Entire Labeling of Plane Graphs

Martin Bača ${ }^{1, *}$, Stanislav Jendrol̆², Kumarappan Kathiresan ${ }^{3}$ and Kadarkarai Muthugurupackiam ${ }^{4}$
${ }^{1}$ Department of Appl. Mathematics and Informatics, Technical University, Letná 9, Košice, Slovak Republic
${ }^{2}$ Institute of Mathematics, P.J.Šafárik University, Jesenná 5, Košice, Slovak Republic
${ }^{3}$ Department of Mathematics, AYYA Nadar Janaki Ammal College, Sivakasi, 626 124, India
${ }^{4}$ Department of Mathematics, Rajah Serfoji Government College, Thanjavur, 613 005, India

Received: 1 Apr. 2014, Revised: 2 Jul. 2014, Accepted: 3 Jul. 2014
Published online: 1 Jan. 2015

Abstract

A face irregular entire k-labeling $\varphi: V \cup E \cup F \rightarrow\{1,2, \ldots, k\}$ of a 2-connected plane graph $G=(V, E, F)$ is a labeling of vertices, edges and faces of G in such a way that for any two different faces f and g their weights $w_{\varphi}(f)$ and $w_{\varphi}(g)$ are distinct. The weight of a face f under a k-labeling φ is the sum of labels carried by that face and all the edges and vertices incident with the face. The minimum k for which a plane graph G has a face irregular entire k-labeling is called the entire face irregularity strength. We investigate a face irregular entire labeling as a modification of the well-known vertex irregular and edge irregular total labelings of graphs. We obtain some estimations on the entire face irregularity strength and determine the precise values for graphs from three families of plane graphs.

Keywords: face irregular entire k-labeling, entire face irregularity strength, plane graph

1 Introduction

We consider finite undirected graphs without loops and multiple edges. Denote by $V(G)$ and $E(G)$ the set of vertices and the set of edges of a graph G, respectively.

Chartrand, Jacobson, Lehel, Oellermann, Ruiz and Saba in [5] introduced labelings of the edges of a graph G with positive integers such that the sum of the labels of edges incident with a vertex is different for all the vertices. Such labelings were called irregular assignments and the irregularity strength $s(G)$ of a graph G is known as the minimum k for which G has an irregular assignment using labels at most k. The irregularity strength $s(G)$ can be interpreted as the smallest integer k for which G can be turned into a multigraph G^{\prime} by replacing each edge by a set of at most k parallel edges, such that the degrees of the vertices in G^{\prime} are all different.

Finding the irregularity strength of a graph seems to be hard even for graphs with simple structure, see $[3,6,7,12$, 14].

Motivated by irregular assignments Bača, Jendroľ, Miller and Ryan in [2] defined a vertex irregular total k-labeling of a graph $G=(V, E)$ to be a labeling of the vertices and edges of G

$$
\phi: V \cup E \rightarrow\{1,2, \ldots, k\}
$$

such that the total vertex-weights

$$
w t_{\phi}(x)=\phi(x)+\sum_{x y \in E} \phi(x y)
$$

are different for all vertices, that is, $w t_{\phi}(x) \neq w t_{\phi}(y)$ for all different vertices $x, y \in V$. Furthermore, they defined the total vertex irregularity strength, tvs (G), of G as the minimum k for which G has a vertex irregular total k-labeling.

It is easy to see that irregularity strength $s(G)$ of a graph G is defined only for graphs containing at most one isolated vertex and no connected component of order 2. On the other hand, the total vertex irregularity strength $t v s(G)$ is defined for every graph G. Moreover, for graphs with no component of order $\leq 2, t \nu s(G) \leq s(G)$.

In [2] several bounds and exact values of tvs were determined for different types of graphs (in particular for stars, cliques and prisms). These results were then improved by Przybylo [18], Anholcer et al. [1] and Nurdin et al. [15, 16].

Furthermore, in [2] the authors defined an edge irregular total k-labeling of a graph $G=(V, E)$ to be a labeling $\phi: V \cup E \rightarrow\{1,2, \ldots, k\}$ such that the edge weights $w t_{\phi}(x y)=\phi(x)+\phi(x y)+\phi(y)$ are different for all edges, that is, $w t_{\phi}(x y) \neq w t_{\phi}\left(x^{\prime} y^{\prime}\right)$ for all edges

[^0]$x y, x^{\prime} y^{\prime} \in E$ with $x y \neq x^{\prime} y^{\prime}$. They defined the total edge irregularity strength, tes (G), of G as the minimum k for which G has an edge irregular total k-labeling and determined the exact values of the total edge irregularity strength for paths, cycles, stars, wheels and friendship graphs.

Recently Ivančo and Jendroľ [9] posed a conjecture that for arbitrary graph G different from K_{5} and maximum degree $\Delta(G)$,

$$
\operatorname{tes}(G)=\max \left\{\left\lceil\frac{|E(G)|+2}{3}\right\rceil,\left\lceil\frac{\Delta(G)+1}{2}\right\rceil\right\}
$$

This conjecture has been verified for complete graphs and complete bipartite graphs in [10] and [11], for the Cartesian product of two paths in [13], for generalized Petersen graphs in [8], for corona product of a path with certain graphs in [17] and for large dense graphs with $\frac{|E(G)|+2}{3} \leq \frac{\Delta(G)+1}{2}$ in [4].

Motivated by total irregularity strengths and a recent paper on entire colouring of plane graphs [19] we study irregular labelings of plane graphs with restrictions placed on the weights of faces. A plane graph is a particular drawing of a planar graph on the Euclidean plane. Suppose that $G=(V, E, F)$ is a 2 -connected plane graph with face set F.

Now, for a plane graph $G=(V, E, F)$ we define a labeling $\varphi: V \cup E \cup F \rightarrow\{1,2, \ldots, k\}$ to be an entire k-labeling. The weight of a face f under an entire k-labeling $\varphi, w_{\varphi}(f)$, is the sum of labels carried by that face and all the edges and vertices surrounding it. An entire k-labeling φ is defined to be a face irregular entire k-labeling of the plane graph G if for every two different faces f and g of G there is $w_{\varphi}(f) \neq w_{\varphi}(g)$.

The entire face irregularity strength, denoted efs (G), of a plane graph G is the smallest integer k such that G has a face irregular entire k-labeling.

The main aim of this paper is to obtain estimations on the parameter efs and determine the precise values of efs for some families of plane graphs.

2 Bounds for the entire face irregularity strength

Next theorem provides lower and upper bounds on parameter efs.
Theorem 2.1. Let $G=(V, E, F)$ be a 2 -connected plane graph with $n_{i} i$-sided faces, $i \geq 3$. Let $a=\min \left\{i \mid n_{i} \neq 0\right\}$ and $b=\max \left\{i \mid n_{i} \neq 0\right\}$. Then

$$
\begin{gather*}
\left.\left\lvert\, \frac{2 a+n_{3}+n_{4}+\cdots+n_{b}}{2 b+1}\right.\right\rceil \leq e f s(G) \leq \\
\leq \max \left\{n_{i} \mid 3 \leq i \leq b\right\}=m \tag{1}
\end{gather*}
$$

Proof. Let φ be a face irregular entire k-labeling of a 2 connected plane graph $G=(V, E, F)$ with $e f s(G)=k$.

Clearly $2 a+1 \leq w_{\varphi}(f) \leq(2 b+1) k$ for every face $f \in$ F, and therefore $|F|=n_{3}+n_{4}+\cdots+n_{b} \leq(2 b+1) k-2 a$. This implies

$$
k=e f s(G) \geq\left\lceil\frac{2 a+|F|}{2 b+1}\right\rceil
$$

To see the upper bound let us label the elements of G as follows:

$$
\begin{aligned}
& \varphi(v)=l=\left\lfloor\frac{m}{2}\right\rfloor \text { for every } v \in V \\
& \varphi(e)=h=\left\lceil\frac{m}{2}\right\rceil \text { for every } e \in E
\end{aligned}
$$

Let $f_{1}^{i}, f_{2}^{i}, \ldots, f_{n_{i}}^{i}$ be i-sided faces of $G, i \geq 3$. Then we put

$$
\varphi\left(f_{j}^{i}\right)=j \text { for all } 1 \leq j \leq n_{i}, \text { and all } 3 \leq i \leq b
$$

Clearly $\varphi\left(f_{j}^{i}\right) \leq m$.
Now we have to show that $w_{\varphi}(f) \neq w_{\varphi}(g)$ whenever $f \neq g$.

Let $f=f_{r}^{i} \neq f_{s}^{t}=g$ and, without loss of generality, $i<t$. Then $w_{\varphi}\left(f_{r}^{i}\right)=l i+h i+r=m i+r \leq m(i+1)<$ $m t+1 \leq m t+s=l t+h t+s=w_{\varphi}\left(f_{s}^{t}\right)$.

If $f=f_{r}^{i} \neq f_{s}^{t}=g$ and $i=t$, then let, without loss of generality, $r<s$. In this case $w_{\varphi}\left(f_{r}^{i}\right)=m i+r<m i+s=$ $w_{\varphi}\left(f_{s}^{t}\right)$.

If $n_{b}=1$ then by applying similar reasoning as in the proof of previous theorem to the i-sided faces, $i \leq c$, we have
Theorem 2.2. Let $G=(V, E, F)$ be a 2-connected plane graph with $n_{i} i$-sided faces, $i \geq 3$. Let $a=\min \left\{i \mid n_{i} \neq 0\right\}$, $b=\max \left\{i \mid n_{i} \neq 0\right\}, n_{b}=1$ and $c=\max \left\{i \mid n_{i} \neq 0, i<b\right\}$. Then

$$
\begin{equation*}
e f s(G) \geq\left\lceil\frac{2 a+|F|-1}{2 c+1}\right\rceil \tag{2}
\end{equation*}
$$

The lower bound in Theorem 2.2 is tight. It can be seen from the following two theorems which determine the exact values of the entire face irregularity strength for certain families of plane graphs.
Theorem 2.3. Let $L_{n} \simeq P_{n} \square P_{2}, n \geq 3$, be a ladder. Then

$$
\begin{equation*}
e f s\left(L_{n}\right)=\left\lceil\frac{n+7}{9}\right\rceil \text {. } \tag{3}
\end{equation*}
$$

Proof. Let $L_{n} \simeq P_{n} \square P_{2}, n \geq 3$, be a ladder with $V\left(L_{n}\right)=$ $\left\{u_{i}, v_{i}: 1 \leq i \leq n\right\}$ and $E\left(L_{n}\right)=\left\{u_{i} u_{i+1}, v_{i} v_{i+1}: 1 \leq i \leq\right.$ $n-1\} \cup\left\{u_{i} v_{i}: 1 \leq i \leq n\right\}$. The ladder L_{n} contains $n-1$ 4 -sided faces and the external $2 n$-sided face. Denote by f_{i}^{4} the 4 -sided face surrounded by vertices $u_{i}, u_{i+1}, v_{i}, v_{i+1}$ and edges $u_{i} u_{i+1}, v_{i} v_{i+1}, u_{i} v_{i}, u_{i+1} v_{i+1}$, for $i=1,2, \ldots, n-$ 1 , and denote by $f^{e x t}$ the external $2 n$-sided face. From (2) we have efs $\left(L_{n}\right) \geq\lceil(n+7) / 9\rceil$.

Put $k=\lceil(n+7) / 9\rceil$. To show that k is an upper bound for entire face irregularity strength of L_{n} we describe
an entire k-labeling $\varphi_{1}: V \cup E \cup F \rightarrow\{1,2, \ldots, k\}$ as follows:

$$
\begin{aligned}
& \varphi_{1}\left(u_{i}\right)=\left\lfloor\frac{i+4}{9}\right\rfloor+1, \text { for } 1 \leq i \leq n \\
& \varphi_{1}\left(v_{i}\right)=\left\lfloor\frac{i+2}{9}\right\rfloor+1, \text { for } 1 \leq i \leq n \\
& \varphi_{1}\left(u_{i} u_{i+1}\right)=\left\lfloor\frac{i+7}{9}\right\rfloor+1, \text { for } 1 \leq i \leq n-1 \\
& \varphi_{1}\left(v_{i} v_{i+1}\right)=\left\lfloor\frac{i+6}{9}\right\rfloor+1, \text { for } 1 \leq i \leq n-1 \\
& \varphi_{1}\left(u_{i} v_{i}\right)=\left\lfloor\frac{i}{9}\right\rfloor+1, \text { for } 1 \leq i \leq n \\
& \varphi_{1}\left(f_{i}^{4}\right)=\left\lceil\frac{i}{9}\right\rceil, \text { for } 1 \leq i \leq n-1 \\
& \varphi_{1}\left(f^{\text {ext }}\right)=k .
\end{aligned}
$$

It is easy to see that the labeling φ_{1} is an entire k-labeling, the weights of 4 -sided faces are all distinct and constitute the set $\{9,10, \ldots, n+7\}$. Since for $n \geq 3$, $\sum_{i=1}^{n}\left(\varphi_{1}\left(u_{i}\right)+\varphi_{1}\left(v_{i}\right)\right)+\sum_{i=1}^{n-1}\left(\varphi_{1}\left(u_{i} u_{i+1}\right)+\varphi_{1}\left(v_{i} v_{i+1}\right)\right) \geq$ $4 n-2$ and $\varphi_{1}\left(f_{n-1}^{4}\right) \leq \varphi_{1}\left(f^{e x t}\right)$ then $w_{\varphi_{1}}\left(f_{n-1}^{4}\right)=$ $n+7<w_{\varphi_{1}}\left(f^{e x t}\right)$. This concludes the proof.

Another variation of a ladder graph is specified as follows. A graph $B_{n}, n \geq 3$, is a plane graph obtained by completing the ladder $L_{n} \simeq P_{n} \square P_{2}$ by vertices z_{i}, for $1 \leq i \leq n$, and by edges $u_{i} z_{i}$, for $1 \leq i \leq n$, and $u_{i+1} z_{i}, z_{i} z_{i+1}$, for $1 \leq i \leq n-1$. The graph B_{n} contains $2 n-23$-sided faces, $n-14$-sided faces and the external $(2 n+2)$-sided face.
Theorem 2.4. For $B_{n}, n \geq 3$, we have

$$
\begin{equation*}
e f s\left(B_{n}\right)=\left\lceil\frac{n+1}{3}\right\rceil . \tag{4}
\end{equation*}
$$

Proof. Let $B_{n}, n \geq 3$, be the plane graph with 3 -sided faces, 4 -sided faces and the external $(2 n+2)$-sided face. Denote by g_{i}^{3} the 3 -sided face surrounded by vertices u_{i}, u_{i+1}, z_{i} and edges $u_{i} z_{i}, u_{i} u_{i+1}, u_{i+1} z_{i}$, for $i=1,2, \ldots, n-1$, and denote by $h_{i}^{3} 3$-sided face surrounded by vertices u_{i+1}, z_{i}, z_{i+1} and edges $u_{i+1} z_{i}, z_{i} z_{i+1}, u_{i+1} z_{i+1}$, for $i=1,2, \ldots, n-1$. Denote the 4 -sided faces and the external face in the same way as in the proof of Theorem 2.3.

Let $k=\left\lceil\frac{n+1}{3}\right\rceil$. It follows from (2) that k is a lower bound for efs $\left(\boldsymbol{B}_{n}\right)$. To show that k is an upper bound for efs $\left(B_{n}\right)$ it suffices to prove the existence of an optimal entire labeling $\varphi_{2}: V\left(B_{n}\right) \cup E\left(B_{n}\right) \cup F\left(B_{n}\right) \rightarrow$ $\{1,2, \ldots,\lceil(n+1) / 3\rceil\}$. For $n \geq 3$ we construct the function φ_{2} in the following way:

$$
\varphi_{2}\left(z_{i}\right)=\varphi_{2}\left(u_{i}\right)= \begin{cases}1, & \text { for } i=1,2 \\ \left\lfloor\frac{i}{3}\right\rfloor+1, & \text { for } 3 \leq i \leq n\end{cases}
$$

$$
\begin{aligned}
& \varphi_{2}\left(v_{i}\right)= \begin{cases}i+2, & \text { for } 1 \leq i \leq k-3 \\
k, & \text { for } k-2 \leq i \leq n\end{cases} \\
& \varphi_{2}\left(z_{i} z_{i+1}\right)=\varphi_{2}\left(u_{i+1} z_{i}\right)=\left\lceil\frac{i}{3}\right\rceil \text {, for } 1 \leq i \leq n-1 \\
& \varphi_{2}\left(u_{i} u_{i+1}\right)=\left\lceil\frac{i}{3}\right\rceil, \text { for } 1 \leq i \leq n-1 \\
& \varphi_{2}\left(u_{i} z_{i}\right)=\left\lceil\frac{i}{3}\right\rceil, \text { for } 1 \leq i \leq n \\
& \varphi_{2}\left(v_{i} v_{i+1}\right)=\left\{\begin{array}{l}
i+2, \text { for } 1 \leq i \leq k-3 \\
k, \quad \text { for } k-2 \leq i \leq n-1
\end{array}\right. \\
& \varphi_{2}\left(u_{i} v_{i}\right)= \begin{cases}i+2, & \text { for } 1 \leq i \leq k-3 \\
k, & \text { for } k-2 \leq i \leq n\end{cases} \\
& \varphi_{2}\left(f_{i}^{4}\right)=\left\{\begin{array}{l}
i, \text { for } 1 \leq i \leq k-3 \\
k, \text { for } k-2 \leq i \leq n-1
\end{array}\right. \\
& \varphi_{1}\left(f^{e x t}\right)=k \\
& \varphi_{2}\left(h_{i}^{3}\right)= \begin{cases}2, & \text { for } 1 \leq i \leq 7 \\
\left\lceil\frac{i-1}{3}\right\rceil, & \text { for } 8 \leq i \leq n-1\end{cases} \\
& \varphi_{2}\left(g_{i}^{3}\right)=\left\{\begin{array}{l}
1, \text { for } i=1,4 \\
2, \text { for } i=2,3
\end{array}\right. \\
& \varphi_{2}\left(g_{i}^{3}\right)=\left\{\begin{array}{l}
\left\lceil\frac{i}{3}\right\rceil, \quad \text { for } i \geq 5, i \equiv 0,2(\bmod 3) \\
\left\lceil\frac{i}{3}\right\rceil-2, \text { for } i \geq 7, i \equiv 1(\bmod 3) .
\end{array}\right.
\end{aligned}
$$

Observe that the face weights receive values

$$
\begin{aligned}
& w_{\varphi_{2}}\left(f_{i}^{4}\right)=\left\{\begin{array}{l}
7(i+2), \quad \text { for } 1 \leq i \leq k-2 \\
6 k+2+i, \text { for } k-1 \leq i \leq n-1
\end{array}\right. \\
& w_{\varphi_{2}}\left(g_{i}^{3}\right)=\left\{\begin{array}{l}
2 i+5, \text { for } 1 \leq i \leq 7 \\
\frac{7 i+10}{3}, \text { for } i \geq 8, i \equiv 2(\bmod 3) \\
\frac{7 i}{3}+3, \text { for } i \geq 9, i \equiv 0(\bmod 3) \\
\frac{7 i+8}{3}, \quad \text { for } i \geq 10, i \equiv 1(\bmod 3)
\end{array}\right. \\
& w_{\varphi_{2}}\left(h_{i}^{3}\right)=\left\{\begin{array}{l}
2 i+6, \text { for } 1 \leq i \leq 7 \\
\frac{7 i+13}{3}, \text { for } i \geq 8, i \equiv 2(\bmod 3) \\
\frac{7 i}{3}+4, \text { for } i \geq 9, i \equiv 0(\bmod 3) \\
\frac{7 i+11}{3}, \text { for } i \geq 10, i \equiv 1(\bmod 3)
\end{array}\right.
\end{aligned}
$$

It is a routine matter to verify that all vertex, edge and face labels are at most k and the face weights are different for all pairs of distinct faces. In fact, our labeling φ_{2} has been chosen in such a way that the weights of 3 -sided and 4 sided faces form the sequence of different integers from 7 up to $6 k+n+1$.

Since for $n \geq 3, \varphi_{2}\left(u_{n-1}\right) \leq \varphi_{2}\left(z_{n}\right), \varphi_{2}\left(u_{n-1} u_{n}\right)=$ $\varphi_{2}\left(z_{n-1} z_{n}\right), \varphi_{2}\left(u_{n-1} v_{n-1}\right)<\varphi_{2}\left(u_{n} z_{n}\right)+\varphi_{2}\left(v_{n-2} v_{n-1}\right)$ and $\varphi_{2}\left(f_{n-1}^{4}\right) \leq \varphi_{2}\left(f^{e x t}\right)$ then $w_{\varphi_{2}}\left(f_{n-1}^{4}\right)<w_{\varphi_{2}}\left(f^{e x t}\right)$.

Thus, the labeling φ_{2} is desired face irregular entire k-labeling.

If we consider the maximum degree in a 2-connected plane graph, we obtain the following theorem.
Theorem 2.5. Let $G=(V, E, F)$ be a 2-connected plane graph with maximum degree Δ. Let x be a vertex of degree Δ and let the smallest face and the biggest face incident with x be an a-sided face and a b-sided face, respectively. Then

$$
\begin{equation*}
e f s(G) \geq\left\lceil\frac{2 a+\Delta-1}{2 b}\right\rceil \tag{5}
\end{equation*}
$$

Proof. Suppose that φ is an optimal face irregular entire labeling of a 2 -connected plane graph G. Let $f_{1}, f_{2}, \ldots, f_{\Delta}$ be the faces incident with a fixed vertex x of maximum degree Δ in G and let a-sided face be the smallest and b sided face be the biggest of them.

The face weights $w_{\varphi}\left(f_{1}\right), w_{\varphi}\left(f_{2}\right), \ldots, w_{\varphi}\left(f_{\Delta}\right)$ are all distinct and each of them contains the value $\varphi(x)$. The largest among these face weights must be at least $\varphi(x)+2 a+\Delta-1$. This weight can be the sum of at most $2 b$ labels (without $\varphi(x)$). So at least one label is at least $\lceil(2 a+\Delta-1) /(2 b)\rceil$. \square.

The lower bound (5) is tight for wheels.
Theorem 2.6. Let W_{n} be a wheel on $n+1$ vertices, $n \geq 3$. Then

$$
\begin{equation*}
e f s\left(W_{n}\right)=\left\lceil\frac{n+5}{6}\right\rceil \tag{6}
\end{equation*}
$$

Proof. A wheel $W_{n}, n \geq 3$, is a plane graph obtained by joining all vertices of cycle C_{n} to a further vertex v, called the center. Thus W_{n} contains $n+1$ vertices, say, $v, v_{1}, v_{2}, \ldots, v_{n}$ and $2 n$ edges, say, $v v_{i}, 1 \leq i \leq n, v_{i} v_{i+1}$, $1 \leq i \leq n-1$, and $v_{n} v_{1}$. Denote by f_{i}^{3} the 3 -sided face surrounded by vertices v, v_{i}, v_{i+1} and edges $v v_{i}, v_{i} v_{i+1}, v v_{i+1}$, for $i=1,2, \ldots, n-1$. Denote by f_{n}^{3} the face surrounded by vertices v, v_{1}, v_{n} and edges $v v_{n}, v_{1} v_{n}, v v_{1}$ and the external n-sided face denote by $f^{e x t}$.

In view of the lower bound (5) it suffices to prove the existence of an entire labeling $\varphi_{3}: V\left(W_{n}\right) \cup E\left(W_{n}\right) \cup$ $F\left(W_{n}\right) \rightarrow\left\{1,2, \ldots,\left\lceil\frac{n+5}{6}\right\rceil\right\}$ such that $w_{\varphi_{3}}(f) \neq w_{\varphi_{3}}(g)$ for every $f, g \in F\left(W_{n}\right)$ with $f \neq g$.

For $n=3$ we define a desired entire labeling as follows:
$\varphi_{3}\left(v v_{i}\right)=\varphi_{3}\left(f_{i}^{3}\right)=1, \quad$ for $1 \leq i \leq 3$, $\varphi_{3}\left(v_{i}\right)=\varphi_{3}\left(v_{i} v_{i+1}\right)=1$, for $1 \leq i \leq 2, \varphi_{3} \overline{(v)}=\overline{1}$ and $\varphi_{3}\left(v_{3}\right)=\varphi_{3}\left(v_{3} v_{1}\right)=\varphi_{3}\left(f^{e x t}\right)=2$. We can see that $w_{\varphi_{3}}\left(f^{\text {ext }}\right)=10$ and $w_{\varphi_{3}}\left(f_{i}^{3}\right)=2 n+i$, for $1 \leq i \leq 3$.

For $n \geq 4$, we describe the entire labeling in the following way:

$$
\begin{aligned}
& \varphi_{3}(v)=1 \\
& \varphi_{3}\left(v_{i}\right)= \begin{cases}1, & \text { for } i=1,2 \\
\left\lceil\frac{i+1}{3}\right\rceil, & \text { for } 3 \leq i \leq\left\lceil\frac{n}{2}\right\rceil+1 \\
\left\lceil\frac{n-i+1}{3}\right\rceil+1, & \text { for }\left\lceil\frac{n}{2}\right\rceil+2 \leq i \leq n\end{cases} \\
& \varphi_{3}\left(v_{n} v_{1}\right)=1 \\
& \varphi_{3}\left(v v_{i}\right)= \begin{cases}1, & \text { for } i=1,2, n \\
\left\lceil\frac{i+1}{3}\right\rceil, & \text { for } 3 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor+1 \\
\left\lceil\frac{n-i+2}{3}\right\rceil, & \text { for }\left\lfloor\frac{n}{2}\right\rfloor+2 \leq i \leq n-1\end{cases}
\end{aligned}
$$

$$
\begin{gathered}
\varphi_{3}\left(f_{i}^{3}\right)= \begin{cases}\left\lceil\frac{i}{3}\right\rceil, & \text { for } 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor \\
\left\lceil\frac{n+5}{6}\right\rceil, & \text { for } i=\left\lfloor\frac{n}{2}\right\rfloor+1 \\
\left\lceil\frac{n-i+2}{3}\right\rceil, & \text { for }\left\lfloor\frac{n}{2}\right\rfloor+2 \leq i \leq n\end{cases} \\
\varphi_{3}\left(f^{e x t}\right)=\left\lceil\frac{n+5}{6}\right\rceil
\end{gathered}
$$

For n even we define

$$
\varphi_{3}\left(v_{i} v_{i+1}\right)= \begin{cases}\left\lceil\frac{i}{3}\right\rceil, & \text { for } 1 \leq i \leq \frac{n}{2}+1 \\ \left\lceil\frac{n-i}{3}\right\rceil+1, & \text { for } \frac{n}{2}+2 \leq i \leq n-1\end{cases}
$$

For n odd we define

$$
\varphi_{3}\left(v_{i} v_{i+1}\right)= \begin{cases}\left\lceil\frac{i}{3}\right\rceil, & \text { for } 1 \leq i \leq \frac{n-1}{2} \\ \left\lceil\frac{n-i}{3}\right\rceil+1, & \text { for } \frac{n+1}{2} \leq i \leq n-1\end{cases}
$$

The weights of 3-sided faces attain values

$$
w_{\varphi_{3}}\left(f_{i}^{3}\right)= \begin{cases}2 i+5, & \text { for } 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor \\ 2 n-2 i+8, & \text { for }\left\lfloor\frac{n}{2}\right\rfloor+2 \leq i \leq n\end{cases}
$$

that is, successively attain the values $7,8, \ldots, n+5$. The weight of the last 3 -sided face $w_{\varphi_{3}}\left(f_{\left\lfloor\frac{n}{2}\right\rfloor+1}^{3}\right)=$ $\varphi_{3}(v)+\varphi_{3}\left(v_{\left\lfloor\frac{n}{2}\right\rfloor+1}\right)+\varphi_{3}\left(v_{\left\lfloor\frac{n}{2}\right\rfloor+2}\right)+\varphi_{3}\left(v_{\left\lfloor\frac{n}{2}\right\rfloor+1} v_{\left\lfloor\frac{n}{2}\right\rfloor+2}\right)+$ $\varphi_{3}\left(v v_{\left\lfloor\frac{n}{2}\right\rfloor+1}\right)+\varphi_{3}\left(v v_{\left\lfloor\frac{n}{2}\right\rfloor+2}\right)+\varphi_{3}\left(f_{\left\lfloor\frac{n}{2}\right\rfloor+1}^{3}\right)$
for n even gives $w_{\varphi_{3}}\left(f_{\left\lfloor\frac{n}{2}\right\rfloor+1}^{3}\right)=1+\left\lceil\frac{n+4}{6}\right\rceil+\left\lceil\frac{n-2}{6}\right\rceil+$ $1+\left\lceil\frac{n+2}{6}\right\rceil+\left\lceil\frac{n+4}{6}\right\rceil+\left\lceil\frac{n}{6}\right\rceil+\left\lceil\frac{n+5}{6}\right\rceil>n+5$
and for n odd gives $w_{\varphi_{3}}\left(f_{\left\lfloor\frac{n}{2}\right\rfloor+1}^{3}\right)=1+\left\lceil\frac{n+3}{6}\right\rceil+$ $\left\lceil\frac{n-1}{6}\right\rceil+1+\left\lceil\frac{n-1}{6}\right\rceil+1+\left\lceil\frac{n+3}{6}\right\rceil+\left\lceil\frac{n+1}{6}\right\rceil+\left\lceil\frac{n+5}{6}\right\rceil>n+5$.

For $n=4, w_{\varphi_{3}}\left(f_{\left\lfloor\frac{n}{2}\right\rfloor+1}^{3}\right)=11<w_{\varphi_{3}}\left(f^{\text {ext }}\right)=12$.
Since for $n \geq 5, \varphi_{3}\left(f_{\left\lfloor\frac{n}{2}\right\rfloor+1}^{3}\right)=\varphi_{3}\left(f^{\text {ext }}\right)$ and $\varphi_{3}(v)+$ $\varphi_{3}\left(v v_{\left\lfloor\frac{n}{2}\right\rfloor+1}\right)+\varphi_{3}\left(v v_{\left\lfloor\frac{n}{2}\right\rfloor+2}\right)<\varphi_{3}\left(v_{\left\lfloor\frac{n}{2}\right\rfloor-1} v_{\left\lfloor\frac{n}{2}\right\rfloor}\right)+$ $\varphi_{3}\left(v_{\left\lfloor\frac{n}{2}\right\rfloor}\left\lfloor\left\lfloor\frac{n}{2}\right\rfloor+1\right) \quad+\quad \varphi_{3}\left(v\left\lfloor\frac{n}{2}\right\rfloor+2^{v}\left\lfloor\frac{n}{2}\right\rfloor+3\right)+\right.$ $\varphi_{3}\left(v_{\left\lfloor\frac{n}{2}\right\rfloor+3^{v}\left\lfloor\frac{n}{2}\right\rfloor+4}\right)$ then the weight of the external n-sided face is greater than $w_{\varphi_{3}}\left(f_{\left\lfloor\frac{n}{2}\right\rfloor+1}^{3}\right)$. So the labeling φ_{3} has the required properties of a face irregular entire labeling.

3 Conclusion

In this paper we introduced a new graph parameter, the entire face irregularity strength, efs (G), as a modification of the well-known irregularity strength, total edge irregularity strength and total vertex irregularity strength. We proved that for every 2 -connected plane graph $G=(V, E, F) \quad$ with $\quad n_{i} \quad i$-sided faces, $i \geq 3$, $\left\lceil\frac{2 a+n_{3}+n_{4}+\cdots+n_{b}}{2 b+1}\right\rceil \leq e f s(G) \leq m$, where $a=\min \left\{i \mid n_{i} \neq 0\right\}, \quad b=\max \left\{i \mid n_{i} \neq 0\right\} \quad$ and $m=\max \left\{n_{i} \mid 3 \leq i \leq b\right\}$.

This lower bound of the entire face irregularity strength can not be improved in general. Because if $n_{b}=1$ and $c=\max \left\{i \mid n_{i} \neq 0, i<b\right\}$ then we obtain that efs $(G) \geq\left\lceil\frac{2 a+|F|-1}{2 c+1}\right\rceil$ and the sharpness of this lower bound is reached for graph of the ladder $L_{n} \simeq P_{n} \square P_{2}$.

We suppose that the upper bound of the entire face irregularity strength can be improved.

Acknowledgement

The work of the first author was supported by the Slovak VEGA grant under the contract No. 1/0130/12 and the work of the second author was supported by the Slovak Science and Technology Agency under the contract No. APVV-0023-10.
The authors are grateful to the anonymous referees for their valuable comments and suggestions that improved this paper.

References

[1] M. Anholcer, M. Kalkowski and J. Przybylo, Discrete Math. 309, 6316-6317 (2009).
[2] M. Bača, S. Jendrol̆, M. Miller and J. Ryan, Discrete Math. 307, 1378-1388 (2007).
[3] T. Bohman and D. Kravitz, J. Graph Theory 45, 241-254 (2004).
[4] S. Brandt, J. Miškuf and D. Rautenbach, J. Graph Theory 57, 333-343 (2008).
[5] G. Chartrand, M.S. Jacobson, J. Lehel, O.R. Oellermann, S. Ruiz and F. Saba, Congr. Numer. 64, 187-192 (1988).
[6] R.J. Faudree, M.S. Jacobson, J. Lehel and R.H. Schlep, Discrete Math. 76, 223-240 (1988).
[7] A. Frieze, R.J. Gould, M. Karonski and F. Pfender, J. Graph Theory 41, 120-137 (2002).
[8] K.M.M. Haque, Theory of Computing Systems 50, 537-544 (2012).
[9] J. Ivančo and S. Jendrol̆, Discussiones Math. Graph Theory 26, 449-456 (2006).
[10] S. Jendrol̆, J.Miškuf and R. Soták, Electron. Notes Discrete Math. 28, 281-285 (2007).
[11] S. Jendrol̆, J.Miškuf and R. Soták, Discrete Math. 310, 400407 (2010).
[12] S. Jendrol, M. Tkáč and Z. Tuza, Discrete Math. 150, 179186 (1996).
[13] J. Miškuf and S. Jendroľ, Tatra Mt. Math. Publ. 36, 147-151 (2007).
[14] T. Nierhoff, SIAM J. Discrete Math. 13, 313-323 (2000).
[15] Nurdin, E.T. Baskoro, A.N.M. Salman and N.N. Goas, J. Combin. Math. Combin. Comput. 71, 129-136 (2009).
[16] Nurdin, E.T. Baskoro, A.N.M. Salman and N.N. Goas, Discrete Math. 310, 3043-3048 (2010).
[17] Nurdin, A.N.M. Salman and E.T. Baskoro, J. Combin. Math. Combin. Comput. 65, 163-175 (2008).
[18] J. Przybylo, SIAM J. Discrete Math. 23, 511-516 (2009).
[19] W. Wang and X. Zhu, J. Combin Theory Ser. B 101, 490501 (2011).

Martin Bača received his PhD degree in Algebra and Number Theory at the Comenius University in Bratislava. Now he is a full Professor of Mathematics at the Department of Applied Mathematics and Informatics, Technical University in Košice, Slovakia. His scientific interest covers Graph Theory and Combinatorics.

Stanislav Jendrol is a
 full Professor of Mathematics at the University of P.J. Šafárik in Košice, Slovakia. He received his PhD degree at the Comenius University in Bratislava. His scietific interests are in Graph Theory, namely in Topological Graph Theory, Colourings and/or Labellings of Graphs, Cycles in Graphs, Combinatorial Properties of Convex 3-polytopes, and Applications of Graph Theory in Chemistry and in Computer Science. For details see his homepage: http://www.science.upjs.sk/~jendrol

K. Kathiresan received his PhD degree from Madurai Kamaraj University, Madurai in 1991. Now he is working as Associate Professor and head of the P.g. Department of Mathematics of Ayya Nadar Janaki Ammal College, Sivakasi, India. His scientific interest covers Graph Theory and Combinatorics. He has published research articles in reputed international journals of Mathematics. He served as a referee for many research articles. He is also a reviewer for Mathematical Reviews.

K. Muthugurupackiam

 received his PhD degree in Graph Theory at Madurai Kamaraj University in India. Now he is a Professor of Mathematics in Rajah Serfoji Government College at Thanjavur. His research interest is in Graph Labeling.
[^0]: * Corresponding author e-mail: martin.baca@tuke.sk

