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1 Introduction

Ekeland formulated a variational principle, that is the
foundation of modern variational calculus, having
applications in many branches of Mathematics, including
optimization and fixed point theory [16,17,18]. Indeed,
this result has found applications in nonlinear analysis,
since it entails the existence of approximate solutions of
minimization problems for a lower semi-continuous
function that is bounded from below on complete metric
spaces. Also, Ekeland’s variational principle is a fruitful
tool in simplifying and unifying the proofs of already
known theorems and has many generalizations, see
Borwein and Zhu [11].

Furthermore, fixed point theory plays an increasingly
important role in different fields of nonlinear functional
analysis. Indeed, it has wide application areas, such as,
physics, chemistry, biology, several branches of
engineering, economics, etc. (see, e.g., [10,19,20,31,32,
46,47,50,52,53] and references therein). One of the
initial and pivotal results in this direction is the Banach
contraction mapping principle [8]: Every contraction in a
complete metric space has a unique fixed point. Due to
necessity, analog of Banach contraction mapping
principle is proved in various generalized metric spaces,
such as, in quasi-metric spaces, fuzzy metric spaces, cone
metric spaces,G-metric spaces, statistical metric spaces,

b-metric spaces, partial metric spaces (see, e.g., [15,21,
31,33,34,35,36,51]).

In this paper, we attract attention to the notion of
partial metric space, introduced by Matthews [33] in
1992. The concept of partial metric space erased from
needs of computer science, in particular, domain theory
and semantics (see e.g. [19,20,30,32,46,47,50,52,53]
and references therein). Roughly speaking, a partial
metric space is distinguished from a metric space with the
fact that the self-distance of a point need not to be zero. In
the mentioned paper, Matthews [33] also proved the
analog of Banach contraction mapping principle. After
this remarkable contribution, many authors focused on
partial metric spaces and its topological properties (see,
e.g., [1]-[7], [9,13], [22]-[29], [37]-[48] and references
therein).

In this paper, due to the relevance of Ekeland’s
principle in the literature over the last decades, the
authors believe that extending this principle to the class of
partial metric spaces could be useful for developing
various applications (see, e.g., [11], [49]). As conse-
quences of our results, we obtain some fixed point
theorems of Caristi and Clarke types.
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2 Preliminaries on partial metric spaces

Let R+ denote the set of all non-negative real numbers. A
partial metric space is a pair(X, p)whereX is a non-empty
set andp : X×X → R

+ is such that

(P1)p(x,y) = p(y,x) (symmetry);
(P2)if p(x,x) = p(x,y) = p(y,y), thenx= y (equality);
(P3)p(x,x) ≤ p(x,y) (small self-distances);
(P4)p(x,z)+p(y,y)≤ p(x,y)+p(y,z) (triangle inequality);

for all x,y,z∈ X. We will use the abbreviation PMS for the
partial metric space(X, p).
Notice that, for a partial metricp on X, the functiondp :
X×X →R

+ given by

dp(x,y) = 2p(x,y)− p(x,x)− p(y,y)

is a metric onX. Observe that each partial metricp on X
generates aT0 topologyτp on X which has as a base the
family of openp-balls{Bp(x,ε) : x∈ X,ε > 0}, where

Bp(x,ε) = {y∈ X : p(x,y)< p(x,x)+ ε}

for all x∈X andε > 0. Similarly, a closedp-ball is defined
as

Bp[x,ε] = {y∈ X : p(x,y)≤ p(x,x)+ ε}.

Definition 2.1. ([33]) Let (X, p) be a PMS. Then

(i) a sequence{xn} in X converges tox ∈ X if and only
if p(x,x) = lim

n→+∞
p(x,xn);

(ii) a sequence{xn} in X is called Cauchy if and only if
lim

n,m→+∞
p(xn,xm) exists (and is finite);

(iii) (X, p) is said to be complete if every Cauchy sequence
{xn} in X converges, with respect toτp, to a pointx∈X
such thatp(x,x) = lim

n,m→+∞
p(xn,xm).

Example 2.1.([33]) ConsiderX =R
+ and definep(x,y)=

max{x,y} for all x,y∈ X. Then(X, p) is a PMS. It is clear
that p is not a (usual) metric.
Example 2.2. ([28]) Let (X,d) and (X, p) be a metric
space and a partial metric space, respectively. The
functionsρi : X×X →R

+, i ∈ {1,2,3}, given by

ρ1(x,y) = d(x,y)+ p(x,y),

ρ2(x,y) = d(x,y)+max{ω(x),ω(y)},

ρ3(x,y) = d(x,y)+a

define partial metrics onX, where ω : X → R
+ is an

arbitrary function anda≥ 0.
Example 2.3.([33]) Let X = {[a,b] : a,b∈R, a≤ b} and
define p([a,b], [c,d]) = max{b,d} − min{a,c} for all
[a,b], [c,d] ∈ X. Then(X, p) is a PMS.
Example 2.4.([33]) Let X = [0,1]∪ [2,3] and definep :
X×X →R

+ by

p(x,y) =

{

max{x,y} if {x,y}∩ [2,3] 6= /0,
|x− y| if {x,y} ⊂ [0,1].

Then(X, p) is a complete PMS.

Lemma 2.1.([33]) Let (X, p) be a PMS. Then

(i) a sequence{xn} in X is Cauchy if and only if{xn} is
Cauchy in the metric space(X,dp);

(ii) (X, p) is complete if and only if the metric space
(X,dp) is complete. Moreover, lim

n→+∞
dp(x,xn) = 0 if

and only if

p(x,x) = lim
n→+∞

p(x,xn) = lim
n,m→+∞

p(xn,xm).

3 Main results

We start this section with the following definition and
lemmas that will be used in the proof of the main
theorem.

Definition 3.1.Let (X, p) be a PMS andφ : X → R
+ be a

given function. Then, φ is said to be a lower
semi-continuous (l.s.c)function onX if

lim
n→+∞

p(xn,x) = p(x,x)⇒ φ(x) ≤ lim inf
n→+∞

φ(xn),

for everyx∈ X.

Lemma 3.1.([1,25]) Let (X, p) be a PMS. Then

(i) if p(x,y) = 0, thenx= y;
(ii) if x 6= y, thenp(x,y)> 0.

Lemma 3.2.([1,25]) Let (X, p) be a PMS and assume that
{xn} is a sequence inX such thatxn → zasn→+∞, where
z∈ X andp(z,z) = 0. Then

lim
n→+∞

p(xn,y) = p(z,y), for everyy∈ X.

Now, we state and prove the following theorem.

Theorem 3.1.Let (X, p) be a complete PMS andφ : X →
R
+ be a lower semi-continuous function. Letε > 0 and

x∈ X be such that

φ(x) ≤ inf
t∈X

φ(t)+ ε and inf
t∈X

p(x, t)< 1. (1)

Then there exists some pointy∈ X such that

φ(y)≤ φ(x), (2)

p(x,y)≤ 1, (3)

∀z∈ X with z 6= y, φ(z)> φ(y)− ε p(y,z). (4)

Proof. Let x∈ X be such that (1) holds. Define a sequence
{xn} inductively, in the following way: forn = 1, take
x1 := x so thatφ(x1) ≤ φ(x) and p(x,x1) = p(x,x) ≤ 1;
for the other terms, assume thatxn ∈ X, with
φ(xn) ≤ φ(x) and p(x,xn) ≤ 1, is known and one of the
following cases occurs:
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(a)φ(xn)−φ(z)< ε p(xn,z), for all z 6= xn;
(b)there existsz 6= xn such thatε p(xn,z) ≤ φ(xn)−φ(z).

In case (a), if we takey= xn, then (2)-(4) hold true trivially,
sinceφ(y) = φ(xn)≤ φ(x).
On the other hand, letSn be the set of allz∈ X such that
case (b) holds. Thenxn+1 ∈ Sn is chosen in a way that

φ(xn+1)− inf
t∈Sn

φ(t)≤
1
2

[

φ(xn)− inf
t∈Sn

φ(t)
]

. (5)

Consequently, one has

ε p(xn,xn+1)≤ φ(xn)−φ(xn+1), for all n∈ N (6)

and, by using the triangle inequality, one can obtain (for
all n≤ m)

ε p(xn,xm)

≤ ε[p(xn,xn+1)+ p(xn+1,xn+2)− p(xn+1,xn+1)]

+ε[p(xn+2,xn+3)+ p(xn+3,xn+4)− p(xn+3,xn+3)]

+ · · ·+ ε[p(xm−2,xm−1)+ p(xm−1,xm)− p(xm−1,xm−1)]

≤ ε
m−1

∑
k=n

p(xk,xk+1)

≤
m−1

∑
k=n

(φ(xk)−φ(xk+1)) (7)

= φ(xn)−φ(xm).

By (6), the sequence{φ(xn)} is non-increasing inR+

and bounded below by zero. Thus, the sequence{φ(xn)}
is convergent, which implies that the right hand side of
(7) tends to zero, that is,p(xn,xm) tends to zero as
n,m→+∞, so{xn} is a Cauchy sequence in the complete
partial metric space(X, p). By Lemma 2.1,{xn} is
Cauchy in the metric space(X,dp) (also, it is complete).
Then, there existsy∈ X such that{xn} is convergent toy
in (X,dp). Again by Lemma 2.1, we get

p(y,y) = lim
n→+∞

p(xn,y) = lim
n,m→+∞

p(xn,xm). (8)

Since lim
n,m→+∞

p(xn,xm) = 0, therefore by (8) we have

p(y,y) = 0.
We claim thaty satisfies (2)-(4).
Due to (6), the sequence{φ(xn)} is non-increasing, that is

· · · ≤ φ(xn+1)≤ φ(xn)≤ ·· · ≤ φ(x1)≤ φ(x),

then (2) holds.
The inequality (3) is obtained by takingn = 1 in (7)

and by using (1). Indeed, we have

ε p(x,xm) = ε p(x1,xm)

≤ φ(x)−φ(xm)

≤ φ(x)− inf
t∈X

φ(t) ≤ ε.

Hence, takingm→+∞ it follows that p(x,y)≤ 1.
The inequality (4) is observed by the method of

reductio ad absurdum. Assume (4) is not true, then there
is z∈ X with z 6= y such that

φ(z) ≤ φ(y)− ε p(y,z). (9)

Sincep(y,z)> 0, we have

φ(z) < φ(y). (10)

By (7), we get

φ(xm)≤ φ(xn)− ε p(xn,xm), for all n≤ m.

Then, takingm→+∞ in above inequality, one can obtain

φ(y)≤ lim inf
m→+∞

φ(xm)≤ φ(xn)− ε p(xn,y). (11)

From (P4), we have

p(xn,z)≤ p(xn,y)+ p(y,z)− p(y,y) = p(xn,y)+ p(y,z).

Next, using this inequality and (9), from (11) we get

φ(z) ≤ φ(y)− ε p(y,z)≤ φ(xn)− ε p(xn,z),

which implies thatz∈ Sn, for all n∈N. Now, note that (5)
can be written as

2φ(xn+1)−φ(xn)≤ inf
t∈Sn

φ(t)≤ φ(z).

Therefore, having in mind that{φ(xn)} is a non-increasing
sequence inR+, there existsL ≥ 0 such that

lim
n→+∞

φ(xn) = L.

Letting n → +∞ in the previous inequality, then we get
L ≤ φ(z). On the other hand, sinceφ is l.s.c, then we have

φ(y)≤ lim inf
n→+∞

φ(xn) = L

and so we getφ(y) ≤ φ(z), that is a contradiction with
respect to (10). �
Notice that if in Theorem 3.1 we do not assume that
inft∈X p(x, t) < 1, then we can (only) deduce that there
existsy∈ X such that (2) and (4) hold true.
Building on Theorem 3.1, we give the following result.
Theorem 3.2.Let (X, p) be a complete PMS andφ : X →
R
+ be a lower semi-continuous function. Givenε > 0, then

there existsy∈ X such that

φ(y)≤ inf
t∈X

φ(t)+ ε, (12)

∀z∈ X, φ(z) ≥ φ(y)− ε p(y,z). (13)

Proof. The proof is clear. Indeed, recalling the fact that
there is always some pointx such thatφ(x)≤ inf

t∈X
φ(t)+ ε,

then (12) and (13) follow from (2) and (4), respectively.�
Notice that Theorem 3.1 is stronger than Theorem 3.2.
Precisely, the main difference lies in inequality (1), which
gives the whereabouts of pointx in X, and which has no
counterpart in Theorem 3.2. Thus, Theorem 3.1 is said to
be the strong statement, and Theorem 3.2 is said to be the
weak statement.
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4 Fixed point theorems

The significance of the results given in Section 3 will
become clear as we proceed with the following
applications of fixed points.

4.1 Caristi’s fixed point theorem

The following theorem is an extension of the result of
Caristi [12, Theorem 2.1]. We note that this theorem
corresponds to [25, Theorem 5]. Here, we shorten the
proof.

Theorem 4.1.Let (X, p) be a complete PMS and letφ :
X → R

+ be a lower semi-continuous function. Then any
mappingT : X → X satisfying

p(x,Tx)≤ φ(x)−φ(Tx), for eachx∈ X (14)

has a fixed point inX.
Proof. We apply Theorem 3.2 (forε = 1

2) to the function
φ satisfying (14) (T, verifying (14), is called a Caristi
mapping on(X, p)). Then, there exists some pointy ∈ X
such that

∀t ∈ X, φ(t)≥ φ(y)−
1
2

p(y, t).

This inequality holds also fort = Ty, therefore

φ(y)−φ(Ty)≤
1
2

p(y,Ty).

Substitutingx= y in the inequality (14), one can get

p(y,Ty)≤ φ(y)−φ(Ty).

Comparing the last inequalities, we deduce that

p(y,Ty)≤
1
2

p(y,Ty).

This holds unlessp(y,Ty) = 0 and so by Lemma 3.1, we
haveTy= y, that is,T has a fixed point.�

4.2 Clarke’s fixed point theorem

In 1976, Clarke [14] extended the Banach contraction
principle for some directional contractions (see condition
(D) of Theorem 4.2) on closed convex subsets of Banach
spaces.
Theorem 4.2. Let X be a closed convex subset of a
Banach space and letT : X → X be a continuous mapping
satisfying the following condition:

(D)there existsk ∈ (0,1) such that corresponding to each
u ∈ X, there exists t ∈ (0,1] for which
‖T(ut) − T(u)‖ ≤ k‖ut − u‖, where
ut = tT(u)+ (1− t)u describes the line segment from
u to T(u) ast runs from 0 to 1.

Then,T has a fixed point inX.
Proof. The main difference with the proof of Ekeland [18]
is that here the proof is reposed on considering a partial
metric (not a metric). First, we apply Theorem 3.2 to the
functionalϕ : X → R

+ given by

ϕ(w) = ‖w−T(w)‖+b,

for all w∈ X, whereb> 0 is arbitrary and 0< ε < 1− k.
Then, we define the partial metricp : X×X →R

+ by

p(w,z) = ‖w− z‖+b.

Clearly,p is not a metric sincep(w,w) = b> 0. Moreover,

dp(w,z) = 2‖w− z‖

and so(X, p) is a complete partial metric space.
SinceT : (X,‖ ·‖)→ (X,‖ ·‖) is continuous, then ifwn →
w in (X,‖ · ‖), we haveT(wn)→ T(w) in (X,‖ · ‖).
Note thatϕ(w) = p(w,T(w)). Now, letwn → w in (X, p),
then

lim
n→+∞

p(wn,w) = p(w,w).

By definition of the partial metricp, we get that

lim
n→+∞

‖wn−w‖= 0.

Therefore lim
n→+∞

‖T(wn)−T(w)‖ = 0. As a consequence,

we have

lim
n→+∞

‖wn−T(wn)‖= ‖w−T(w)‖,

that is,
lim

n→+∞
ϕ(wn) = ϕ(w).

We conclude thatϕ is continuous and so is l.s.c inX. Due
to Theorem 3.2, there exists somey∈ X such that

∀w∈ X, ϕ(w)≥ ϕ(y)− ε p(w,y)

that is,

‖w−T(w)‖ ≥ ‖y−T(y)‖− ε(‖w− y‖+b). (15)

By condition (D), there existk∈ (0,1) andt ∈ (0,1] such
that

‖T(yt)−T(y)‖ ≤ k‖yt − y‖ ≤ kt‖y−T(y)‖.

Writing w= yt into the inequality (15), we get

‖y−T(y)‖

≤ ‖yt −T(yt)‖+ ε(‖yt − y‖+b)

≤ ‖yt −T(y)‖+ ‖T(y)−T(yt)‖+ ε(t‖y−T(y)‖+b)

≤ ‖yt −T(y)‖+ kt‖y−T(y)‖+ ε(t‖y−T(y)‖+b).

Now, sinceyt belongs to the line segment[y,T(y)], we
have

‖y−T(y)‖=‖y− yt‖+ ‖yt −T(y)‖

=t‖y−T(y)‖+ ‖yt −T(y)‖.
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It follows easily that

t‖y−T(y)‖ ≤ (k+ ε)t‖y−T(y)‖+ εb,

for eachb> 0. Consequently, lettingb→ 0, we derive that

t‖y−T(y)‖ ≤ (k+ ε)t‖y−T(y)‖.

Sincet > 0, we divide byt to obtain

‖y−T(y)‖ ≤ (k+ ε)‖y−T(y)‖,

which holds unless thaty= Ty, ask+ ε < 1. Therefore,y
is a fixed point ofT. �
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