Appl. Math. Inf. Sci.9, No. 1, 263-267 (2015) %N =¥\ 263

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.12785/amis/090132

Entire Labeling of Plane Graphs

Martin Bagal*, Stanislav Jendid, Kumarappan Kathiresarand Kadarkarai Muthugurupackiahn

1 Department of Appl. Mathematics and Informatics, Techinibaversity, Letna 9, KoSice, Slovak Republic
2 |nstitute of Mathematics, PSafarik University, Jesenna 5, KoSice, Slovak Republic

3 Department of Mathematics, AY YA Nadar Janaki Ammal Colle§iwakasi, 626 124, India

4 Department of Mathematics, Rajah Serfoji Government @ell& hanjavur, 613 005, India

Received: 1 Apr. 2014, Revised: 2 Jul. 2014, Accepted: 2Dil4
Published online: 1 Jan. 2015

Abstract: A face irregular entir&-labeling¢ : VUEUF — {1,2,...,k} of a 2-connected plane grah= (V,E,F) is a labeling of
vertices, edges and faces®fin such a way that for any two different facésandg their weightswy () andwg (g) are distinct. The
weightof a facef under a-labeling¢ is the sum of labels carried by that face and all the edges entides incident with the face. The
minimumk for which a plane grapls has a face irregular entikelabeling is called the entire face irregularity strentfe investigate
a face irregular entire labeling as a modification of the skalbwn vertex irregular and edge irregular total labelioggraphs. We
obtain some estimations on the entire face irregularigngfth and determine the precise values for graphs from thneiges of plane
graphs.
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1 Introduction such that theéotal vertex-weights
We consider finite undirected graphs without loops and Wiy (X) = @(X) + quo(xy)
multiple edges. Denote by (G) and E(G) the set of N

vertices and the set of edges of a gr&phiespectively.
Chartrand, Jacobson, Lehel, Oellermann, Ruiz an
Saba in §] introduced labelings of the edges of a graph
with positive integers such that the sum of the labels of
edges incident with a vertex is different for all the
vertices. Such labelings were calleggular assignments
and theirregularity strength $G) of a graphG is known
as the minimumk for which G has an irregular
assignment using labels at mokt The irregularity
strengths(G) can be interpreted as the smallest inteiger
for which G can be turned into a multigrap®’ by

replacing each edge by a set of at megtarallel edges, In [2] several bounds and exact valuestu$ were

such that the degrees of the vertice&irare all different. ; . . .
Finding the irregularity strength of a graph seems to bedetermlned for different types of graphs (in particular for

L2 stars, cliques and prisms). These results were then
gz]rd even for graphs with simple structure, s&6,[7,12, improved by Przybylo 18], Anholcer et al. [1] and
.Motivated by irregular assignments Baca, Jehdro Nurltzjlijr;tehteetlrh[gilqh 7] the authors defined ardge
Miller and Ryan in P] defined avertex irregular total ' g

i . - . irregular total k-labeling of a graphG = (V,E) to be
\ljelstit;;ﬂ;ngr?é zd%r:fgje = (V,E) 10 be a labeling of the a labelingg : VUE — {1,2,...,k} such that the edge

weightswiy(xy) = @(X) + @(xy) + @(y) are different for
¢:VUE—{12,... .k} all edges, that iswty(xy) # wty(Xy') for all edges

fre different for all vertices, that isyty(x) # wiy(y) for
all different verticesx,y € V. Furthermore, they defined
the total vertex irregularity strengthtvs(G), of G as the
minimum k for which G has a vertex irregular total
k-labeling.

It is easy to see that irregularity streng$fG) of
a graphG is defined only for graphs containing at most
one isolated vertex and no connected component of order
2. On the other hand, the total vertex irregularity strength
tvs(G) is defined for every grapB8. Moreover, for graphs
with no component of ordex. 2,tvgG) < 5(G).
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xy, Xy € E with xy # Xy. They defined thdotal edge Clearly 22+ 1 <wjy (f) < (2b+ 1)k for every facef €
irregularity strength tegG), of G as the minimunk for F, and thereforé| =ng+ng+---+np < (2b+ 1)k — 2a.
which G has an edge irregular totdf-labeling and  This implies

determined the exact values of the total edge irregularity

strength for paths, cycles, stars, wheels and friendship B > 2a+ |F|
graphs. . k=eldC) =\ 5571 |-

Recently Ivanco and Jendrf9] posed a conjecture
that for arbitrary grapi® different fromKs and maximum To see the upper bound let us label the elements of
degree/A (G), as follows:

m
te§G) = max E©)|+2 , AG)+1 . o(v)=1= {EJ for everyv eV,
3 2

This conjecture has been verified for complete graphs and ¢p(e)=h= [TW for everye € E.
complete bipartite graphs in1Q] and [11], for the 2

Cartesian product of two paths ilJ, for generalized gt fl,f},...,fl bei-sided faces 0, i > 3. Then we put
Petersen graphs i8], for corona product of a path with ' -

certain graphs in17] and for large dense graphs with A < i
\E(c?uzgmezwl Nl ¢(fJ) jforall1<j<n, andall 3<i<h.
Motivated by total irregularity strengths and a recentC|ear|y¢(ij) <m.

paper on entire colouring of plane grapi€][we study
irregular labelings of plane graphs with restrictions plac f #l\gl]ow we have to show thaty (f) 7w (g) whenever
on the weights of faces. Alane graph is a particular Lét f = fl £ ft = g and, without loss of generality
drawing of a planar graph on the Euclidean plane.i <t Thenwr (fi)s_ I+ hii— = mitr<m(it1) < '
Suppose thaG = (V,E,F) is a 2-connected plane graph ’ LA R =
with face sef. mt+1< mt_+s_lt+ht+§_w¢(fs). '
Now, for a plane graphG — (V,E,F) we define If f =1 # fl = g andi =t, trilen let, without loss of
a labeling¢ : VUEUF — {1,2,...,k} to be an entire genetrallty,r < s Inthis caseny (f;) = mi+r <mi+s=
k-labeling. The weight of a face f under an entire wy (f5). O ) L ) )
k-labeling ¢, wy (), is the sum of labels carried by that T no = 1 then by applying similar reasoning as in the
face and all the edges and vertices surrounding itProof of previous theorem to thesided facesi < c, we
An entire k-labeling ¢ is defined to be dace irregular ~ "ave
entire k-labelingof the plane grap!G if for every two  Theorem 2.2.Let G = (V,E,F) be a 2-connected plane
different facesf andg of G there iswy (f) # wy (Q). graph withn; i-sided faces, > 3. Leta = min{i|n; # 0},
The entire face irregularity strengthdenotedefgG), b = maxi|n; # 0}, n, = 1 andc = max{i|n; #0, i < b}.
of a plane grapl@ is the smallest integdrsuch thatGhas  Then
a face irregular entirk-labeling. ef4G) > Fa‘F IFl - 1-‘ @
The main aim of this paper is to obtain estimations on - 2c+1 '
the parameteefsand determine the precise valuesed$

for some families of plane graphs. The lower bound in Theorem 2.2 is tight. It can be

seen from the following two theorems which determine
the exact values of the entire face irregularity strength fo
certain families of plane graphs.

2 Bounds for the entire face irregularity
Theorem 2.3.Let L, ~ P,COP,, n > 3, be a ladder. Then

strength
Next theorem provides lower and upper bounds on efyLn) = {E-‘ 3
parameteefs 9

Theorem 2.1.Let G = (V,E,F) be a 2-connected plane ,

graph withn; i-sided facesj > 3. Leta = min{i|n; # 0} Proof. Let L.n ~ P,0P,, n > 3, be a ladder WIth/(Ln? =

andb = max{i|n; # 0}. Then {u,vit1<i<n}andE(Ly) = {Uliy1,Vivip1 1 1<i <
n—1}U{uvi : 1 <i < n}. The ladder, containsn—1

2a+ng+nNg+---+ny 4-sided faces and the externai-2ided face. Denote by
[ 2b+1 w <efyG) < fi4 the 4-sided face surrounded by verticess . 1, Vi, Vi1
and edgesiuiJrl,vi\;itH,uivi,ui+1vi+1, fori=1,2,...,n—
_ i _ 1, and denote by the external 8-sided face. From2)
< max{m3<i<b)=m D Ve haveefsLy) > [(n+7)/9].
Proof. Let ¢ be a face irregular entirk-labeling of a 2- Putk = [(n+7)/9]. To show thak is an upper bound
connected plane gragh= (V,E,F) with efG) = k. for entire face irregularity strength df, we describe
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. . ) i+2 forl<i<k-—3
%r;lot\al\?st!re k-labeling ¢; : VUEUF — {1,2,...,k} as da2(vi) = {k, fork—2<i<n
. i .
P1(uj) = {%J +1, for 1<i<n 02(2z 1) = P2(Ui112) = {\:J , for 1<i<n-1
. i .
o1(vi) = {%J +1, for 1<i<n ¢2(Uili1) = {5-‘ , for 1<i<n-1
. i .
P1(Uiliq) = {%J +1, for 1<i<n-1 P2(uiz) = [5} » for 1<i<n
i+6 . —|—2 for1<i<k-3
P1(ViViy1) = {TJJFL for 1<i<n-1 2(Vivig1) = fork—2<i<n_1
i . +2,forl1<i<k-3
uvi)=1|=|+1 for 1<i<n
Paluiv) BJ - 2(uvi) { fork—2<i<n
¢1(f,4):[lw for 1<i<n-1 ,forl<i<k-3
9 k fork—2<i<n-1
$1(f%9) =k $1(F%) =k
It is easy to see that the labeligg is an entirek-labeling, .
the weights of 4-sided faces are all distinct and constitute b2(h) = 2, forl<i<?
the set {9,10,....n + 7}. Since for n > 3, ! [5t], for8<i<n-1
n-1
Z (@a(u) + ¢a(vi)) + ,Zl(¢1(UiUi+1) + $1(Vivigr)) > 4ol ) {1, fori=1,4
i=1 i= 2(07) = .
an—2 and ¢(f4 ) < ¢1(f%Y then wy, (f4 ) = o2 fori=23
n+ 7 < wy, (f&%). This concludes the prodf! i : .
Another variation of a ladder graph is specified as  ¢,(g?) [3]’ forf 25, !:0’2 (mod3)
follows. A graphBy,, n > 3, is a plane graph obtained by [§] —2 fori>7, i=1(mod3).

completing the laddet., ~ P,CJP, by verticesz, for
1 <i<n, and by edgesuz, for 1 <i < n, and
U1%,%z1, for 1 <i < n-1. The graphB, contains
2n— 2 3-sided faces) — 1 4-sided faces and the external W¢2(fi4) = {
(2n+ 2)-sided face.

Theorem 2.4.ForB,,, n > 3, we have

Observe that the face weights receive values

7(i+42), forl<i<k-2
6k+2+i,fork—1<i<n-1

2i+5,for1<i<?7

n+1 7i+10 fori>8i=2
oo =[5 @ =y o2 e
3 +3,fori>9,i=0 (mod3
7i+8 ; -
Proof. Let By, n > 3, be the plane graph with 3-sided A3, fori>10i=1 (mod3
faces, 4-sided faces and the exterf + 2)-sided face. 246 forl<i<7
Denote bygi3 the 3-sided face surrounded by vertices 7i+13’ o
U.Ui1z o and - edges Uz,Ui Uz, o for W, (h) = 4 o3 fori=8i=2(mod3
i =12...,n—1, and denote byh? 3-sided face & L2 +4,fori>9,i=0 (mod3
surrounded by vertices u,1,7,7z.7 and edges 7i-511’ fori >10,i=1 (mod 3.

U+1%,%Z1,Ui11Z 11, fori =1,2,....n— 1. Denote the

4-sided faces and the external face in the same way as it is a routine matter to verify that all vertex, edge and face

the proof of Theorem 2.3. labels are at most and the face weights are different for
Letk = [&31] It follows from (2) thatk is a lower  all pairs of distinct faces. In fact, our labeligg has been

bound forefgBp). To show thatk is an upper bound for chosen in such a way that the weights of 3-sided and 4-

efgBy) it suffices to prove the existence of an optimal sided faces form the sequence of different integers from 7

entire labeling ¢, : V(By) U E(Bn) U F(Bn) —  upto&-+n+1.

{1,2,....,[(n+1)/3]}. For n > 3 we construct the Since forn > 3, ¢2(Un—1) < ¢2(z1), P2(Un_1Un) =
function ¢, in the following way: $#2(Zn—12n), $2(Un—1Vn—1) < $2(UnZn) + P2(Vh_2Vh_1) and
. 92(fn_1) < d2(f) thenwe, (£ 1) < we, ().
02(2) = ba(Ui) = 1, fori=1,2 Thus, the labelingp, is desired face irregular entire
2 2\ |L]+1,for3<i<n k-labeling.0]
(@© 2015 NSP

Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

266

M. Baca et. al. : Entire Labeling of Plane Graphs

If we consider the maximum degree in a 2-connected

plane graph, we obtain the following theorem.

Theorem 2.5.Let G = (V,E,F) be a 2-connected plane
graph with maximum degre®. Letx be a vertex of degree

A and let the smallest face and the biggest face incident

with x be ana-sided face and b-sided face, respectively.

Then
2a+A— 1}

b (®)

efyG) > [
Proof. Suppose thap is an optimal face irregular entire
labeling of a 2-connected plane graphlLet f1, fo,..., fa
be the faces incident with a fixed vert®of maximum
degreed in G and leta-sided face be the smallest abd
sided face be the biggest of them.
The face weightswy (f1),wy (f2),...,wy (fa) are all
distinct and each of them contains the valpig). The

largest among these face weights must be at least
¢ (x) +2a+A — 1. This weight can be the sum of at most

2b labels (without¢ (x)). So at least one label is at least
[(2a+A—1)/(2b)]. O
The lower bound?y) is tight for wheels.

Theorem 2.6.Let W, be a wheel om+- 1 verticesn > 3.

Then
n+5w

(6)

efqWy) = { 5

Proof. A wheel W, n > 3, is a plane graph obtained by
joining all vertices of cycle&C, to a further vertew, called
the center Thus W, contains n+ 1 vertices, say,
V,V1,Vo,...,Vy, and 2h edges, sawvi, 1 <i <n, vivi,1,
1<i<n-1, andvyv;. Denote byfi3 the 3-sided face
surrounded by vertices v,v;,vi;; and edges
VM, ViVi 11, Wi, 1, for i =1,2,...,n— 1. Denote byf3 the
face surrounded by verticesv,vi,vq, and edges
Vi, V1V, VW; and the externai-sided face denote bff*.

In view of the lower bounds) it suffices to prove the
existence of an entire labelings : V(W) U E(W,)U
F(Wh) = {1,2,..., [ %]} such thawvg, (f) # we,(g) for
everyf,ge F(Wh) with T # g.

Forn=3 we define a desired entire labeling as follows:

p3(wi) = ¢3(f3) = 1, for 1 < i < 3,
d3(vi) = P3(vivirr) = 1, for 1 <i < 2, ¢3(v) = 1 and
d3(v3) = ¢3(vav1) = ¢3(f®) = 2. We can see that
We, (&) = 10 andwy, (f3) = 2n+i, for 1 <i < 3.

For n > 4, we describe the entire labeling in the
following way:

¢3(V) =1
1, fori=1,2
¢a(v) = ¢ [5H], for3<i<[0]+1
n-itl

%5

]+1 for [3]+2<i<n
P3(vav1) =1
fori=1,2,n
for3<i<|3]+1
|, for [5]|+2<i<n-1

1,
da(vw) = <[4
ks

N -

oo(f%) = [%%°], fori=|5]+1
[n—éﬁw’for |3]+2<i<n
exty | N+5
oalre) = | "53],

Forn even we define

E forl<i<f+1
ViVi = 3~|7
$3(Vivii1) {{nT]+1 for1+2<i<n-1.

Forn odd we define
I
$3(Vivii1) = { F{]’

The weights of 3-sided faces attain values

W¢3(fi3) = {

that is, successively attain the value8,7..,n+5. The
weight of the last 3-sided facew¢3(ffnj+l) =
2

$3(v) +@3(V| 5| 41) + Pa(v| g J+2)+¢3(VL%J+1VL%J+2)+
$3(W | 11) +9s(vv g J+2)+¢3( i J+1)

for n even g|ve13N¢,3(fL |41 D=1+ %4+ [22] +
14 [252]  [25] + [§]  [45] > 05

and for n odd givesw¢3(ffﬂ+l) 1+ [22] +
o] L [258] 4 L [257]  [251] 4 [255] > a5

Forn:4,W¢3(fng+l):11<W¢3(feXt) 12.

Since forn > 5, ¢3(fng+1) = $5(F®) and da(v)+

2i 45, for1<i<|3|
2n—2i+8.for |[§|+2<i<n

$3(Wnj 1) + 9s(Wg o) < Gs(Vg)aV|g))T
PVigVigled)  F BslVgpViplas)
¢3(VL%J+3VL%J+4) then the weight of the externaisided

face is greater thaw¢,3(ffnj+l). So the labelingps has
2

the required properties of a face irregular entire labeling
U

3 Conclusion

In this paper we introduced a new graph parameter, the
entire face irregularity strengte,f§G), as a modification

of the well-known irregularity strength, total edge
irregularity strength and total vertex irregularity stgém

We proved that for every 2-connected plane graph

G = (V,E,F) with n; i-sided faces, i > 3,
Pa*”ﬁg‘ﬂ th) < ef§G) < m,  where
min{ijln; # 0}, b = maXiln, # 0} and

max{n;|3 <i < b}.

(@© 2015 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.9, No. 1, 263-267 (2015)www.naturalspublishing.com/Journals.asp

F . SD\ 267

This lower bound of the entire face irregularity
strength can not be improved in general. Because if
ny = 1 andc = max{i|n; # 0, i < b} then we obtain that

efgG) > Pa*‘F‘_l and the sharpness of this lower

2c+1
bound is reached for graph of the laddlgr~ P,C1P..

We suppose that the upper bound of the entire face
irregularity strength can be improved.
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