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Abstract: In this article, an impulsive Sturm-Liouville boundary wal problem with boundary conditions contalterglotz—
Nevanlinna type rational functions of the spectral parameter is considered. It is shown thattedficients of the problem are
uniquely determined by either the Weyl function or by thefBriangle or by the classical spectral data consist of gajeas and
norming constants.
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1 Introduction The more general cases of the polynomials\) and
b(A) are more difficult to investigate. There are several
Inverse problems of spectral analysis consist inpapers about the spectral problems for differential
recovering operators from their spectral characteristicsoperators with the boundary conditions rationally
Such problems often appear in mathematical physicsdependent on the spectral parametedi-[g], [10], [14],
mechanics, electronics, geophysics and other branches ¢, [22], [25-[27] and [29]). Binding et al investigated
natural sciences. The first inverse problem of a reguladirect and inverse spectral theory for Sturm-Liouville
Sturm-Liouville operator was brought out by a(A) . . .
Ambarzumyan in 19291]. However, the most important Problem, when oy S @ rational - function  of
uniqueness theorem for inverse Sturm-Liouville problemHerglotz—Nevanlinna type such that
was proved by G. Borg in 1942]. Borg’s result has been
generalized to various versions until today. N
A large body of literature has built up, over the years, f(A)=aA+b—3%
on problems of Sturm-Liouville type but where the k=1
boundary conditions depend on parameter. A boundar){n one boundary condition ir6] and [7].

condition, rationally dependent on the spectral parameter Spectral problems arising in mechanical engineering

has the form and having boundary conditions depending on the
a(A)y(1)+b(A)y(1) =0, spectral parameter can be found in the classical textbook
[12] of Collatz. Furthermore, these kinds of problems
wherea(A) andb(A) are polynomials. This equality, in appear among others in connection with accoustic wave
the case when degA ) = degb(A) = 1, is said as affinely propagation in a rectangular duct with a uniform
(or linearly) dependent boundary conditions. Walt2g][ meanflow profile and walls with finite accoustic
and Fulton 5] have extensive bibliographies and we also impedance19].
refer to Fulton for some physical applications. Inverse  Boundary value problems with transfer conditions
problems for some classes of differential operatorsinside the interval often appear in applied sciences.
depending linearly on the parameter were studied inSpectral problems for differential operator with the
various publications (sed], [5], [9], [11], [18] and [21]). transfer conditions have been studied 8}, [13], [17],

fi
A=
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[18] and [21]-[24] where further references and links to

applications can be found. 1 N M T
The aim of this paper is to present various uniquenessy y/y - _ / OZdx— S kUK ViV 5
theorems for an inverse Sturm-Liouville problem withS< ’ > ' J y(x)z(x) k; fik +|<Z1 fox N ®)

eigenparameter-dependent-boundary  conditions  and
transfer conditions. We are studied in two types of
generalizations of classical Sturm-Liouville problems:

Uny+1UN, (1
_ 1 +

UN2+1u§\l +1
2=+

a a
First, both of the boundary conditions depend Arby \:_/ A 2
Herglotz—Nevanlinna functions. Second, we have two | GaWaw, | aaWaW,
transfer conditions depending linearly oA. The B Bz

conditions of the considered problem have an importan,, v — (y(x),u,v,w), Y’ = (z(x),u’,V',w') in H. Here,s
place in the class of parameter-dependent conditions. Ienotes corr;pI7e>E co’njugate ofthe C(;mpornent ’
this case, not only eigenvalues and eigenfunctions of the  pgfine the operatdF on the domain

problem are real, but it is also possible to define "norming )
constants” which play an important role in inverse PD(T) = {Y € H 1 i) y(x) and y'(x) are absolutely

spectral theory.

2 Preliminaries

Let us consider the boundary value problengenerated
by the regular Sturm—Liouville equation

2

ty:=—y'+qxy=2Ay, xeQ=J(d,d1) (1)
i=0
subject to the boundary conditions
U1(y) :=y'(0) — f1(A)y(0) = 0 2
Ua(y) :=y/ (1) — f2(A)y(1) =0 3)
and two transfer conditions
y(di +-0) = aiy(di — 0)
Y (di+0) = a; 'y/(di - 0) (4)

—(BA+w)y(di—0),i

whereA is the spectral parameteg(x) is a real valued
functioninL»(0,1); o, B andy are real numbersy; > 0,

Bi > 0,dp=0<d; <dy <d3z=1 We assume thaf (A)
and f,(A) are rational functions of Herglotz—Nevanlinna
type such that

1,2

N;j f:
fi(A)=ajA +bj — k_ =12
J AP 5 o

whereaj, bj, fji, gjk are real numbersy; < 0, fy <0,

a >0, fa >0, gj1 <gj2 < ... <gjn;. It should be noted

that, if fj(A) = « then the condition (2) and/or (3) are

interpreted as the Dirichlet conditiog) = y(1) = 0.
Consider the space

H=L12(0,1) @ CN*1 o CN2*1 g C2 and an element in

such that

Y (y(x),u,v,w), u (Uz, Uz, ..., UNy, Uy 41) 5

V= (V17V27 "'aVN27VN2+1) » W :(WlaWZ)'

H is a Hilbert space with the inner product defined by

continuous inQ, ¢y € L»(0,1);
i) Uny+1 = a1y(0), Vi1 = agy(1);
iii) wi = —By(di - 0);
iv) y(di +0) — aiy(di —0) =0, i = 1,2},

such that
T(Y) = (by(x), Tu, Tv, Tw) (6)
whereTu = (Tu), Tv=(Tv), Tw = (Tw),
g1iui — f1y(0), i=1,Ng
Tu = Ny ) (7)
Y(0)~biy(0)~ 3 thi=Ni+1
g2iVi — faiy(1), i=1N
Tv = No (8)
Y (1) —bay(1) - kzlvk’ i=Np+1

Tw =Y (dh +0) — a1y (di — 0) + wy(ch — 0), i = 1,2(9)
The following theorem can be proven by using same
methods inT] or [24] .

Theorem 1The eigenvalues of the operator T and the
problem L coincide.

It is clear thatfj(A) can be written as follows:

oy &)
where
N
aj(/\)z (aj/\ —I—bj)kl_l ()\—gjk)— (11)
=1
N;j N
- f )\ —Yiji)»
k; Jki:L#k( gji)
N
=1

Let the functionsp(x,A) and(x,A) be the solutions of
(1) under the initial conditions

¢(Oa)\) = bl()‘)v ¢/(05)\) = al()‘)
lﬂ(l,)\) = bZ()‘)v w/(lv/\) = aZ(/\)

(13)
(14)
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and the conditions (4). and the sequence
It can be proven thap (x,A) and/(x,A) also satisfy

. S 1
the following equalities: _ /¢2(x,)\n)dx+ (20)
¢1( s ), X < d1 0
d(xA) =< Pa(x,A), dy <x<dp (15) — £ (An)92(0,An) + f5(An)$2(1, An)
93(xA),  x>dp +01B19%(0y — 0, An) + 02 B20%(dr — 0, An).

Pl(xA), x<di A(/\)'is an entire fun.ction and its zeros, nam@%}nzo
$'(xA) =<4 Bh(xA), dy < x< dy 16) &€ e!genvalues af. Sincea;(gjx) #0 anFibj (gjk) —0for
PL(X.A), x>dy eachj € {1,2} andk € {1,2,...,N;}, gj is an eigenvalue

ifand only if ¢ (j — 1,gj) =0, i.e.,A(gj) =0

$1(x,A) = apAM T 2sinV/Ax+ O (A N1 exprx) Lemma 1i) The eigenvalue$n} ., are real numbers.
ii) The equalityA’(An) = pns, is valid for all n, where
bo(x,A) = 31731/\ Ni+1 [COS\/XX— cosvA (2d; — x)}

_ Y(0,A0)  ¢'(0,An)
10 (/\ Nﬁl/zexprx) Sh= bih)  2a(An) (21)

a . .
$3(x,A) = —#)\ Ni+3/2 {Sln\/XX—SIn\/X(Zdl—X)Jr Proofi) It is sufficient to prove that the eigenvaluesbf

are real. FolY in D(T), we calculate using integration by
—sinVA (2d, — X) + sinv/A (2d, — 2d; — x)} part that

+0 (AN exprx)
NMOTulc  Tuy 10
TY,Y) = [ ty(x)y(x)dx— = = Nt T
di(x,A) = asAM L cosvAx+ O (/\ Ni+1/2 exprx) < / yix k; fax a
(X A) = _alTﬁl)\ NL+3/2 [sinf)\x+ sinvA (2dl—x)} + N N2 TU | TV
f a
+0 (AN exprx) S °
i a; TwyWy I ar TWeWo
Ph(X,A) = —@A No+2 [cos\/X X+ CcosvA (2d; — x) + B B2

1
+o0sVA (2d; ~ )~ cosVA (20— 21 =X+ = [ (|4 o [y ) e by O) 2 boly(1)
+0 ()\ N+3/2 exprx) 0
Y1k G2k
z ul? + Z |V -+
O (ANF3/2expr(1—-x)), X< dy Ny N,
PYxA) =14 O(ANFlexpr(1—x)), dy<x<dr (17) + 2Re{ kzl)’(O)Uk - zlY(l)Vk} +

No+1/2 —
O™ H¥expr(1-x), x> dp — a1y |y(di O ~ azely(de — O)f?

O (AN 2expr(1—x)), x < dy Therefore, it can be concluded thaty,Y) is real for each
/ _ Np+3/2 B Y in D(T). This completes the proof of (i).
YxA) O()\ ’ expr(1 X))’ dh<x<d; i) Let Ay # gk and ¢(x,An) be the eigenfunction
O (AN lexpr(1—x)), x> dy which corresponds to the eigenvallie The equation (1)
(18)  can be written fop (x,An) and(x,A) as follows
wherer = |mva]. P (xA) AW (X A) =AW (X A).
ConSIder the funCtlon _¢// (X’)\n) + q(X)¢ (X7)\n) — )\n¢ (X;)\n)
AQA) =W(9.4) , (19) If these equations are (i): multiplied g (x,An) and
=az(A)p(L,A) —b(A)¢'(1,A) W(x,A), respectively; (ii): subtracted from each other and
=Db;(A)Y'(0,A) —a(A)P(0,A) (ii)): integrated over the interval0,1], the following
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equality is obtained: 3.1 By the Weyl Function
/1d[¢/< MUEN PN xA)] @) w(0.)
X, An X, — X, X, An . ’
0 m(A) = A0 (28)

1 The functiorm(A) is called Weyl function of the boundary
=(A —)\n)/w(x,)\)qb (X, An) dx value problerL. It is clear thatm(A) is a meromorphic
0 function with poles in{An}~o-
Let s(x,A) and c(x,A) be the solutions of (1) that
satisfy the conditions

S(0,A) =c(0,A)=0; c(0,A)=5(0,A)=1 (29)

The initial conditions (13), (14) and the transfer condigo
(4) are used to get

I;Jl(()?n)) AA ()\)\)n N / W)@ (xAn) e and (4). The following equalities are valid:
[f2(A) — f1(An)] $(xA) = ar(A)s(x,A) +by(A)c(x,A) (30)
1 — T1(An
S Ta PO (0.A) wA()((}\/;) - bl(l)\) [S(%,A) +mM(A)$(x,A)] (31)
fo(A) — fa(An
+%Azn<>l¢mn)w<o,m+ Thoorem 2If m(h) = AA) and §01) = (A) then
+a1Bip (di —0,A) ¢ (dp — 0, Ap) L =L ie, qx = q(x), amost everywhere inQ;
+ 2Bty (dp — 0,A) ¢ (d2 — 0, Ap) f2(A) = Fa(A) and (ai, B, %) = (&,Bi,ﬁ) 12
Letting limit asA — A, it can be obtained that ProofLet us define the functiorBy(x.A) andPs(x A) as
/ _ follows,
A'(An) = pnsn (23) oo

) Y(xA)
— (Xa)\)m (32)

P(x,A)
—9(xA) A0 (33)

If gix and/orgy are the eigenvalue#(0,g1x) =0 PLA) = 9(xA) ===~ ()\)
and/org (1,g2) = 0, so we see validity of (ii). W)
R(XA) = d(x,A) )

A(A
Since fi(A) = fi(A), & = &, by = by, fu = fu,

It is concluded from Lemma-1 that all eigenvalues of
L are simple zeros of\(A).

U1 = O S0 ay(A) = a1(A) andbi(A) = by(A). From

3 Unigueness Theorems the hypothesisn(A) = M(A) and the equalities (30)-(33),
we get
Together withL, consider the probler:. PL(X,A) = F(x,A)c(X,A) —S(X,A)T (X, A)

) Po(x.A) = s(xA)B0X,A) — §(x, A )c(x,A)
by:i=—y'+Gx)y=2Ay, xXe Q= U(dNi, dii1) (24)  ThereforePi(x,A) andPy(x,A) are entire functions of.
i—0

Denote
~ - Gs=1A:A =K, |k— =0,1,2,.
Ui(y) :==Y(0) — f1(A)y(0) =0 (25) o~ { ’ }
Ua(y) :=Y(1) - f2(A)y(1) =0 (26) and
_ . =y e _
y(di‘f'o):aiy(di—o) Gé—{)\.A—k, k— n >5,n_0,1,2,...}
Y (di +0) = G ty'(di - 0) (27)  whered is sufficiently small number. One can easily show

(E)\ N V) y(dN 0). 112 by using (15)-(19), (32) and (33) that the relations
—\Pi ( i—Y), =4

It is assumed in what follows that if a certain symisol

denotes an object related tg then the corresponding hold for)A € GsNGj. Thus,Pi(x,A) is a function, namely
symbolsdenotes the analogous object relatet to A(x), depends only ox andP,(x,A) = 0. Use (32) and

We consider three statements of the inverse problem of33) again to take
the reconstruction of the boundary-value problen) by xA) o)
the Weyl function; ii) by Prifer’s angle; iii) by the speatr Y A) = AGOF (XA Yx AlX P(x, 35
data{/\mpn}nzo and{)\n’un}nzo. ¢( 4 ) ( )$( 4 )7 A ( ) )\ ( )

PLXA)| < Cs, [P2xA)| <C5 A2 (34)
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Since W[qﬁ(x,)\),w(x’)\)] 1 and similarly

A(A)
P(x,A)

W[Eﬁ(x,)\),ml = 1, then A’%(x) = 1 and so

$%(x,A) = $?(x,A). From the asymptotic formula (15)
we haved; = d; andd, = dp. Suppose thaA(x) = —1 for
somex. In this case, we contradict using (15) to the
assumptionsy < 0, 31 > 0 andf3; > 0. HenceA(x) = 1
and

WxA) T xA)
YxA)  PxA)
It can be obtained from (1), (4), (10) and (14) that

d(x,A)=¢d(x,A)and (36)

g(x) = q(x), a.e.inQ; f(A) = f(A) and
(&, Bis Wi—12 = (aaﬁivvl)i:l’z-
3.2 By the Pifer angle
Denote
COfl% if Y(x,A)#0,
P tan*lM if ¢ (x,A)#0 o
W (xA) ’ '

The function (0,A) is called Prufer angle. It can be
calculated that the functio®(x,A) := cotp(x,A) is the
solution of the following initial value problem:

%(CD(X,/\)—I— D?(x,A) = q(x) — A
®(1,A) = f2(2)
Theorem 31f (0,A) = @(0,A) and f(A) = fi(A),

L = L; i.e. the Pifer angle@(0,A) and the coefficient
f1(A) together determine uniquely the problem L.

Prooflt is obvious from (28) and (37) that the equality
m(A)[a1(A) —bi(A)cotp(0,A)] = 1 holds. Therefore,
under the hypothesis of the theoreniA) = M(A). This
completes the proof.

3.3 By the norming constants

Lemma 2Let A, be an eigenvalue of T (or the problem L)
and ¥, eigenvector foin. Then, the equality

[Ynl|% = pn is valid.

ProofLet An # gjk. The caseAn = gjx requires minor
modification in the following proof.

Using the structure dD(T) and the equalities (5)-(9),
a direct calculation yields

1 N u? N v |2
¥l = ] 920 Al U™ | % I

y =Ly Sy
1 fe & fx

_|UN1+1|2+ |ung 1] n 01|W1|2+ A

a az B B2
1 N¢ u 2 No |y, 2
= [$2(x,An)dx— T &+ S &4-
0 1 fue k& fx

—a102(0,An) +a292(1,An)+

+a1B19?(dy — 0,An) + a2B202(d2 — 0, An)

L, 2 W fi
=/ 9°(%An)dx—9%(0,An) 3 ————+
0 k=1 [glk _)\n]

1A Y — 2

k=1 [92k - )\n]z
_a1¢2(07 )\n) =+ a2¢2(17 )\n)"'

+0a1B192(dy — 0,An) + 02B202(cz — 0, An).

fix

= j1‘¢2(x,/\n)dx— $2(0,An) {a1+ Nzl 72} +
0 k=1 [g1k — An]

N for
-ty —2 b+
k=1 [gok — An|

+a1B192(dy — 0,An) + 02B202(cz — 0, An).

+¢2(1a)\n) {

Now, we turn the notations in the structure of the operator
T and make a relation between the norm of an eigenvector_ f¢2(X An)dx— fi()\n)d)z(o An) + fé()\n)d)z(l An)+

on the spaceél and the sequengs, defined above. For an
elementy = (y(x),u,v,w) in H, the norm ofY is defined

by [[Y[|% := (Y,Y). From (5), we get
< < |

2 2
_Jungaf” Ul ay [wy|? L 02 wa|?
a1 a B Bz

|ug|?
Lud
fix

(38)

1
V2 = [y Pdx- :
o 2k

0
+01B19?(d1 — 0,An) + A2B292(d2 — 0,An) = pn.

Theorem 4If  {An,pn}pso = {Xnaﬁn}n>o and

fi(A) = f1(A) then L= L; ie. the spectral data
{An, Pn}n>o @nd the coefficient;fA) together determine
uniquely the problem L.
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ProofRecall that,a;(A) = ai1(A) and by(A) = bi(A)
when fi(A) = fi(A). Denote I, = {u

= (VAn+ 8)2}, wheree is sufficiently small number.
Consider the contour integral

Fan(A)= [ (k) du, A €intl,. From (15)-(19), it
m(H=2)
can be calculated tham(u)| < C|u| ™™, Therefore,
r!mn Fn(A) = 0. According to Lemmal, we obtain

First, both of the boundary conditions depend orby
Herglotz—Nevanlinna type functions; second, we have
two transfer conditions depending linearly an We
prove that, if the coefficienfi(A) in the first boundary
condition is known, the other coefficients of the boundary
value problemL can be uniquely determined by each of
the following:

i) The Weyl functionM (A );

i) The Prufer anglep(0,A );

iil) The sequence{An, pn} consists of eigenvalues and

e m(u) norming constants;
m(A) = _nZORes{ (H—2) ’)‘"} (39) iv) The sequencéAn, nn} consists of two given spectra.
- lﬂ(o,)\n)
=y 2t (40)
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