Nisar et al. mentioned in2fl] is named after weak hyper
BCl-algebras.

According to Definition 2.2 and Definition 3.1, we
directly obtain the following proposition.

Proposition 3.2Every hyper BCl-algebra is a weak hyper
BCl-algebra, but the converse is not true.

Definition 3.3 (1) For a hyper BCl-algebra, if it is not a
hyper BCK-algebra, we call it a proper hyper BCl-algebra.
(2) For a weak hyper BCl-algebra, if it is not a hyper BCI-
algebra, we call it a proper weak hyper BCl-algebra.

Example 3.4Let H = {0,a,b} and hyper operations"
be defined as in Table 1. Thehl, o) is a proper weak
hyper BCl-algebra.

Table 1
o 0 a b
01| {0,a} | {0,a} | {b}
a| {a} [{0a} | {b}
b| {b} [ {b} |{0a}

Proof: Obviously, (HI3), (HI4) hold. Becausedq000) =
{0,a} « 0,00 (0ca)={0,a} < a,00(0ob)={b} < b,
So (HI5*) holds, but (HI5) does not hold. In the following,
we will prove that (HI1) (HI2) also hold.

For allx,y,z € H, we have the four situations: £
b,y #b; (i) x=b,y=b; (i) x=Db,y # b; (iv) X#£b,y=Dh.
Firstly, for x # b,y # b, we have(xoz)o (yoz) C {0,a}.
According{0,a} < a,a € xoy, we have(xoz)o (yoz) <«
xoy. Secondly, foxx = b,y = b, we have(Xxoz) o (yoz) =
(boz)o(boz) = {0,a} = bob. Finally, for (x= b,y # b)

then (H,o) is also a hyper BCl-algebra. The converse isOr (X # b,y = b), we have(xoz)o (yoz) = {b} = xoy.

not true.

Proposition 2.5 [B] Every hyper BCC-algebrgH,o)
satisfying the equalityxoy)oz= (Xoz)oy,Vx,y,z€ H is

a hyper BCK-algebra.

Definition 2.6 [21] In a hyper BCl-algebrgH o), the set
S = {x€H :xoH < x} is defined as hyper BCK-part
of H. If H # &, thenH is known as a proper hyper BCI-
algebra.

Definition 2.7 [21] Let H be a hyper BCl-algebra. Then
X,y € H are said to comparable Kk <y or y < x.

Otherwisex,y are said to be incomparable, and denoted

asx || y.

Thus, (HI1) holds.

Obviously, ify =z (xoy) o z= (xoz) oy hold. Fory #
z, we have the following situations: ((x = b,y # b,z
b),(X;é bvy: b,Z;é b) or (X# bay7é b,Z: b)’ (”) (X:
y=h,z#b) or(x=z=b,y#£b); (iii) x£b,y£b,z#b.
Firstly, for (x = b,y # b,z # b),(x # b,y = b,z# b) or
(x# b,y #b,z=Db), we havg(xoy)oz= {b} = (Xoz)oy.
Secondly, foflx=y=h,z#b) or (x=z=b,y # b), we
have(xoy)oz={0,a} = (xoz)oy. Finally, forx = b,y #
b,z+# b, we have we havéxoy)oz={0,a} = (xoz)oy.
Thus, (H2) holds.

To sum up,(H,0) is not a hyper BCl-algebra, but it is
a weak hyper BCl-algebra.
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Example 3.5Let H = {0,a,b} and hyper operations"
be defined as in Table 2. Théhl, o) is a (weak) hyper
BCl-algebra.

Table 2
o 0 a b
o] {0} {0} {0}
a| {a,b} | {0,ab} | {0,b}
b| {b} {b} {0}

Proof: Obviously, (HI3), (HI4) hold¥x € H,00 (0oX) =
{0} < x, So (HI5) holds. In the following, we will prove
that (HI1), (HI2) also hold.

For allx,y,z € H, we have the following situation: (i)
x=0; (i) x=a; (iii) x=b,y# b; (iv) x= b,y = b. Firstly,
if x=0, we havgxoz)o(yoz) =(00z)o(yoz) =00 (yo
z) = {0}, xoy =00y = {0}. SO, (X0Z) o (yoz) < XoV.
Secondly, if(x = a) or (x= b,y # b), we haveb € xoYy,
H < b. So,(X0z)o(yoz) <« xoy. Finally, if x=b,y = b,
we get(xoz)o(yoz) = (boz)o(boz) = {0} =bob=xoy,
S0(Xoz)o(yoz) < Xoy. Thus, (HI1) holds.

Obviously, ify = z, (xoy)oz = (xoz) oy hold. For
X # Y, we have the following situations: ®= O; (ii) (x=
b,z=b,y#b)or (x=b,y=D, z#b); (i) x=Db,y #
b,z#b; (V) x=ay#b,z#b; (V) (x=az=bh,y#b)
or (x=a,y=b,z+# b). Firstly, if x= 0, we have(xoy)
oz= (0oy) 0z= {0}, (x02) 0 y= (002) o y={0}. So,
(Xoy)o z= (Xoz)oy. Secondly, if(x=b,z= b,y # b) or
(x=h,y=b, z# b), we have(boy) ob = {0} ,(bob) o
y={0}. So,(Xoy) oz= (XxoZz) oy. Thirdly, if x=b,y#b,
z#bie.(x=b,y=az=0)or (x=b,y=0,z=a),
we have(boa) o0 = {b} ,(bo0) o a= {b}. So,(xoy) o
z= (X oz) oy. Fourthly, ifx=a,y#b, z#£ b, i.e. (x = a,
y=a,z=0)or (x=a,y=0, z=a), we have(aoa) o0
={0,a,b},(ac0) ca={0,a,b}. So,(xoy) oz= (XxoZz) oy.
Finally, if (x=a,z=b,y#b)or(x=a,y=Db, z#b), we
have(a oy) ob = {0,b} = (aoh) oy, (ach) o z={0,b}
= (a02) ob. So,(xoy) 0 z= (x02) oy. Thus, (HI2) holds.

To sum up,(H,o) is a hyper BCl-algebra and is also

weak.

F. Nisar et al. in 9] investigated relative properties of

weak hyper BCl-algebras and proved that(Hf, o) be a
hyper BCl-algebra, therfH, o) satisfies the following
properties: (1)xo0 = {x},Vx € H,x # 0; (2) Xoy <« z

impliesxoz < y,Vx,y,z€ H.

Example 3.5 shows that the above properties are not

correct, because (1300 = {a,b} # {a}, (2) ac0 =
{a,b} < {b}, butacb = {0,b} « {0}. Nisar et al. in 9]
applied the wrong property (.80 0= {x},Vx€ H, x #

0) to prove the conclusion that the number of proper
hyper BCl-algebras of order 3 upto isomorphism is 8.

Thus, the conclusion is not correct.

4 Classification of proper hyper
BCl-algebras of order 3

In this section, we will obtain all non-isomorphic proper
hyper BCl-algebras of order 3 by programming calculation
using Matlab software.

According to Definition 2.1, Definition 2.2 and
Definition 2.6, the following definition of proper hyper
BCl-algebra can be directly obtained.

Definition 4.1 By a proper hyper BCl-algebra we mean a
hyper groupoidH, o) that contains a constant O satisfying
the following axioms for alk,y,z€ H

(HI1) (x02)o (yoz) < XoVy,

(HI2) (xoy)oz= (X0Z)0Yy,

(HI3) x < X,

(HI4) x < y andy < ximply x =,

(HI5) 00 (0o Xx) < X,

(HK3*) Ix € H,xoH « {x}.

Based on above definition, we design an algorithm for
checking whethe(X, o) is a proper hyper BCl-algebra in
the following Algorithm 1.

Algorithm 1: Checking whether (X,0) is a proper hyper
BCl-algebra.

Input (X:set,o:hyper operation)
Output(“X is a proper hyper BCl-algebra or not”)
Begin
If X = ¢@then
goto (1.);
EndIf
IfO ¢ X then
goto (1.);
Endlf
Stop:=false;
i:=1;
s:=0;
While i < |X]| and not(Stop) do
If (0 ¢ x; oX) then
Stop:=true;
EndIf
Y =00 (00X);
l:=1;
While | < |Y| and not(Stop) do
If(0 € y; 0X) then
Stop:=true;
EndIf
EndWhile
Z=XjoX;
m:=1,;
While m< |Z| and not(Stop) do
If 0 ¢ znox then
S=s+1;
EndIf
EndWhile
ji=1;
While j <|X]| and not(Stop) do
If (0 x oxj)and(0e x;ox) and(x # ;) then
Stop:=true;
EndIf
k:=1;
While k < |X| and not(Stop) do
If (XioXj)oXk# (X oxc)oXj then
Stop:=true;
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EndIf Algorithm 2: checking whether (X,0) and (%,are
W = (X 0 X) o (Xj 0 X); isomorphic
J{,\'/E”t’t < |W| and not(Stop) do Input(o, *: two hyper operations of hyper BCC-algebra,
10 ¢7W| o (% oxi) then X:set; f:one-to-one mapping)
Stop:=true; J Output(“f is a isomorphism fronX toX or not.”)
Endlf ’ Begin
EndWhile .StOplizﬂase?
. =1
o e While i < [X| and not(Stop) do
: =1
E”Sdl’vﬂehen While j < |X| and not(Stop) do
Stop:=true; If {f(t)|t € xiox;}# f(x)*f(xj) then
EndIf ' Stop:=true;
If Stop then E fvr\]/ﬂh;
(1.) Output(*X is not a proper hyper BCC-algebra.”) nawvniie
Else ﬁnSdWhlrI]e
o : ” top then
Endl(?UtPUt( Xis a proper hyper BCC-algebra.) Output(“(X, o) is not isomorphic with(X, x).”)
Else

End

Definition4.2 Hyper BCl-algebragA,o) and (B,*) are
said to be isomorphic if

If A= B,y e A f(xoy) = f(X)* f(y).

Example 4.3Let H = {0,a,b} and hyper operations"
and “" are defined as in Table 3 and Table 4, respectively.
Then(H, o) and(H, x) are isomorphic.

Proof: Let f is a one-to-one mapping, arfd0) = f(0),
f(a) =f(b), f(b) =a. According to the operations ob”
and “”, we getf(000) =f(0) =0 =00 =f (0) = f (0), f (0o
a) =f(0) =0 =0«b=f(0) x f (a), f(Oob) = f(b) =a=0xa
= f(0)x f(b), f(ac0) =f(a) =b=bx0= f(a)* f(0),
f(aca) = f({0,a}) ={0,b} =bxb=f(a)x f(a), f(aob)
=f(b)=a=bxa=f(a)«f(b), f(bo0)=f(b)=a=ax
0= f(b)xf(0), f(boa)=f(b) =a=axb=f(b)xf(a),
f(bob) = f(0) =0 =axa = f(b)« f(b). Thus, Hyper
BCl-algebragH, o) and(H, x) are isomorphic.

Table 3
o 0 a b
o[ {0} | {0} [{b}
a| {a} | {0,a} | {b}
b|{b}] {b} [{O}
Table 4
* 0 a b
0] {o} | {at | {O}
al{a} [ {0} | {a}
b | {b} | {a} | {O,b}

According Definition 4.2, we design an algorithm to
judge whethe(X, o) and(X, ) are isomorphic as follows:

Output(“(X, o) is isomorphic with(X, x).”)
EndIf
End

Proposition 4.4 Let H = {0,a,b}. Then there are 15
hyperorder setéH, <) upto isomorphism as follows:
(1)a<b,0]a0[b; (2)0<b,a<b,0fa;
(38)0xa,a<x b 0| b (4)0<xaldkb alb;
(5)b« 0,0 a alb;, (6)b<x0,axh,0]a;
(7)b< 0,0« aalb, (B)b«x00«aa<hb;
9 b«0,bxa0la (10)b«0,b«xa 0«a;
(11)a<x 0,b<x0,a|b; (12)a<0,bx0,a<kb;
(13)0J|a, 0] b,al|b; (14)0«<a,0] a al b;
(15) 0« a 0« h,akh.
For every above situation, we calculate all non-
isomorphic proper hyper BCl-algebras by the algorithems
in Algorithm 1 and Algorithm 2.

Proposition 4.5 Let H = {0,a,b}. If its underlying
hyperorder is one of the following situations:
(1)a<b,0(/a,0|b; (2)0<b,axb,0fa
(3)0«xa,akb,0|b; (40«a 0<kb,alb;
(5)b<0,0]a,allb;, (B)bx0,axb,0]a
(7)b« 0,0« a,alb; 8)bk0,0«xa akhb;
9bx0,bxa0fa (10)b<x0,b«a d«ka
(11)a< 0,bx0,a| b;(12)a<x 0, bk 0,ak b.
Then, there is no proper hyper BCl-algebraslin
Proposition 4.6Let H = {0,a,b} with 0] a,0 || b,a|| b.
Then there exists only one proper hyper BCl-algebra upto

isomorphism as in Table 5.
Table 5

a
{b}

0
{0}
{a} | {0} | {b}
{b} [ {a} | {0}

Proposition 4.7 Let H = {0,a,b} with 0 < a,0 | a,a ||
b. Then there exist two proper hyper BCl-algebras upto
isomorphism as in Table 3 and Table 6.

b
{a}

T O o
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Table 6

b

0 a
{0} | {0}

{b}

{a} | {0}

{b}

Tl Of o

{b} | {b}

{0}

Proposition 4.8LetH = {0,a,b} with0 < a,0 < b,a <

Table 16
0 a b
{0} {0} {0}
{a,b} | {0,a,b} | {0,a,b}
{b} | {ab} |{0ahb}

Proposition 4.9 Let H = {0,a,b}. Then there exist five

Tl O|o

b. Then there exist eleven proper hyper BCI-algebras uptgyroper weak hyper BCl-algebras upto isomorphism. Table

isomorphism as in Table 2 and Table-7Table 16.

Table 7
o 0 a b
o] {0} [ {06} [{0}
a | {a,b} | {O,b} | {0}
b{ {b} | {b} [{0}
Table 8
o 0 a b
o] {0} {op |{0}
a | {a,b} | {0,a,b} | {0}
b| {b} {bt | {0}
Table 9
o 0 a b
o[ {0} | {0} | {0}
a | {a,b} | {0,b} | {O,b}
b[ {b} [ {b} |{Ob}
Table 10
o 0 a b
0| {0} {0} {0}
a| {a,b} | {0,ab} | {0,b}
b | {b} {b} [{0,b}
Table 11
o 0 a b
o[ {0} {0} {0}
a| {ab} | {0,ab} | {0,a b}
b| {b} {b} {0}
Table 12
o 0 a b
o] {0} | {0 {0}
a| {a,b} | {0,b} | {0,a,b}
b| {b} [ {b} | {0}
Table 13
o 0 a b
0] {0} {0} {0}
a| {a,b} | {0,a,b} | {0,a,b}
b| {b} {b} {0,b}
Table 14
o 0 a b
0| {0} {0} {0}
a| {a,b} | {0,a,b} | {0,a,b}
b| {b} {b} [{0,ab}
Table 15
o 0 a b
0| {0} {0} {0}
a| {ab} | {0,ab} | {0,a b}
b| {b} | {ab} | {0b}

1 and Table 1~ Table 20 give these Cayley tables.
Table 17 .
0

{0.a} {O?a} {0.a}
{a} | {0,a} | {0,a)
{b} | {a} [{0a}

Table 18

T||O| o

0 a b

{0,a} | {0,a} | {0,a}
{a} | {0.a} | {0,a}
{b} | {b} [{0a}

Table 19

T OO

a b

{0,a} | {0,a} | {O,a}
{fat | {0.a} | {0,a}
{b} [ {b} |{0ab}

Table 20

Tl O] o

o 0
0 | {0,a} {O?a} {0,a}
a| {a} [{0a}| {04}
b| {b} | {ab} | {0,ab}

According to Proposition 4.4 Proposition 4.9, we
have the following conclusion.

Proposition 4.10 There exist 15 proper hyper BCI-

algebras and 4 proper weak hyper BCl-algebras of order 3
up to isomorphism.

b

5 Applications

In this paper, we obtained a full classification of proper
hyper BCl-algebras of Order 3 and compared our results
with those obtained previously if]. Our results are
important supplements for the theory of hyper BCI-
algebra and related hyper structure. In addition, they are
also useful for the development of classical and non-
classical propositional calculilp,23] in artificial intell-
igence and information sciences. There are some systems
which contain the only implication functor among the
logical functors, and these examples are the system of
positive implicational calculus, weak positive impli-
cational calculus by A. Church, and BCI, BCK-systems
by C.A. Meredith [L2]. The interest for these algebras is
justified by the fact that the objects utilized in artificial
and intelligence information sciences are the “weak
representations” of these algebras. So, its weak repre-
sentations of an interval algebra are the objects of interes
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