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Abstract: In this article, an impulsive Sturm–Liouville boundary value problem with boundary conditions containHerglotz–
Nevanlinna type rational functions of the spectral parameter is considered. It is shown that thecoefficients of the problem are
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1 Introduction

Inverse problems of spectral analysis consist in
recovering operators from their spectral characteristics.
Such problems often appear in mathematical physics,
mechanics, electronics, geophysics and other branches of
natural sciences. The first inverse problem of a regular
Sturm-Liouville operator was brought out by
Ambarzumyan in 1929 [1]. However, the most important
uniqueness theorem for inverse Sturm-Liouville problem
was proved by G. Borg in 1945 [2]. Borg’s result has been
generalized to various versions until today.

A large body of literature has built up, over the years,
on problems of Sturm-Liouville type but where the
boundary conditions depend on parameter. A boundary
condition, rationally dependent on the spectral parameter,
has the form

a(λ )y(1)+b(λ )y′(1) = 0,

wherea(λ ) andb(λ ) are polynomials. This equality, in
the case when dega(λ ) = degb(λ ) = 1, is said as affinely
(or linearly) dependent boundary conditions. Walter [28]
and Fulton [15] have extensive bibliographies and we also
refer to Fulton for some physical applications. Inverse
problems for some classes of differential operators
depending linearly on the parameter were studied in
various publications (see [4], [5], [9], [11], [18] and [21]).

The more general cases of the polynomialsa(λ ) and
b(λ ) are more difficult to investigate. There are several
papers about the spectral problems for differential
operators with the boundary conditions rationally
dependent on the spectral parameter. ([6]-[8], [10], [14],
[20], [22], [25]-[27] and [29]). Binding et al investigated
direct and inverse spectral theory for Sturm-Liouville

problem, when
a(λ )
b(λ )

is a rational function of

Herglotz–Nevanlinna type such that

f (λ ) = aλ +b−
N

∑
k=1

fk
λ −gk

,

in one boundary condition in [6] and [7].
Spectral problems arising in mechanical engineering

and having boundary conditions depending on the
spectral parameter can be found in the classical textbook
[12] of Collatz. Furthermore, these kinds of problems
appear among others in connection with accoustic wave
propagation in a rectangular duct with a uniform
meanflow profile and walls with finite accoustic
impedance [19].

Boundary value problems with transfer conditions
inside the interval often appear in applied sciences.
Spectral problems for differential operator with the
transfer conditions have been studied in [3], [13], [17],
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[18] and [21]-[24] where further references and links to
applications can be found.

The aim of this paper is to present various uniqueness
theorems for an inverse Sturm–Liouville problem with
eigenparameter-dependent-boundary conditions and
transfer conditions. We are studied in two types of
generalizations of classical Sturm-Liouville problems:
First, both of the boundary conditions depend onλ by
Herglotz–Nevanlinna functions. Second, we have two
transfer conditions depending linearly onλ . The
conditions of the considered problem have an important
place in the class of parameter-dependent conditions. In
this case, not only eigenvalues and eigenfunctions of the
problem are real, but it is also possible to define ”norming
constants” which play an important role in inverse
spectral theory.

2 Preliminaries

Let us consider the boundary value problemL, generated
by the regular Sturm–Liouville equation

ℓy :=−y′′+q(x)y= λy, x∈ Ω =
2⋃

i=0

(di ,di+1) (1)

subject to the boundary conditions

U1(y) := y′(0)− f1(λ )y(0) = 0 (2)

U2(y) := y′(1)− f2(λ )y(1) = 0 (3)

and two transfer conditions




y(di +0) = αiy(di −0)

y′(di +0) = α−1
i y′(di −0)

− (βiλ + γi)y(di −0), i = 1,2

(4)

whereλ is the spectral parameter;q(x) is a real valued
function inL2(0,1); αi , βi andγi are real numbers,αi > 0,
βi > 0, d0 = 0< d1 < d2 < d3 = 1. We assume thatf1(λ )
and f2(λ ) are rational functions of Herglotz–Nevanlinna
type such that

f j(λ ) = a jλ +b j −
Nj

∑
k=1

f jk

λ −g jk
, j = 1,2,

wherea j , b j , f jk, g jk are real numbers,a1 < 0, f1k < 0,
a2 > 0, f2k > 0, g j1 < g j2 < ... < g jN j . It should be noted
that, if f j (λ ) = ∞ then the condition (2) and/or (3) are
interpreted as the Dirichlet conditionsy(0) = y(1) = 0.

Consider the space
H = L2(0,1)⊕C

N1+1⊕C
N2+1⊕C

2 and an element inH
such that
Y = (y(x),u,v,w), u = (u1,u2, ...,uN1,uN1+1) ,
v = (v1,v2, ...,vN2,vN2+1) , w =(w1,w2).
H is a Hilbert space with the inner product defined by

〈
Y,Y′〉 : =

1∫

0

y(x)z(x)dx−
N1

∑
k=1

uku′k
f1k

+
N2

∑
k=1

vkv′k
f2k

+ (5)

−
uN1+1u′N1+1

a1
+

uN2+1u′N2+1

a2
+

+
α1w1w′

1

β1
+

α2w2w′
2

β2

for Y = (y(x),u,v,w), Y′ = (z(x),u′,v′,w′) in H. Here,s
denotes complex conjugate of the components.

Define the operatorT on the domain

D(T) = {Y ∈ H : i) y(x) and y′(x) are absolutely
continuous inΩ , ℓy∈ L2(0,1);

ii) uN1+1 = a1y(0), vN2+1 = a2y(1);
iii) wi =−βiy(di −0);
iv) y(di +0)−αiy(di −0) = 0, i = 1,2},

such that
T (Y) = (ℓy(x),Tu,Tv,Tw) (6)

whereTu = (Tui) , Tv = (Tvi) , Tw = (Twi) ,

Tui =






g1iui − f1iy(0), i = 1,N1

y′(0)−b1y(0)−
N1

∑
k=1

uk, i = N1+1
(7)

Tvi =






g2ivi − f2iy(1), i = 1,N2

y′(1)−b2y(1)−
N2

∑
k=1

vk, i = N2+1
(8)

Twi = y′(di +0)−α−1
i y′(di −0)+ γiy(di −0), i = 1,2(9)

The following theorem can be proven by using same
methods in [7] or [24] .

Theorem 1.The eigenvalues of the operator T and the
problem L coincide.

It is clear thatf j (λ ) can be written as follows:

f j (λ ) =
a j(λ )
b j(λ )

(10)

where

a j(λ ) = (a jλ +b j)
Nj

∏
k=1

(
λ −g jk

)
− (11)

−
Nj

∑
k=1

f jk

Nj

∏
i=1,i 6=k

(λ −g ji) ,

b j(λ ) =
Nj

∏
k=1

(
λ −g jk

)
, j = 1,2. (12)

Let the functionsϕ(x,λ ) andψ(x,λ ) be the solutions of
(1) under the initial conditions

ϕ(0,λ ) = b1(λ ), ϕ ′(0,λ ) = a1(λ ) (13)

ψ(1,λ ) = b2(λ ), ψ ′(1,λ ) = a2(λ ) (14)
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and the conditions (4).
It can be proven thatϕ(x,λ ) andψ(x,λ ) also satisfy

the following equalities:

ϕ(x,λ ) =





ϕ1(x,λ ), x< d1
ϕ2(x,λ ), d1 < x< d2
ϕ3(x,λ ), x> d2

(15)

ϕ ′(x,λ ) =





ϕ ′

1(x,λ ), x< d1
ϕ ′

2(x,λ ), d1 < x< d2
ϕ ′

3(x,λ ), x> d2

(16)

ϕ1(x,λ ) = a1λ N1+1/2sin
√

λx+O
(
λ N1 expτx

)

ϕ2(x,λ ) =
a1β1

2
λ N1+1

[
cos

√
λx− cos

√
λ (2d1− x)

]

+O
(

λ N1+1/2expτx
)

ϕ3(x,λ ) = −a1β1β2

4
λ N1+3/2

[
sin

√
λx− sin

√
λ (2d1− x)+

−sin
√

λ (2d2− x)+ sin
√

λ (2d2−2d1− x)
]

+O
(
λ N1+1expτx

)

ϕ ′
1(x,λ ) = a1λ N1+1cos

√
λx+O

(
λ N1+1/2expτx

)

ϕ ′
2(x,λ ) = −a1β1

2
λ N1+3/2

[
sin

√
λx+ sin

√
λ (2d1− x)

]
+

+O
(
λ N1+1expτx

)

ϕ ′
3(x,λ ) = −a1β1β2

4
λ N1+2

[
cos

√
λx+ cos

√
λ (2d1− x)+

+cos
√

λ (2d2− x)− cos
√

λ (2d2−2d1− x)
]
+

+O
(

λ N1+3/2expτx
)

ψ(x,λ ) =






O
(
λ N2+3/2expτ(1− x)

)
, x< d1

O
(
λ N2+1expτ(1− x)

)
, d1 < x< d2

O
(
λ N2+1/2expτ(1− x)

)
, x> d2

(17)

ψ ′(x,λ ) =





O
(
λ N2+2expτ(1− x)

)
, x< d1

O
(
λ N2+3/2expτ(1− x)

)
, d1 < x< d2

O
(
λ N2+1expτ(1− x)

)
, x> d2

(18)

whereτ =
∣∣∣Im

√
λ
∣∣∣.

Consider the function

∆(λ ) :=W(ϕ ,ψ) (19)

= a2(λ )ϕ(1,λ )−b2(λ )ϕ ′(1,λ )
= b1(λ )ψ ′(0,λ )−a1(λ )ψ(0,λ )

and the sequence

ρn : =

1∫

0

ϕ2(x,λn)dx+ (20)

− f ′1(λn)ϕ2(0,λn)+ f ′2(λn)ϕ2(1,λn)

+α1β1ϕ2(d1−0,λn)+α2β2ϕ2(d2−0,λn).

∆(λ ) is an entire function and its zeros, namely{λn}n≥0
are eigenvalues ofL. Sincea j(g jk) 6= 0 andb j(g jk) = 0 for
each j ∈ {1,2} andk∈

{
1,2, ...,Nj

}
, g jk is an eigenvalue

if and only if ϕ( j −1,g jk) = 0, i.e.,∆(g jk) = 0.

Lemma 1.i) The eigenvalues{λn}n≥0 are real numbers.
ii) The equality∆ ′(λn) = ρnsn is valid for all n, where

sn =
ψ(0,λn)

b1(λn)
=

ψ ′(0,λn)

a1(λn)
(21)

Proof.i) It is sufficient to prove that the eigenvalues ofT
are real. ForY in D(T), we calculate using integration by
part that

〈TY,Y〉=
1∫

0

ℓy(x)y(x)dx−
N1

∑
k=1

Tukuk

f1k
− TuN1+1uN1+1

a1
+

+
N2

∑
k=1

Tvkvk

f2k
+

TvN2+1vN2+1

a2
+

+
α1Tw1w1

β1
+

α2Tw2w2

β2

=

1∫

0

(∣∣y′(x)
∣∣2+q(x) |y(x)|2

)
dx+b1 |y(0)|2−b2 |y(1)|2

−
N1

∑
k=1

g1k

f1k
|uk|2+

N2

∑
k=1

g2k

f2k
|vk|2+

+2Re

{
N1

∑
k=1

y(0)uk−
N2

∑
k=1

y(1)vk

}
+

−α1γ1 |y(d1−0)|2−α2γ2 |y(d2−0)|2

Therefore, it can be concluded that〈TY,Y〉 is real for each
Y in D(T). This completes the proof of (i).

ii) Let λn 6= gik and ϕ(x,λn) be the eigenfunction
which corresponds to the eigenvalueλn. The equation (1)
can be written forϕ(x,λn) andψ(x,λ ) as follows

−ψ ′′ (x,λ )+q(x)ψ (x,λ ) = λ ψ (x,λ ) ,
−ϕ ′′ (x,λn)+q(x)ϕ (x,λn) = λnϕ (x,λn)

If these equations are (i): multiplied byϕ (x,λn) and
ψ (x,λ ) , respectively; (ii): subtracted from each other and
(iii): integrated over the interval[0,1], the following
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equality is obtained:

1∫

0

d
[
ϕ ′ (x,λn)ψ (x,λ )−ψ ′ (x,λ )ϕ (x,λn)

]
(22)

= (λ −λn)

1∫

0

ψ (x,λ )ϕ (x,λn)dx

The initial conditions (13), (14) and the transfer conditions
(4) are used to get

b1(λ )
b1(λn)

∆(λ )
λ −λn

=

1∫

0

ψ (x,λ )ϕ (x,λn)dx+

− [ f1(λ )− f1(λn)]

λ −λn
ϕ(0,λn)ψ (0,λ )

+
[ f2(λ )− f2(λn)]

λ −λn
ϕ(1,λn)ψ (0,λ )+

+α1β1ψ (d1−0,λ )ϕ (d1−0,λn)

+α2β2ψ (d2−0,λ )ϕ (d2−0,λn)

Letting limit asλ → λn it can be obtained that

∆ ′(λn) = ρnsn (23)

If g1k and/org2k are the eigenvalues,ϕ(0,g1k) = 0
and/orϕ(1,g2k) = 0, so we see validity of (ii).

It is concluded from Lemma-1 that all eigenvalues of
L are simple zeros of∆(λ ).

3 Uniqueness Theorems

Together withL, consider the problem̃L :.

ℓ̃y :=−y′′+ q̃(x)y= λy, x∈ Ω̃ =
2⋃

i=0

(d̃i , d̃i+1) (24)

Ũ1(y) := y′(0)− f̃1(λ )y(0) = 0 (25)

Ũ2(y) := y′(1)− f̃2(λ )y(1) = 0 (26)





y(d̃i +0) = α̃iy(d̃i −0)

y′(d̃i +0) = α̃−1
i y′(d̃i −0)

−
(

β̃iλ + γ̃i

)
y(d̃i −0), i = 1,2

(27)

It is assumed in what follows that if a certain symbols
denotes an object related toL, then the corresponding
symbols̃denotes the analogous object related toL̃.

We consider three statements of the inverse problem of
the reconstruction of the boundary-value problemL; i) by
the Weyl function; ii) by Prüfer’s angle; iii) by the spectral
data{λn,ρn}n≥0 and{λn,µn}n≥0.

3.1 By the Weyl Function

Denote

m(λ ) :=
ψ(0,λ )
∆(λ )

(28)

The functionm(λ ) is called Weyl function of the boundary
value problemL. It is clear thatm(λ ) is a meromorphic
function with poles in{λn}n≥0.

Let s(x,λ ) and c(x,λ ) be the solutions of (1) that
satisfy the conditions

s(0,λ ) = c′(0,λ ) = 0; c(0,λ ) = s′(0,λ ) = 1 (29)

and (4). The following equalities are valid:

ϕ(x,λ ) = a1(λ )s(x,λ )+b1(λ )c(x,λ ) (30)

ψ(x,λ )
∆(λ )

=
1

b1(λ )
[s(x,λ )+m(λ )ϕ(x,λ )] (31)

Theorem 2.If m(λ ) = m̃(λ ) and f1(λ ) = f̃1(λ ) then
L = L̃, i.e., q(x) = q̃(x), almost everywhere inΩ ;

f2(λ ) = f̃2(λ ) and(αi ,βi ,γi) =
(

α̃i , β̃i , γ̃i

)
, i = 1,2.

Proof.Let us define the functionsP1(x,λ ) andP2(x,λ ) as
follows,

P1(x,λ ) = ϕ(x,λ )
ψ̃ ′(x,λ )

∆̃ (λ )
− ϕ̃ ′(x,λ )

ψ(x,λ )
∆(λ )

(32)

P2(x,λ ) = ϕ̃(x,λ )
ψ(x,λ )
∆(λ )

−ϕ(x,λ )
ψ̃(x,λ )
∆̃(λ )

(33)

Since f1(λ ) ≡ f̃1(λ ), a1 = ã1, b1 = b̃1, f1k = f̃1k,

g1k = g̃1k, so a1(λ ) ≡ ã1(λ ) and b1(λ ) ≡ b̃1(λ ). From
the hypothesism(λ ) = m̃(λ ) and the equalities (30)-(33),
we get

P1(x,λ ) = s̃′(x,λ )c(x,λ )− s(x,λ )c̃′(x,λ )
P2(x,λ ) = s(x,λ )c̃(x,λ )− s̃(x,λ )c(x,λ )
ThereforeP1(x,λ ) andP2(x,λ ) are entire functions ofλ .
Denote

Gδ =
{

λ : λ = k2,
∣∣∣k−

√
λn

∣∣∣> δ , n= 0,1,2, ...
}

and

G̃δ =

{
λ : λ = k2,

∣∣∣∣k−
√

λ̃n

∣∣∣∣> δ , n= 0,1,2, ...

}

whereδ is sufficiently small number. One can easily show
by using (15)-(19), (32) and (33) that the relations

|P1(x,λ )| ≤Cδ , |P2(x,λ )| ≤Cδ |λ |−1/2 (34)

hold forλ ∈ Gδ ∩ G̃δ . Thus,P1(x,λ ) is a function, namely
A(x), depends only onx andP2(x,λ ) = 0. Use (32) and
(33) again to take

ϕ(x,λ ) = A(x)ϕ̃(x,λ ),
ψ(x,λ )
∆(λ )

= A(x)
ψ̃(x,λ )
∆̃(λ )

(35)
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Since W

[
ϕ(x,λ ),

ψ(x,λ )
∆(λ )

]
= 1 and similarly

W

[
ϕ̃(x,λ ),

ψ̃(x,λ )
∆̃(λ )

]
= 1, then A2(x) = 1 and so

ϕ2(x,λ ) = ϕ̃2(x,λ ). From the asymptotic formula (15)
we haved1 = d̃1 andd2 = d̃2. Suppose thatA(x) =−1 for
some x. In this case, we contradict using (15) to the
assumptionsa1 < 0, β1 > 0 andβ2 > 0. HenceA(x) = 1
and

ϕ(x,λ ) = ϕ̃(x,λ ) and
ψ ′(x,λ )
ψ(x,λ )

=
ψ̃ ′(x,λ )
ψ̃(x,λ )

(36)

It can be obtained from (1), (4), (10) and (14) that
q(x) = q̃(x), a.e. inΩ ; f2(λ ) = f̃2(λ ) and

(ai ,βi ,γi)i=1,2 =
(

ãi , β̃i , γ̃i

)
i=1,2

.

3.2 By the Pr̈ufer angle

Denote

φ(x,λ ) :=






cot−1 ψ ′ (x,λ )
ψ (x,λ )

if ψ (x,λ ) 6= 0,

tan−1 ψ (x,λ )
ψ ′ (x,λ )

if ψ ′ (x,λ ) 6= 0,

(37)

The function φ(0,λ ) is called Prüfer angle. It can be
calculated that the functionΦ(x,λ ) := cotφ(x,λ ) is the
solution of the following initial value problem:

d
dx

Φ(x,λ )+Φ2(x,λ ) = q(x)−λ

Φ(1,λ ) = f2 (λ )

Theorem 3.If φ(0,λ ) = φ̃(0,λ ) and f1(λ ) = f̃1(λ ),
L = L̃; i.e. the Pr̈ufer angleφ(0,λ ) and the coefficient
f1(λ ) together determine uniquely the problem L.

Proof.It is obvious from (28) and (37) that the equality
m(λ ) [a1(λ )−b1(λ )cotφ(0,λ )] = 1 holds. Therefore,
under the hypothesis of the theoremm(λ ) = m̃(λ ). This
completes the proof.

3.3 By the norming constants

Now, we turn the notations in the structure of the operator
T and make a relation between the norm of an eigenvector
on the spaceH and the sequenceρn, defined above. For an
elementY = (y(x),u,v,w) in H, the norm ofY is defined
by ‖Y‖2 := 〈Y,Y〉 . From (5), we get

‖Y‖2 =

1∫

0

|y(x)|2dx−
N1

∑
k=1

|uk|2
f1k

+
N2

∑
k=1

|vk|2
f2k

(38)

−|uN1+1|2
a1

+
|uN2+1|2

a2
+

α1 |w1|2
β1

+
α2 |w2|2

β2
.

Lemma 2.Letλn be an eigenvalue of T (or the problem L)
and Yn eigenvector forλn. Then, the equality
‖Yn‖2 = ρn is valid.

Proof.Let λn 6= g jk. The caseλn = g jk requires minor
modification in the following proof.

Using the structure ofD(T) and the equalities (5)-(9),
a direct calculation yields

‖Yn‖2 =
1∫

0
ϕ2(x,λn)dx−

N1

∑
k=1

|uk|2
f1k

+
N2

∑
k=1

|vk|2
f2k

+

−|uN1+1|2
a1

+
|uN2+1|2

a2
+

α1 |w1|2
β1

+
α2 |w2|2

β2

=
1∫

0
ϕ2(x,λn)dx−

N1

∑
k=1

|uk|2
f1k

+
N2

∑
k=1

|vk|2
f2k

+

−a1ϕ2(0,λn)+a2ϕ2(1,λn)+

+α1β1ϕ2(d1−0,λn)+α2β2ϕ2(d2−0,λn)

=
1∫

0
ϕ2(x,λn)dx−ϕ2(0,λn)

N1

∑
k=1

f1k

[g1k−λn]
2+

+ϕ2(1,λn)
N2

∑
k=1

f2k

[g2k−λn]
2+

−a1ϕ2(0,λn)+a2ϕ2(1,λn)+

+α1β1ϕ2(d1−0,λn)+α2β2ϕ2(d2−0,λn).

=
1∫

0
ϕ2(x,λn)dx−ϕ2(0,λn)

{
a1+

N1

∑
k=1

f1k

[g1k−λn]
2

}
+

+ϕ2(1,λn)

{
a2+

N2

∑
k=1

f2k

[g2k−λn]
2

}
+

+α1β1ϕ2(d1−0,λn)+α2β2ϕ2(d2−0,λn).

=
1∫

0
ϕ2(x,λn)dx− f ′1(λn)ϕ2(0,λn)+ f ′2(λn)ϕ2(1,λn)+

+α1β1ϕ2(d1−0,λn)+α2β2ϕ2(d2−0,λn) = ρn.

Theorem 4.If {λn,ρn}n≥0 =
{

λ̃n, ρ̃n

}

n≥0
and

f1(λ ) = f̃1(λ ) then L = L̃; i.e. the spectral data
{λn,ρn}n≥0 and the coefficient f1(λ ) together determine
uniquely the problem L.
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Proof.Recall that, a1(λ ) = ã1(λ ) and b1(λ ) = b̃1(λ )
when f1(λ ) = f̃1(λ ). Denote Γn = {µ :

|µ | =
(√

λn+ ε
)2}, whereε is sufficiently small number.

Consider the contour integral

Fn(λ ) =
∫

Γn

m(µ)
(µ −λ )

dµ , λ ∈ intΓn. From (15)-(19), it

can be calculated that,|m(µ)| ≤ C|µ |−N1−1 . Therefore,
lim
n→∞

Fn(λ ) = 0. According to Lemma1, we obtain

m(λ ) = −
∞

∑
n=0

Res

{
m(µ)

(µ −λ )
,λn

}
(39)

=
∞

∑
n=0

ψ(0,λn)

(λ −λn)∆ ′(λn)
(40)

=
∞

∑
n=0

b1(λn)

ρn(λ −λn)
(41)

Consequently, ifλn = λ̃n, ρn = ρ̃n for all n and f1(λ ) =
f̃1(λ ) thenm(λ ) = m̃(λ ). Hence, Theorem2 yieldsL = L̃.

3.4 By two given spectra

We consider the boundary value problemL1 with the
conditiony(0,λ ) = 0 instead of (2) inL. Let {η2

n}n≥0 be
the eigenvalues of the problemL1. It is obvious thatηn
are zeros of∆1(η) := ψ(0,η).

Theorem 5.If {λn,ηn}n≥0 =
{

λ̃n, η̃n

}
n≥0

and

f1(λ ) = f̃1(λ ) then L= L̃.

Proof.The functions∆(λ ) and∆1(η) which are entire of

order
1
2

, can be represented by Hadamard’s factorization

theorem as follows

∆(λ ) = C
∞

∏
n=0

(
1− λ

λn

)
(42)

∆1(η) = C1

∞

∏
n=0

(
1− η

ηn

)
, (43)

whereC andC1 are constants which depend only on{λn}
and {ηn} , respectively. Therefore,∆(λ ) ≡ ∆̃ (λ ) and
∆1(η) ≡ ∆̃1(η), when λn = λ̃n and ηn = η̃n for all n.
Consequently, the equality (28) yieldsm(λ ) ≡ m̃(λ ).
Hence, the proof is completed by Theorem2.

4 Conclusion

The aim of this paper is to give uniqueness theorems for
an inverse Sturm–Liouville problem with
eigenparameter-dependent-boundary conditions and
transfer conditions. We are studied in two types of
generalizations of classical Sturm-Liouville problems:

First, both of the boundary conditions depend onλ by
Herglotz–Nevanlinna type functions; second, we have
two transfer conditions depending linearly onλ . We
prove that, if the coefficientf1(λ ) in the first boundary
condition is known, the other coefficients of the boundary
value problemL can be uniquely determined by each of
the following:
i) The Weyl functionM(λ );
ii) The Prüfer angleφ(0,λ );
iii) The sequence{λn,ρn} consists of eigenvalues and
norming constants;
iv) The sequence{λn,ηn} consists of two given spectra.
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