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Abstract: We go through the several ways that the Jaynes-Cummings model, a cornerstone in the study of light-matter interactions,
may be solved. We emphasize two not well known methods (one based on the London phase operator and the other one on the direct
diagonalization of the Hamiltonian) considering that theymay be of help for solving other systems like the interactionof light with a
moving mirror, ion-laser interactions, etc.
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1 Introduction

The Jaynes-Cummings (JC) model [1, 2] is one of the
simplest representations of the interaction between light
(a quantized field) and matter (a two-level atom). Because
it may be solved exactly, it is an important tool in
quantum optics. Its simplicity, however, does not affect
the amount of phenomena arising from it. Among the
many products we may think about, we may count:
collapses and revivals in the atomic inversion [7],
generation of Schrödinger cat states [3,4] of the quantized
field, squeezing [5], transfer of atomic coherence to the
quantized field [6], etc. Moreover, because of
entanglement, the process of measuring atoms as they
leave the cavity gives information about the field state,
because while the atoms spend time in the cavity, they
acquire knowledge of the field and as they leave the
cavity and are measured, knowledge about the quantized
field may be retrieved. This was noted by Satyanarayana
et al. [7], when they studied the interaction between a
field initially prepared in a squeezed state with a two-level
atom and a feature of the field was imprinted in the
atomic inversion producing ringing revivals [8]. It was
possible later to obtain full information about the field via
the Wigner function [9–11], one of the fundamental
quasiprobability distribution functions, that together with
the Husimi [12, 13] and Glauber-Sudarshan [14, 15]

functions have complete information of the quantum state
of light.

The fact that some other problems, such as the
ion-laser interaction [16] are similar to the atom-field
interaction, has made possible to produce JC-type
interaction in these systems [17–21], such as multiphonon
and anti-JC interactions [22]. This has allowed the
reconstruction of quasiprobability distributions also in
such systems [23].

Generalizations of the JC model can either have more
than one atom in the cavity [24], more than one field [25],
multilevel atoms [26], and nonlinear media may also be
considered [25,27]

2 Traditional approach

The JC Hamiltonian reads (we seth̄= 1)

H = ω n̂+
ω0

2
σz+g(a†σ−+σ+a), (1)

wherea† anda are the creation and annihilation operators
for the field mode, respectively, obeying[a,a†] = 1 and
n̂ = a†a is the number operator. The operators
σ+ = |e〉〈g|, andσ− = |g〉〈e| are the raising and lowering
atomic operators,|e〉 being the excited state and|g〉 the
ground state of the two-level atom. The atomic operators
obey the commutation relations[σ+,σ−] = σz and
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[σz,σ±] = ±2σ±. ω is the field frequency,ω0 the atomic
transition frequency andg is the interaction constant.

We can transform to a frame rotating at frequencyω
via the transformationHI = RHR†, with R= e−iωt(n̂+σz/2)

to produce the interaction Hamiltonian

HI =
∆
2

σz+g(a†σ−+σ+a), (2)

where∆ = ω0 − ω is the detuning. We may propose a
solution of the form

|ψ(t)〉=
∞

∑
n=0

Cn(t)|n〉|e〉+Dn(t)|n+1〉|g〉, (3)

which, if inserted in the Schrödinger equation

i
∂ |ψ(t)〉

∂ t
= HI |ψ(t)〉, (4)

yields the system of equations

iĊn =
∆
2

Cn+g
√

n+1Dn, (5)

iḊn = g
√

n+1Cn−
∆
2

Dn. (6)

We can rewrite the above system in the compact form

i
drn

dt
= Mrn, (7)

with

rn =

(

Cn
Dn

)

, M =

( ∆
2 g

√
n+1

g
√

n+1 −∆
2

)

. (8)

To solve the above system of differential equations, we
can find the eigenvalues and eigenvectors ofM in order to
diagonalize the matrix. However we can also realize that

M2k =

(

β 2k
n 0
0 β 2k

n

)

, (9)

and that
M2k+1 = β 2k

n M, (10)

where we have defined

β 2
n =

∆2

4
+g2(n+1). (11)

The solution to (7) is given by

rn(t) = exp(−iMt )rn(0), (12)

and the exponential in the above equation may be
developed in Taylor series, in particular we may split the
series in even and odd powers

e−iMt = 12×2

∞

∑
k=0

(−1)kt2kβ 2k
n

(2k)!

− i
M
βn

∞

∑
k=0

(−1)kt2k+1β 2k+1
n

(2k+1)!
,

where 12×2 is the 2×2 unity matrix. It is clear then that

e−iMt =

(

E11 E12
E21 E22

)

, (13)

where

E11 = cos(βnt)− i
∆

2βn
sin(βnt) ,

E12 = E21 =−i
g
√

n+1
βn

sin(βnt) ,

and

E22 = cos(βnt)+ i
∆

2βn
sin(βnt) .

We now may apply the solution (exponential) to any initial
(condition) state.

3 Stenholm’s method

Somehow a close relative to this way of solving the JC
model is a method introduced by Stenholm [28], in which
the Hamiltonian is written in terms of Pauli matrices

HI =

( ∆
2 ga

ga† −∆
2

)

, (14)

and realize that its powers are

H2k
I =

(

β 2k
n̂ 0
0 β 2k

n̂−1

)

,

and

H2k+1
I =

( ∆
2 β 2k

n̂ gaβ 2k
n̂−1

ga†β 2k
n̂ −∆

2 β 2k
n̂−1

)

,

with [see equation (11)] βn̂ =
√

∆ 2

4 +g2aa† and

βn̂−1 =
√

∆ 2

4 +g2a†a. Therefore, we can write a solution
to equation (4) in the form

|ψ(t)〉= e−itHI |ψ(0)〉, (15)

where|ψ(0)〉 is the initial (atom-field) wave function. As
we have done in the previous Section, develop the
exponential in Taylor series to finally recover an
expresion in terms of trigonometric functions. We then
write the evolution operator as

U(t) = e−iHI t =

(

U11 U12
U21 U22

)

. (16)

where

U11 = cos(βn̂t)− i
∆

2βn̂
sin(βn̂t) ,

U12=−iga
1

βn̂−1
sin(βn̂−1t) ,
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U21 =−iga† 1
βn̂

sin(βn̂t) ,

and

U22 = cos(βn̂−1t)

+ i
∆

2βn̂−1
sin(βn̂−1t) .

We are now in a position to apply the evolution operator
to any initial states in order to obtain the evolved
wavefunction. Let us for simplicity take the detuning
equal to zero, such that

U(t) =

(

cos(gt
√

aa†) −i sin(gt
√

aa†)V
−iV†sin(gt

√
aa†) cos(gt

√
a†a)

)

, (17)

whereV is the so-called London phase operator [29–31]

V =
1√

n̂+1
a, (18)

and we have used the propertya f(n̂)= f (n̂+1)a [32]. The
above equation gives us an introduction to next Section.

4 London phase operator method

Consider again the interaction Hamiltonian (14) and write
it in terms of the London operator

HI =

( ∆
2 g

√
n̂+1V

gV†
√

n̂+1 −∆
2

)

, (19)

we can rewrite it as [33]

HI =

(

V 0
0 1

)( ∆
2 g

√
n̂

g
√

n̂ −∆
2

)(

V† 0
0 1

)

. (20)

Note that the matrix in the middle has only elements that
commute with each other and therefore we can treat them
as ac-numbers. Note thatV†V = 1− |0〉〈0|. Therefore
(see Appendix A) we can obtain for then-th power of the
interaction Hamiltonian

Hn
I =

(

V 0
0 1

)( ∆
2 g

√
n̂

g
√

n̂ −∆
2

)n(
V† 0
0 1

)

, (21)

and it is straightforward to calculate then the evolution
operator (16) via Taylor series. The evolution operator
then may be written as

U(t) =

(

V 0
0 1

)

exp

{

−it

( ∆
2 g

√
n̂

g
√

n̂ −∆
2

)}(

V† 0
0 1

)

,

(22)
and the exponential may be obtained with the method
outlined in Section 2.

5 Boson inverse operators method

We define the boson inverse operators as [34–36]

1
a
=

∞

∑
k=0

1√
k+1

|k+1〉〈k|, (23)

and

1
a† =

∞

∑
k=0

1√
k+1

|k〉〈k+1|. (24)

Their actions on the Fock state|k〉 are

1
a
|k〉= 1√

k+1
|k+1〉, (25)

1
a† |k〉=

1√
k
|k−1〉, k 6= 0 (26)

and 1
a† |0〉= 0.

We may note that,1aa 6= 1, but a1
a = 1 just as the

London operators also have apreferredorder. In fact, we
find that [34–36]

[
1
a† ,a

†] = [a,
1
a
] = |0〉〈0|. (27)

We mention in Section 2 that one of the approaches to
solve the system of differential equations (7) was to
diagonalize the matrix. Naively, we could think we can
also diagonalize the interaction Hamiltnonian despite the
fact that it contains non-commuting elements. We
follow [37] in order to do this. However, we correct here
the method proposed in there.

Consider the diagonal matrices

D =

(

βn̂−1 0
0 −βn̂−1

)

, (28)

T =

(

a g
2βn̂−1

−a g
2βn̂−1

βn̂−1+
∆
2

2βn̂−1

βn̂−1− ∆
2

2βn̂−1

)

, (29)

and

S=

(

1
ga

(

βn̂− ∆
2

)

1

− 1
ga

(

βn̂+
∆
2

)

1

)

. (30)

It is not difficult to prove thatTS= 1 but ST 6= 1.
Moreover, we can also prove thatHI = TDS. Therefore it
is straightforward to find the powers ofHI and then its
exponential. So we write the evolution operator as (see
Appendix B)

U(t) = T

(

e−iβn̂−1t 0
0 eiβn̂−1t

)

S, (31)

that is exactly the evolution operator given in equation
(16).
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6 Conclusions

We have made a small survey of the different forms the
JC model may be solved. In particular, we have analyzed
two not well known methods, one based on the London
operator and the other one based on boson inverse
operators.

Appendix A
We may find the square ofHI as

H2
I =

(

V 0
0 1

)( ∆
2 g

√
n̂

g
√

n̂ −∆
2

)(

V† 0
0 1

)

×
(

V 0
0 1

)( ∆
2 g

√
n̂

g
√

n̂ −∆
2

)(

V† 0
0 1

)

, (32)

so there is a term of the form
( ∆

2 g
√

n̂
g
√

n̂ −∆
2

)(

|0〉〈0| 0
0 0

) ( ∆
2 g

√
n̂

g
√

n̂ −∆
2

)

=

(

∆ 2

4 |0〉〈0| 0
0 0

)

. (33)

that disappears when we apply the diagonal matrices with
the London operators:

(

V 0
0 1

)(

∆ 2

4 |0〉〈0| 0
0 0

)(

V† 0
0 1

)

=

(

0 0
0 0

)

. (34)

Appendix B
When doing the Taylor series for the evolution

operator, we have terms of the form (fork> 0)

Hk
I = TDSTDSTDS. . .TDS (35)

= T(DSTDSTDS. . .TD)S,

that may be rewritten as

T

[(

β k
n̂−1 0
0 (−1)kβ k

n̂−1

)

+

(

0 0
|0〉〈0|hk |0〉〈0|gk

)]

S

where the coefficientshk and gk may be calculated,
however they are not important as the product of the
matrices in the second term is identically zero, finally
obtaining

Hk
I = T

(

β k
n̂−1 0
0 (−1)kβ k

n̂−1

)

S.
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Electrónica in Tonantzintla,
Pue. He has authored over
15 papers in international
peer reviewed journals.
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