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Abstract: A face irregular entirek-labelingϕ : V ∪E∪F → {1,2, . . . ,k} of a 2-connected plane graphG= (V,E,F) is a labeling of
vertices, edges and faces ofG in such a way that for any two different facesf andg their weightswϕ ( f ) andwϕ (g) are distinct. The
weightof a facef under ak-labelingϕ is the sum of labels carried by that face and all the edges and vertices incident with the face. The
minimumk for which a plane graphG has a face irregular entirek-labeling is called the entire face irregularity strength.We investigate
a face irregular entire labeling as a modification of the well-known vertex irregular and edge irregular total labelingsof graphs. We
obtain some estimations on the entire face irregularity strength and determine the precise values for graphs from threefamilies of plane
graphs.
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1 Introduction

We consider finite undirected graphs without loops and
multiple edges. Denote byV(G) and E(G) the set of
vertices and the set of edges of a graphG, respectively.

Chartrand, Jacobson, Lehel, Oellermann, Ruiz and
Saba in [5] introduced labelings of the edges of a graphG
with positive integers such that the sum of the labels of
edges incident with a vertex is different for all the
vertices. Such labelings were calledirregular assignments
and theirregularity strength s(G) of a graphG is known
as the minimum k for which G has an irregular
assignment using labels at mostk. The irregularity
strengths(G) can be interpreted as the smallest integerk
for which G can be turned into a multigraphG′ by
replacing each edge by a set of at mostk parallel edges,
such that the degrees of the vertices inG′ are all different.

Finding the irregularity strength of a graph seems to be
hard even for graphs with simple structure, see [3,6,7,12,
14].

Motivated by irregular assignments Bača, Jendroľ ,
Miller and Ryan in [2] defined avertex irregular total
k-labelingof a graphG = (V,E) to be a labeling of the
vertices and edges ofG

φ : V ∪E →{1,2, . . . ,k}

such that thetotal vertex-weights

wtφ (x) = φ(x)+ ∑
xy∈E

φ(xy)

are different for all vertices, that is,wtφ (x) 6= wtφ (y) for
all different verticesx,y ∈ V. Furthermore, they defined
the total vertex irregularity strength, tvs(G), of G as the
minimum k for which G has a vertex irregular total
k-labeling.

It is easy to see that irregularity strengths(G) of
a graphG is defined only for graphs containing at most
one isolated vertex and no connected component of order
2. On the other hand, the total vertex irregularity strength
tvs(G) is defined for every graphG. Moreover, for graphs
with no component of order≤ 2, tvs(G)≤ s(G).

In [2] several bounds and exact values oftvs were
determined for different types of graphs (in particular for
stars, cliques and prisms). These results were then
improved by Przybylo [18], Anholcer et al. [1] and
Nurdinet al. [15,16].

Furthermore, in [2] the authors defined anedge
irregular total k-labeling of a graphG = (V,E) to be
a labelingφ : V ∪ E → {1,2, . . . ,k} such that the edge
weightswtφ (xy) = φ(x) + φ(xy) + φ(y) are different for
all edges, that is,wtφ (xy) 6= wtφ (x′y′) for all edges
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xy,x′y′ ∈ E with xy 6= x′y′. They defined thetotal edge
irregularity strength, tes(G), of G as the minimumk for
which G has an edge irregular totalk-labeling and
determined the exact values of the total edge irregularity
strength for paths, cycles, stars, wheels and friendship
graphs.

Recently Ivančo and Jendroľ [9] posed a conjecture
that for arbitrary graphG different fromK5 and maximum
degree∆(G),

tes(G) = max

{⌈

|E(G)|+2
3

⌉

,

⌈

∆(G)+1
2

⌉}

.

This conjecture has been verified for complete graphs and
complete bipartite graphs in [10] and [11], for the
Cartesian product of two paths in [13], for generalized
Petersen graphs in [8], for corona product of a path with
certain graphs in [17] and for large dense graphs with
|E(G)|+2

3 ≤ ∆ (G)+1
2 in [4].

Motivated by total irregularity strengths and a recent
paper on entire colouring of plane graphs [19] we study
irregular labelings of plane graphs with restrictions placed
on the weights of faces. Aplane graph is a particular
drawing of a planar graph on the Euclidean plane.
Suppose thatG = (V,E,F) is a 2-connected plane graph
with face setF .

Now, for a plane graphG = (V,E,F) we define
a labelingϕ : V ∪E ∪ F → {1,2, . . . ,k} to be an entire
k-labeling. The weight of a face f under an entire
k-labelingϕ , wϕ ( f ), is the sum of labels carried by that
face and all the edges and vertices surrounding it.
An entire k-labeling ϕ is defined to be aface irregular
entire k-labelingof the plane graphG if for every two
different facesf andg of G there iswϕ( f ) 6= wϕ(g).

The entire face irregularity strength, denotedefs(G),
of a plane graphG is the smallest integerk such thatG has
a face irregular entirek-labeling.

The main aim of this paper is to obtain estimations on
the parameterefsand determine the precise values ofefs
for some families of plane graphs.

2 Bounds for the entire face irregularity
strength

Next theorem provides lower and upper bounds on
parameterefs.
Theorem 2.1.Let G = (V,E,F) be a 2-connected plane
graph withni i-sided faces,i ≥ 3. Let a = min{i|ni 6= 0}
andb= max{i|ni 6= 0}. Then

⌈

2a+n3+n4+ · · ·+nb

2b+1

⌉

≤ efs(G)≤

≤ max{ni|3≤ i ≤ b}= m. (1)

Proof. Let ϕ be a face irregular entirek-labeling of a 2-
connected plane graphG= (V,E,F) with efs(G) = k.

Clearly 2a+1≤ wϕ ( f )≤ (2b+1)k for every facef ∈
F, and therefore|F |= n3+n4+ · · ·+nb ≤ (2b+1)k−2a.
This implies

k= efs(G)≥

⌈

2a+ |F|
2b+1

⌉

.

To see the upper bound let us label the elements ofG
as follows:

ϕ(v) = l =
⌊m

2

⌋

for everyv∈V,

ϕ(e) = h=
⌈m

2

⌉

for everye∈ E.

Let f i
1, f i

2, . . . , f i
ni

be i-sided faces ofG, i ≥ 3. Then we put

ϕ( f i
j ) = j for all 1≤ j ≤ ni , and all 3≤ i ≤ b.

Clearlyϕ( f i
j )≤ m.

Now we have to show thatwϕ ( f ) 6= wϕ(g) whenever
f 6= g.

Let f = f i
r 6= f t

s = g and, without loss of generality,
i < t. Thenwϕ ( f i

r ) = li + hi+ r = mi+ r ≤ m(i + 1) <
mt+1≤ mt+ s= lt +ht+ s= wϕ( f t

s).

If f = f i
r 6= f t

s = g and i = t, then let, without loss of
generality,r < s. In this casewϕ ( f i

r ) = mi+ r < mi+ s=
wϕ( f t

s). �
If nb = 1 then by applying similar reasoning as in the

proof of previous theorem to thei-sided faces,i ≤ c, we
have

Theorem 2.2.Let G = (V,E,F) be a 2-connected plane
graph withni i-sided faces,i ≥ 3. Let a= min{i|ni 6= 0},
b= max{i|ni 6= 0}, nb = 1 andc= max{i|ni 6= 0, i < b}.
Then

efs(G)≥

⌈

2a+ |F|−1
2c+1

⌉

. (2)

The lower bound in Theorem 2.2 is tight. It can be
seen from the following two theorems which determine
the exact values of the entire face irregularity strength for
certain families of plane graphs.

Theorem 2.3.Let Ln ≃ Pn�P2, n≥ 3, be a ladder. Then

efs(Ln) =

⌈

n+7
9

⌉

. (3)

Proof. Let Ln ≃ Pn�P2, n ≥ 3, be a ladder withV(Ln) =
{ui,vi : 1 ≤ i ≤ n} andE(Ln) = {uiui+1,vivi+1 : 1 ≤ i ≤
n− 1}∪ {uivi : 1 ≤ i ≤ n}. The ladderLn containsn− 1
4-sided faces and the external 2n-sided face. Denote by
f 4
i the 4-sided face surrounded by verticesui ,ui+1,vi ,vi+1

and edgesuiui+1,vivi+1,uivi ,ui+1vi+1, for i = 1,2, . . . ,n−
1, and denote byf ext the external 2n-sided face. From (2)
we haveefs(Ln)≥ ⌈(n+7)/9⌉.

Putk= ⌈(n+7)/9⌉. To show thatk is an upper bound
for entire face irregularity strength ofLn we describe
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an entirek-labeling ϕ1 : V ∪ E ∪ F → {1,2, . . . ,k} as
follows:

ϕ1(ui) =

⌊

i +4
9

⌋

+1, for 1≤ i ≤ n

ϕ1(vi) =

⌊

i +2
9

⌋

+1, for 1≤ i ≤ n

ϕ1(uiui+1) =

⌊

i +7
9

⌋

+1, for 1≤ i ≤ n−1

ϕ1(vivi+1) =

⌊

i +6
9

⌋

+1, for 1≤ i ≤ n−1

ϕ1(uivi) =

⌊

i
9

⌋

+1, for 1≤ i ≤ n

ϕ1( f 4
i ) =

⌈

i
9

⌉

, for 1≤ i ≤ n−1

ϕ1( f ext) = k.

It is easy to see that the labelingϕ1 is an entirek-labeling,
the weights of 4-sided faces are all distinct and constitute
the set {9,10, . . . ,n + 7}. Since for n ≥ 3,
n
∑

i=1
(ϕ1(ui) + ϕ1(vi)) +

n−1
∑

i=1
(ϕ1(uiui+1) + ϕ1(vivi+1)) ≥

4n − 2 and ϕ1( f 4
n−1) ≤ ϕ1( f ext) then wϕ1( f 4

n−1) =
n+7< wϕ1( f ext). This concludes the proof.�

Another variation of a ladder graph is specified as
follows. A graphBn, n ≥ 3, is a plane graph obtained by
completing the ladderLn ≃ Pn�P2 by verticeszi , for
1 ≤ i ≤ n, and by edgesuizi , for 1 ≤ i ≤ n, and
ui+1zi ,zizi+1, for 1 ≤ i ≤ n− 1. The graphBn contains
2n−2 3-sided faces,n−1 4-sided faces and the external
(2n+2)-sided face.

Theorem 2.4.ForBn, n≥ 3, we have

efs(Bn) =

⌈

n+1
3

⌉

. (4)

Proof. Let Bn, n ≥ 3, be the plane graph with 3-sided
faces, 4-sided faces and the external(2n+ 2)-sided face.
Denote byg3

i the 3-sided face surrounded by vertices
ui ,ui+1,zi and edges uizi ,uiui+1,ui+1zi , for
i = 1,2, . . . ,n − 1, and denote byh3

i 3-sided face
surrounded by vertices ui+1,zi ,zi+1 and edges
ui+1zi ,zizi+1,ui+1zi+1, for i = 1,2, . . . ,n− 1. Denote the
4-sided faces and the external face in the same way as in
the proof of Theorem 2.3.

Let k =
⌈

n+1
3

⌉

. It follows from (2) that k is a lower
bound forefs(Bn). To show thatk is an upper bound for
efs(Bn) it suffices to prove the existence of an optimal
entire labeling ϕ2 : V(Bn) ∪ E(Bn) ∪ F(Bn) →
{1,2, . . . ,⌈(n + 1)/3⌉}. For n ≥ 3 we construct the
functionϕ2 in the following way:

ϕ2(zi) = ϕ2(ui) =

{

1, for i = 1,2
⌊

i
3

⌋

+1, for 3≤ i ≤ n

ϕ2(vi) =

{

i +2, for 1≤ i ≤ k−3

k, for k−2≤ i ≤ n

ϕ2(zizi+1) = ϕ2(ui+1zi) =

⌈

i
3

⌉

, for 1≤ i ≤ n−1

ϕ2(uiui+1) =

⌈

i
3

⌉

, for 1≤ i ≤ n−1

ϕ2(uizi) =

⌈

i
3

⌉

, for 1≤ i ≤ n

ϕ2(vivi+1) =

{

i +2, for 1≤ i ≤ k−3

k, for k−2≤ i ≤ n−1

ϕ2(uivi) =

{

i +2, for 1≤ i ≤ k−3

k, for k−2≤ i ≤ n

ϕ2( f 4
i ) =

{

i, for 1≤ i ≤ k−3

k, for k−2≤ i ≤ n−1

ϕ1( f ext) = k

ϕ2(h
3
i ) =

{

2, for 1≤ i ≤ 7
⌈

i−1
3

⌉

, for 8≤ i ≤ n−1

ϕ2(g
3
i ) =

{

1, for i = 1,4

2, for i = 2,3

ϕ2(g
3
i ) =

{

⌈

i
3

⌉

, for i ≥ 5, i ≡ 0,2 (mod3)
⌈

i
3

⌉

−2, for i ≥ 7, i ≡ 1 (mod3).

Observe that the face weights receive values

wϕ2( f 4
i ) =

{

7(i +2), for 1≤ i ≤ k−2

6k+2+ i, for k−1≤ i ≤ n−1

wϕ2(g
3
i ) =



















2i +5, for 1≤ i ≤ 7
7i+10

3 , for i ≥ 8, i ≡ 2 (mod 3)
7i
3 +3, for i ≥ 9, i ≡ 0 (mod 3)
7i+8

3 , for i ≥ 10, i ≡ 1 (mod 3)

wϕ2(h
3
i ) =



















2i +6, for 1≤ i ≤ 7
7i+13

3 , for i ≥ 8, i ≡ 2 (mod 3)
7i
3 +4, for i ≥ 9, i ≡ 0 (mod 3)
7i+11

3 , for i ≥ 10, i ≡ 1 (mod 3).

It is a routine matter to verify that all vertex, edge and face
labels are at mostk and the face weights are different for
all pairs of distinct faces. In fact, our labelingϕ2 has been
chosen in such a way that the weights of 3-sided and 4-
sided faces form the sequence of different integers from 7
up to 6k+n+1.

Since for n ≥ 3, ϕ2(un−1) ≤ ϕ2(zn), ϕ2(un−1un) =
ϕ2(zn−1zn), ϕ2(un−1vn−1)< ϕ2(unzn)+ϕ2(vn−2vn−1) and
ϕ2( f 4

n−1)≤ ϕ2( f ext) thenwϕ2( f 4
n−1)< wϕ2( f ext).

Thus, the labelingϕ2 is desired face irregular entire
k-labeling.�
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If we consider the maximum degree in a 2-connected
plane graph, we obtain the following theorem.

Theorem 2.5.Let G = (V,E,F) be a 2-connected plane
graph with maximum degree∆ . Letx be a vertex of degree
∆ and let the smallest face and the biggest face incident
with x be ana-sided face and ab-sided face, respectively.
Then

efs(G)≥

⌈

2a+∆ −1
2b

⌉

. (5)

Proof. Suppose thatϕ is an optimal face irregular entire
labeling of a 2-connected plane graphG. Let f1, f2, . . . , f∆
be the faces incident with a fixed vertexx of maximum
degree∆ in G and leta-sided face be the smallest andb-
sided face be the biggest of them.

The face weightswϕ ( f1),wϕ ( f2), . . . ,wϕ ( f∆ ) are all
distinct and each of them contains the valueϕ(x). The
largest among these face weights must be at least
ϕ(x)+2a+∆ −1. This weight can be the sum of at most
2b labels (withoutϕ(x)). So at least one label is at least
⌈(2a+∆ −1)/(2b)⌉. �.

The lower bound (5) is tight for wheels.

Theorem 2.6.Let Wn be a wheel onn+1 vertices,n≥ 3.
Then

efs(Wn) =

⌈

n+5
6

⌉

. (6)

Proof. A wheel Wn, n ≥ 3, is a plane graph obtained by
joining all vertices of cycleCn to a further vertexv, called
the center. Thus Wn contains n + 1 vertices, say,
v,v1,v2, . . . ,vn and 2n edges, say,vvi , 1 ≤ i ≤ n, vivi+1,
1 ≤ i ≤ n− 1, andvnv1. Denote by f 3

i the 3-sided face
surrounded by vertices v,vi ,vi+1 and edges
vvi ,vivi+1,vvi+1, for i = 1,2, . . . ,n− 1. Denote byf 3

n the
face surrounded by verticesv,v1,vn and edges
vvn,v1vn,vv1 and the externaln-sided face denote byf ext.

In view of the lower bound (5) it suffices to prove the
existence of an entire labelingϕ3 : V(Wn) ∪ E(Wn)∪

F(Wn)→{1,2, . . . ,
⌈

n+5
6

⌉

} such thatwϕ3( f ) 6= wϕ3(g) for
every f ,g∈ F(Wn) with f 6= g.

Forn=3 we define a desired entire labeling as follows:
ϕ3(vvi) = ϕ3( f 3

i ) = 1, for 1 ≤ i ≤ 3,
ϕ3(vi) = ϕ3(vivi+1) = 1, for 1≤ i ≤ 2, ϕ3(v) = 1 and
ϕ3(v3) = ϕ3(v3v1) = ϕ3( f ext) = 2. We can see that
wϕ3( f ext) = 10 andwϕ3( f 3

i ) = 2n+ i, for 1≤ i ≤ 3.
For n ≥ 4, we describe the entire labeling in the

following way:
ϕ3(v) = 1

ϕ3(vi) =











1, for i = 1,2
⌈

i+1
3

⌉

, for 3≤ i ≤
⌈

n
2

⌉

+1
⌈

n−i+1
3

⌉

+1, for
⌈

n
2

⌉

+2≤ i ≤ n

ϕ3(vnv1) = 1

ϕ3(vvi) =











1, for i = 1,2,n
⌈

i+1
3

⌉

, for 3≤ i ≤
⌊

n
2

⌋

+1
⌈

n−i+2
3

⌉

, for
⌊

n
2

⌋

+2≤ i ≤ n−1

ϕ3( f 3
i ) =











⌈

i
3

⌉

, for 1≤ i ≤
⌊

n
2

⌋

⌈

n+5
6

⌉

, for i =
⌊

n
2

⌋

+1
⌈

n−i+2
3

⌉

, for
⌊

n
2

⌋

+2≤ i ≤ n

ϕ3( f ext) =

⌈

n+5
6

⌉

.

Forn even we define

ϕ3(vivi+1) =

{

⌈

i
3

⌉

, for 1≤ i ≤ n
2 +1

⌈

n−i
3

⌉

+1, for n
2 +2≤ i ≤ n−1.

Forn odd we define

ϕ3(vivi+1) =

{

⌈

i
3

⌉

, for 1≤ i ≤ n−1
2

⌈

n−i
3

⌉

+1, for n+1
2 ≤ i ≤ n−1.

The weights of 3-sided faces attain values

wϕ3( f 3
i ) =

{

2i +5, for 1≤ i ≤
⌊

n
2

⌋

2n−2i +8, for
⌊

n
2

⌋

+2≤ i ≤ n

that is, successively attain the values 7,8, . . . ,n+ 5. The
weight of the last 3-sided facewϕ3( f 3

⌊ n
2⌋+1

) =

ϕ3(v)+ϕ3(v⌊ n
2⌋+1)+ϕ3(v⌊ n

2⌋+2)+ϕ3(v⌊ n
2⌋+1v⌊ n

2⌋+2)+

ϕ3(vv⌊ n
2⌋+1)+ϕ3(vv⌊ n

2⌋+2)+ϕ3( f 3
⌊ n

2⌋+1
)

for n even giveswϕ3( f 3
⌊ n

2⌋+1
) = 1+

⌈

n+4
6

⌉

+
⌈

n−2
6

⌉

+

1+
⌈

n+2
6

⌉

+
⌈

n+4
6

⌉

+
⌈

n
6

⌉

+
⌈

n+5
6

⌉

> n+5
and for n odd gives wϕ3( f 3

⌊ n
2⌋+1

) = 1 +
⌈

n+3
6

⌉

+
⌈

n−1
6

⌉

+1+
⌈

n−1
6

⌉

+1+
⌈

n+3
6

⌉

+
⌈

n+1
6

⌉

+
⌈

n+5
6

⌉

> n+5.
Forn= 4, wϕ3( f 3

⌊ n
2⌋+1

) = 11< wϕ3( f ext) = 12.

Since forn ≥ 5, ϕ3( f 3
⌊ n

2⌋+1
) = ϕ3( f ext) and ϕ3(v)+

ϕ3(vv⌊ n
2⌋+1) + ϕ3(vv⌊ n

2⌋+2) < ϕ3(v⌊ n
2⌋−1v⌊ n

2⌋
)+

ϕ3(v⌊ n
2⌋

v⌊ n
2⌋+1) + ϕ3(v⌊ n

2⌋+2v⌊ n
2⌋+3) +

ϕ3(v⌊ n
2⌋+3v⌊ n

2⌋+4) then the weight of the externaln-sided

face is greater thanwϕ3( f 3
⌊ n

2⌋+1
). So the labelingϕ3 has

the required properties of a face irregular entire labeling.
�

3 Conclusion

In this paper we introduced a new graph parameter, the
entire face irregularity strength,e f s(G), as a modification
of the well-known irregularity strength, total edge
irregularity strength and total vertex irregularity strength.
We proved that for every 2-connected plane graph
G = (V,E,F) with ni i-sided faces, i ≥ 3,
⌈

2a+n3+n4+···+nb
2b+1

⌉

≤ efs(G) ≤ m, where

a = min{i|ni 6= 0}, b = max{i|ni 6= 0} and
m= max{ni|3≤ i ≤ b}.
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This lower bound of the entire face irregularity
strength can not be improved in general. Because if
nb = 1 andc = max{i|ni 6= 0, i < b} then we obtain that

efs(G) ≥
⌈

2a+|F|−1
2c+1

⌉

and the sharpness of this lower

bound is reached for graph of the ladderLn ≃ Pn�P2.
We suppose that the upper bound of the entire face

irregularity strength can be improved.
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[10] S. Jendrǒl, J.Miškuf and R. Soták, Electron. Notes Discrete
Math.28, 281–285 (2007).
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