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1 Introduction b-metric spaces, partial metric spaces (see, €l§,2[,
31,33,34,35,36,51]).

Ekeland formulated a variational principle, that is the

foundation of modern variational calculus, having i . .
applications in many branches of Mathematics, including !N this paper, we attract attention to the notion of
optimization and fixed point theoryL,17,18]. Indeed, Partial metric space, introduced by Matthewsd][ in

this result has found applications in nonlinear analysis,1992- The concept of partial metric space erased from
since it entails the existence of approximate solutions of’€€ds of computer science, in particular, domain theory
minimization problems for a lower semi-continuous @nd semantics (see e.g1920,30,32,46,47,50,52,53
function that is bounded from below on complete metric@nd references therein). Roughly speaking, a partial
spaces. Also, Ekeland’s variational principle is a frditlu Metric space is distinguished from a metric space with the
tool in simplifying and unifying the proofs of already fact that the self-distance of a point need not to be zero. In

known theorems and has many generalizations, sef'® mentioned paper, MatthewS3 also proved the
Borwein and Zhu11]. analog of Banach contraction mapping principle. After

Furthermore, fixed point theory plays an increasinglytha"‘:'ti;?%aert':%blse ;ggstrf#goig’ tg]ag% ?é’;?orrs(‘) fgﬁlijesfc(jsgg
important role in different fields of nonlinear functional P P bolog prop '

analysis. Indeed, it has wide application areas, such as 3" (-[7). [9.13], [22-[29), [37)-{48 and references

physics, chemistry, biology, several branches ofsfherein).

engineering, economics, etc. (see, e.f0,19,20,31,32,

46,47,50,52,53] and references therein). One of the

initial and pivotal results in this direction is the Banach In this paper, due to the relevance of Ekeland’s
contraction mapping principles]: Every contraction in a  principle in the literature over the last decades, the
complete metric space has a unique fixed point. Due tauthors believe that extending this principle to the cldss o
necessity, analog of Banach contraction mappingpartial metric spaces could be useful for developing
principle is proved in various generalized metric spacesyarious applications (see, e.gl11], [49]). As conse-
such as, in quasi-metric spaces, fuzzy metric spaces, corgpiences of our results, we obtain some fixed point
metric spaces-metric spaces, statistical metric spaces,theorems of Caristi and Clarke types.
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2 Preliminaries on partial metric spaces

LetR" denote the set of all non-negative real numbers. A

partial metric space is a pdiX, p) whereX is a non-empty
setandp: X x X — R* is such that

(P)p(x,y) = p(y.x) (symmetry); .

(R)if p(x,x) = p(x,y) = p(y,y), thenx =y (equality);
(Ps)p(x,X) < p(x,y) (small self-distances);

(P)p(x,2)+ p(y.y) < P(X,Y) + p(Y; 2) (triangle inequality);
for all x,y,z € X. We will use the abbreviation PMS for the
partial metric spacéX, p).

Notice that, for a partial metrip on X, the functiondy :

X x X — R™" given by

dp(%,Y) = 2p(x,y) — p(x,X) — p(Y,Y)

is a metric onX. Observe that each partial metpoon X
generates 8y topology T, on X which has as a base the
family of openp-balls {Bp(x,€) : x € X, & > 0}, where

Bp(x.€) ={y € X:p(xy) < p(x,x) + ¢}
forall x e X ande > 0. Similarly, a closeg-ball is defined

as
Bp[x.€] = {ye X: p(xy) < p(x,x) + £}

Definition 2.1. ([33]) Let (X, p) be a PMS. Then

(i) a sequencéx,} in X converges tox € X if and only
it pOxX) = lim_ p(xn);

(i) a sequencdxy} in X is called Cauchy if and only if
. nI]iLn+ p(Xn, Xm) exists (and is finite);

(iii) (X, p) is said to be complete if every Cauchy sequence

{X}inX converges, with respect tg, to a pointx € X
such thatp(x, x) = neraner P(Xn, Xm)-
Example 2.1([33]) ConsiderX = R* and defineg(x,y) =
max{x,y} for all x,y € X. Then(X, p) is a PMS. Itis clear
thatp is not a (usual) metric.

Example 2.2.([28]) Let (X,d) and (X,p) be a metric

space and a partial metric space, respectively. The

functionsp; : X x X — R™, i € {1,2,3}, given by

pr(xy) =d(xy) + P(X.Y),

p2(xy) = d(x,y) + max{w(x), w(y)},

p3(xy) =d(xy) +a
define partial metrics oX, wherew : X — R* is an
arbitrary function ané > 0.
Example 2.3.([33)) Let X ={[a,b] : a,b€ R, a< b} and
define p([a,b],[c,d]) = max{b,d} — min{a,c} for all
[a,b],[c,d] € X. Then(X, p) is a PMS.
Example 2.4.([33)]) Let X = [0,1] U [2,3] and definep:
Xx X —=R" by

_Jmax{x,y}
p(X,y) - {lx_yl

if {x,y} (2,3 #0,
if {x,y} C[0,1].

Then(X, p) is a complete PMS.
Lemma 2.1.([33]) Let (X, p) be a PMS. Then
(i) a sequencéxy} in X is Cauchy if and only ifx,} is
Cauchy in the metric spag,dp);
(i) (X,p) is complete if and only if the metric space
(X,dp) is complete. Moreovermﬂgdp(x,xn) =0if
and only if

p(x,x) = lim p(X,xn) = (Xn, Xm)-

lim p
n—-+o n,m—--co

3 Main results

We start this section with the following definition and
lemmas that will be used in the proof of the main
theorem.

Definition 3.1.Let (X, p) be aPMS and: X — R™ be a
given function. Then, ¢ is said to be alower
semi-continuous (I.s.¢lunction onX if

Jim_ p(xn,X) = p(%,X) = @(x) < liminf @(xn),

for everyx € X.
Lemma 3.1.([1,25)) Let (X, p) be a PMS. Then

(i) if p(x,y) =0, thenx=Yy;
(i) if x#£vy, thenp(x,y) > 0.

Lemma 3.2.([1,25]) Let (X, p) be a PMS and assume that
{Xn} is a sequence X such thak, — zasn— +, where
ze X andp(z,z) =0. Then

Jim_p(xn,y) = p(zy), foreveryy € X.

Now, we state and prove the following theorem.

Theorem 3.1.Let (X, p) be a complete PMS ang: X —
R* be a lower semi-continuous function. Let> 0 and
x € X be such that

o(x) < 92; pt)+¢ and t|er)1<fp(x,t) <1 (1
Then there exists some poiE X such that
oy) < @(x), )
p(xy) <1, ®)
Vze Xwithzz#y, ¢(2) > @(y) —€p(y,2).  (4)

Proof. Let x € X be such thatX) holds. Define a sequence
{X»} inductively, in the following way: fom = 1, take
X1 := X s0 thatg(x1) < @(x) and p(x,x1) = p(x,X) < 1;
for the other terms, assume that, € X, with
P(%n) < @(x) and p(x,xn) < 1, is known and one of the
following cases occurs:
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(@) o(%n) — @(2) < £p(Xn,2), for all z # xp; Hence, takingn — +oo it follows thatp(x,y) < 1.
(b)there existz # X, such thagp(Xn,z) < @(Xn) — @(2). The inequality 4) is observed by the method of
reductio ad absurdum. Assumd) (s not true, then there

In case (a), if we takg= xn, then @)-(4) hold true trivially, is 7€ X with z+ y such that

sinceq(y) = @(xn) < @(X).

On the other hand, |}, be the set of alk € X such that 0(2) < o(y) — ep(y,2). 9)
case (b) holds. Thex,,1 € S, is chosen in a way that Sincep(y,2) > 0, we have
. 1 . 2) < . 10
002) = f 0(0) < 5 |@00) = I o0)| . (9 ?2) < o) (10
tesh 2 teSh By (7), we get
Consequently, one has O(Xm) < @(Xn) — EP(Xn,Xm), forall n<m.

Then, takingn — +o in above inequality, one can obtain

EP(Xn, Xnt1) < Q%) — @(Xny1), forallne N (6)
¢(y) < liminf (xm) < @(%n) — €P(Xn,)- (11)

and, by using the triangle inequality, one can obtain (for

alln<m) From (R;), we have
P(Xn,2) < P(Xn,Y) + P(Y;2) — P(Y,Y) = P(Xn,Y) + P(Y, 2)-
€P(Xn, Xm) Next, using this inequality an®}, from (11) we get
< €[p(Xn; Xn+1) + P(Xn+1,Xn+2) — P(Xn+1,Xn+1)] 0(2) < @ly) —ep(y,2) < @(%n) — €P(*n, 2),
+E[POnt2Xn+3) + P(Xn+3, Xn14) = P0Xn13, Xn1:3)] which implies thatz € S,, for all n € N. Now, note that%)
+ -+ [P(Xm=2,Xm—1) + P(Xm—1,Xm) — P(Xm—1, Xm—1)] can be written as
m-1 .
<& PlXei1) 20(xnr1) — @) < inf @(t) < 9(2).
k=
m_ln Therefore, having in mind thdtp(x,)} is @ non-increasing
< Z (@(Xc) — O(Xr1)) (7)  sequenceifR*, there existd. > 0 such that
k=n

lim @(xn) =L.
= Q%) — PXm). ot T
Letting n — +o in the previous inequality, then we get

By (6), the sequencép(x,)} is non-increasing ifik™ < L
and bounded below by zero. Thus, the sequeuie,)} L < ¢(2). On the other hand, sinagis |.s.c, then we have

is convergent, which implies that the right hand side of py) < "nT'I!f P(xn) =L
(7) tends to zero, that isp(xh,Xm) tends to zero as ) o .
n,m— 4o, s0{x,} is a Cauchy sequence in the complete and so we getp(y) < ¢(z), that is a contradiction with
partial metric space(X,p). By Lemma 2.1,{x,} is  respectto10).0]
Cauchy in the metric spad&,dp) (also, it is complete). Notice that if in Theorem 3.1 we do not assume that
Then, there existg € X such that{x,} is convergentty  infiex p(X,t) < 1, then we can (only) deduce that there
in (X,dp). Again by Lemma 2.1, we get existsy € X such that2) and @) hold true.

) Building on Theorem 3.1, we give the following result.
n,nlfmroo P(xn.Xm)- (8)  Theorem 3.2.Let (X, p) be a complete PMS angl: X —

R* be alower semi-continuous function. Giver 0, then

Since . mll[moo p(Xn,Xm) = O, therefore by § we have there existy € X such that

p(y.y) = lim_p0a,y) =

p(y.y) =0. ely) < inf o(t) +&, (12)
We claim thaty satisfies 2)-(4). N
Due to 6), the sequencép(x,)} is non-increasing, that is VzeX, o) > oly)— ep(y.2). (13)

e < PXng1) < O(xn) < - < @(xe) < @(X), Proof. The proof is clear. Indeed, recalling the fact that

there is always some poirisuch thatp(x) < t|n>12 Qt)+¢&,
S

then (L2) and (L3) follow from (2) and @), respectively]
Notice that Theorem 3.1 is stronger than Theorem 3.2.
Precisely, the main difference lies in inequality,(which

then @) holds.
The inequality B) is obtained by takingy =1 in (7)
and by usingl). Indeed, we have

£P(X, Xm) = EP(X1, Xm) gives the whereabouts of poirtin X, and which has no
< O(X) — P(%m) counterpart in Theorem 3.2. Thus, Theorem 3.1 is said to
=@ (p m be the strong statement, and Theorem 3.2 is said to be the
< o(x)— Inf o) <e. weak statement.
(@© 2015 NSP
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4 Fixed point theorems

Then,T has a fixed pointirX.
Proof. The main difference with the proof of Ekelants]

The significance of the results given in Section 3 will jg that here the proof is reposed on considering a partial
become clear as we proceed with the following metic (not a metric). First, we apply Theorem 3.2 to the

applications of fixed points.

4.1 Caristi’s fixed point theorem

functional¢ : X — R* given by
¢(w) = [w—T(w)|+b,

for all w € X, whereb > 0 is arbitrary and 6< € <1—k.

The following theorem is an extension of the result of 1hen, we define the partial metr: X x X — R by

Caristi [12, Theorem 2.1]. We note that this theorem
corresponds toZb, Theorem 5]. Here, we shorten the

proof.
Theorem 4.1.Let (X, p) be a complete PMS and let:

X — R* be a lower semi-continuous function. Then any

mappingT : X — X satisfying
P(x, TX) < @(x) — @(Tx), foreachx € X (14)

has a fixed point irX.

Proof. We apply Theorem 3.2 (fag = %) to the function
@ satisfying (L4) (T, verifying (14), is called a Caristi
mapping on(X, p)). Then, there exists some poyt X
such that

vteX, @t) > oly) - %p(y,t).

This inequality holds also fdr= Ty, therefore

1
o(y) = @(Ty) < 5p(y. TY)-
Substitutingx = y in the inequality {4), one can get

P(Y, TY) < @(y) — @(Ty).

Comparing the last inequalities, we deduce that

NI -

Py, Ty) < Sp(Y, TY).

This holds unlesp(y,Ty) = 0 and so by Lemma 3.1, we
haveTy=y, thatis, T has a fixed point]

4.2 Clarke’s fixed point theorem

In 1976, Clarke 14] extended the Banach contraction

pW.2) = [[w— 2] +b.
Clearly,p is not a metric sinc@(w,w) = b > 0. Moreover,
dp(W,2) = 2[|w—Z|

and so(X, p) is a complete partial metric space.
SinceT : (X, || -1]) = (X, || - ]|) is continuous, then W, —
win (X, ]| - ), we haveT (wn) — T(w) in (X, ] - ||)-
Note thatg (w) = p(w, T (w)). Now, letwn, — win (X, p),
then

lim_p(wn, W) = p(w,w).

N—+-oc0
By definition of the partial metrip, we get that
lim |lwp—w|| =0.

n—-co
Thereforen_!iln [IT(wh) — T(w)|| = 0. As a consequence,
we have

im_ =T (wn) | = [lw—T(w)]

that is,

Jim_ g (wn) = o (w).

We conclude thap is continuous and so is |.s.c o Due
to Theorem 3.2, there exists soyme X such that

Ywe X, ¢(w) > ¢(y) —epwy)
that is,
[w=TW)[ > [ly-=T(y) —&(lw=y[|+b).  (15)

By condition (D), there exisk € (0,1) andt € (0,1] such
that

1T =TI <Ky =yl <ktlly=T(y).

principle for some directional contractions (see conditio Writing w =y into the inequality {5), we get

(D) of Theorem 4.2) on closed convex subsets of Banach ly—

spaces.

Theorem 4.2.Let X be a closed convex subset of a

Banach space and [&t: X — X be a continuous mapping
satisfying the following condition:

(D)there existk € (0,1) such that corresponding to each

which
where

for
u,

u e X,
[T(w) —

there exists t € (0,1]
T < Klu -

U =tT(u) 4+ (1—t)udescribes the line segment from

uto T(u) ast runs from O to 1.

TWI
<yt =Tl +e(llye =yl +b)
<y =TI+ ITY) = Tr)l + ety —=T(y)[ +b)
< e =TI +ktly=Ty)[ +&tly—T(y)ll +b).
Now, sincey; belongs to the line segmefy T(y)], we
have
ly=TWI =y =l +lly: =TIl
=tly=TWl+ Iy =Ty

(@© 2015 NSP
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It follows easily that
tly=Ty)ll < (k+&)tlly—T(y)| + b,
for eachb > 0. Consequently, lettinig— O, we derive that
tly =Tl < (k+&)t]ly=T(y)ll-
Sincet > 0, we divide byt to obtain

ly=TWI < (k+&)ly=TWyl,

which holds unless that= Ty, ask+ € < 1. Thereforey
is a fixed point ofT. (I
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