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Abstract: The time-dependent Schrodinger equation is solved foneali potential using operational methods; in particular, a
extension of the Baker-Campbell-Hausdorff formula is esqgzband used. Several initial conditions are considerethg®d form for the
Wigner function is presented. The results can be extendgtporopagation of an electromagnetic field in the parayigf@ximation.
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1 Introduction action of this operator over initial conditions adequately

written.

The explicit solution that it is found, allows us to write a
losed form for the Wigner function in terms of the
ourier transform of the initial condition. The Wigner

function can then be calculated for the initial conditions
at we present; as the results are very cumbersome, we
resent only the case when the initial condition is an Airy
unction.

The Schrodinger equation for the linear potential mimics

exactly the paraxial equation in two dimensiods,[L4,

15]; so, our results works perfectly well for beam

propagation under the influence of a linear gradient

refractive index 16].

The main problem of non-relativistic quantum mechanics
is the solution of the Schrodinger equation; several exac
analytical, approximated analytic and numerical method
have been invented for this purpoded, 3]. Between the
exact analytical methods, we can count the ones based
operator techniques; such methods are relatively new an
can give very simple solutions, to otherwise complicated
approaches 4,5,6,7]. That is the case of the linear
potential; the solution of the Schrodinger equation far th
linear potential is very well known, but it has been
neglected in the quantum mechanics boo&9][ The
time dependent solution is usually done in terms of the
eigenfunctions of the Hamiltonian, the Airy functions, as

an integral over the continuous eigenvalue, the energy; . Lo
however, an explicit solution for a given initial condition 2 The formal solution of the Schiodinger

is not normally presented. equation for a linear potential using

In this work, we use operator techniques to find an exacoperators

analytic solution of the time-dependent Schrodinger ] ] o . .

problem for several initial conditions. To do that, we use aPotentiaV (x) = Fxis

very easy and direct generalization of the F) t A2
: oY xt) P

Baker-Campbell-Hausdorff formula4,[7,10], that is IT = 7+Fx Y (xt), Q)

derived from the Zassenhaus formulhl[12,10]. This

extended Baker-Campbell-Hausdorff formula allows us towhere X and p are two Hermitian operators (i.e., two

disentangle the evolution operator, and to analyze thexon-commuting variables) with the commutation relation
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[X, p] =i [1,2,3]. We will use a unit system wheffe= 1 formula. The “left oriented” version of the

and the masm = 1. Baker-Campbell-Hausdorff formula is
As the Hamiltonian is time independent, equatiéhdan 5
be integrated with respect to time, and the formal solution A (X+Y) _ o [RY] AV A X 9)
found as
and the “left oriented” extended

P(xt) = exp{—it (%2 +F x) } w(x0), (2) Baker-Campbell-Hausdorff formula is
& (%49) _ & (@Y K9+ RI])) 3 RV A YA X (10)

wherey(x,0) is the initial condition, namely, the state of
the system at time= 0.

4 Application of the extended
Baker-Campbell-Hausdorff formula to the

3 The extended Baker-Campbell-Hausdorff Schrodinger equation with a linear potential

formula
We apply now expressiori() to the formal solutionZ).

The Zassenhaus formula establishEk 12, 10] that For that, we choosa — —it, X = %2, and¥ = Fx we
A (R4Y) _ AR AT AZCo(RY) ACo(RY) hCa(XY) have o
where X and Y are two operators, that is, two
non-commuting variables, and (X, [X,Y]] =0, vV, [X,Y]] =F2, (12)
L 1 .~ . and o
cz(x,v):—i[x,v], 4) Y, [¥,[X,¥]]] =0, (13)
P R P Y, [X,[X,Y]]]=0 14
G (V)= V.Y + 2[R XV]]. ®) ¥ %, X V1] (14)
son Ll e o o o (X, [X, [X.¥]]] =0 (15)
Ca(X.Y) :_5([ Y PV I (X [XYTTT) so actually, we can apply the left oriented extended
1 in rn r; on Baker-Campbell-Hausdorff formuld (). Using (1) and
=52 X% X X YT (12), we findC} = —i p andCl = £

(6)
_ o F2t3 Ft
and so on. The general expression @(X,Y) is very Y(xt) :exp( 3 >exp(|—p) exp(—iFtx)
complicated and we don’t need it here (Sdd][and
references therein). o exp(—iiﬁz) w(x,0).
If [¥,[X,¥]] = 0 and[X, [X,¥]] = 0,C5[X,¥] = 0, all 2
the subsequert’s are also zero, and we got the well ysing the Hadamard lemmd,[7,10], it is easy to show

(16)

known Baker-Campbell-Hausdorff formula that exp(—i$p?) @ (x,0) = g (x—tp,0) and that for an
o o a2ree arbitrary well behaved function f, we have
P RHY) — @ XAV 7 [XY], @) exp(iF—gzﬁ) f(x) = f (x+ FTIZ) thus,
If at least one of the twdY, [X,Y]] or [X, [X,Y]] are 2 )
different from  zero, and [\?,[A X.Y]]] = w(x,t):exp[—iw;_&) w(x+%—tﬁ,o> 1.
¥, [X,[X.9]]] = 0, [X,[K,[X,¥]]] =0, only G and
Cswill be different from zero, and all the others 17

subsequenC's will be zero, obtaining the extended

Baker-Campbell-Hausdorff formula . . . .
5 Writing the initial condition as a Fourier

A (KHY) _ RV B[R] (2T RV <R [%V])) () transform

There is also a “left oriented” version of the ZassenhaudOW: We write the initial condition in terms of its Fourier
formula that is as useful as the normal one, that gives udransform; i.e., we write

left oriented versions of the Baker-Campbell-Hausdorff ,

formula and of the extended Baker-Campbell-Hausdorff Y(x,0) = [WdVY(V) exp(—27ixv), (18)
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and we substitute it in equatiot?), obtaining S T~

Y(x,t) = / dvY(v) exp(—invFt?) exp27iv (x — tp)] 1;
- (19)
the operator in the last exponential can be disentanglel Lo
using the Baker-Campbell-Hausdorff formuld,7,10], WeeHl?
and after some trivial algebra one gets ’ 03

_Ft (Ft? 4+ 6x
oy o P20
® —invFE2 : Ft? ¥ :
[mde(v)e exps 2 x+T v— it , : v,
(20)  Fig. 1: The solution|w(xt)[2, when the initial condition is
where Y(x,0=Ae 2~b° with F —1,A—1,a— 1, andb =3,

YW= [ depE exp(-2mey).  (21)

Again it is not difficult to show that the initial condition is
fulfilled and that equationlj is satisfied. In Figurd, we

6 Some particular initial conditions show the squared amplitude as a function of the position
and as a function of time whenF = 1,A? l,a=1,and
6.1 Initial condition: ((x, 0) = Aexp(ikx) b= 3. We observe that the peak|qf(x.t)|” goes to lower

values of; if the sign ofF is inverted, the motion of the
We treat now the case when the initial state of the systenP€ak is reversed, going in that case to the greater values of
is a plane wave, namely(x,t = 0) = &k%_ Itis averyeasy X as expected.
exercise in this case to find that

. Fkt? F23 k2t N N _
Y(xt) = Aexp|i | kx+ —— — —— —Ftx— — 6.3 Initial condition: ((x, 0) = Ai (ax)
(22)
This solution satisfies the Schrodinger equatiraqd the a3
initial condition (x,t = 0) = €%, so it is the solution. In this case, we gt (v) = %exp(i %3—) , that inserted in

(20) take us to

. e . —a(x—b)2 2t3
6.2 Initial condition: (x, 0) = Ae a*-b) Wixt) = zinanp[_i <FTt+th)]

When the initial condition is a Gaussian function ® N Ft2 ¢ (27)
Y(x,0) = Aexp—a(x— b)?], the Fourier transform is also / dvexp[i (—3 + XV —V— —vz)] ,
a Gaussian, and substituting it in expressi@g),( we — 3a 2 2
obtain after easy, but cumbersome, calculations o
that after some trivial algebra can be cast as
A
P(x.t) = Ve expoi(t) +92(t) +ga(t)],  (23) sixt) EI £23 N a3
M= o P 6 24
where
B 2 214 23 /m dvexp[ ! <v a3t>3+(x a3t2+Ft2)v]
i(—12a 12abFt + aF<t* — 2iF <t 23\ o T2 T o :
Gty = ¢ + 2 t+. ) gyt @\ 2 4 72
( at — I) (28)
. 2 .
galt) = — ix (2ab+aFt® —iFt) (25)  Using the integral representatioli 18]
2at — i ’
and X2 Al(x) = — [ expli (& d (29)
a i(X)==— [ exp|i| = +xu u,
e o] 9|15 )]
%) = = (26) g
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that it is valid forx real, we finally arrive to

PY(xt) :exp{—i 1L2 (a®—2F) [t?(a®~F) — 6x] }

Ai [ax— %atz(a3 - ZF)]
(30)

Figure2 displays|y/(x,t)|? whenF = 1, anda= 1. As in

W (xn> "

0.1

Fig. 2: The solution|l,u(x7t)|2, when the initial condition is
Y(x,0)=Ai(ax), withF =1 anda=1.

the previous case, the direction of the twist of the
maximum of the probability distribution is inverted when

we change the sign &.

6.4 Initial condition:/(x,0) = —OP A (ax)

First, the Fourier transform is calculated using the

convolution theorem; second, it is substituted RO)(
third, the integral representatioRd) of the Airy function
is used, and finally

and

ala®?—2i(2ct—i) (Ft?+2x)]
4(—2ct+1i)2 '

The behavior of the solution in this case is presented in

ha(t) = (35)

Fig. 3: The solution|(xt)|?>, when the initial condition is
W(x,0)=e CAi(ax), with F = 1,c=1, anda= 1.

Figure3forF =1,c=1, anda= 1. The same observation

made in the previous cases about the behaviapo, t)|2
with respect to the sign df is valid.

7 Initial condition: (x,0) = Jy(ax)

When the initial condition is a Bessel function of the first
kind, we can not use directly equatia20f because we do
not know the Fourier transform, so we go back to
expression16) and we write 1.8,19]

In(ax) = %T / exp(inT) exp—iaxsin(1)]dr,  (36)

—TT

1 to obtain
- = i 2+3 2
Wit = V14 2ict explhz(t) +he(t) + ha(t)]A [h4(t();1) Y(x,t) =exp (i _F3t ) exp (i FTt ﬁ) exp(—iFtx)
exp(—iipz) * /n " exp—iaxsin(t)]dt
where 2" )2n) o '
2 6 a3 - 2 (37)
ha(t) = m [a —3a°F(1+2ict) +2F } Following the same procedure that took us from equation
(32)  (16)to equation {7), we arrive to
icF2t4(—2ct + 3i)? 1 F23
© o 12(2ct-i)3 =—expli[ —— —
( ) W(xt) 2ﬂexp{l ( 5 th)}
itx (a®+ 4c?Ft? — 6icFt — 2F) n _ aFt2sin(t)
ho(t) = — 22112 , (33) /_nexp{| {nr —— (38)
o2 : tazsinz(r)] }
== —xasin(t) - ——-——| pdr
hs(t) = 5 (34) (7) >
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From here, we make
SIPT = %[1—(;05(2'[)] — %[z_eZiT_e—Zir:| :

to get
2:+3

P(xt) = %Texp [i <—FTt - th)}
/_T;exp<—§) exp{i [nr— <F7t2 +x> asin(r)] }

exp[i (%Ztez”ﬂ exp[i (%Zte‘z”ﬂ dr, (39)

we write the last two exponentials inside the integral in [ (x,0)*

terms of their Taylor series,

(R a’t?
qJ(X,t) = eXp|:| (—T - FtX— T>:|

© 1 /a2t )tk
3%

L i 2j—2k
ﬁlnexp{|[(n+ j—2kT

- (%tz +x) asin(r)} }dr.

Recalling @6), we obtain

([ FA3 a’t?
P(xt) = exp[l <_T — Ftx— T)}

© 1 /iaz\'tK Ft2
() waalala)]

(40)

(41)
Changing the index in thesum toM = j — Kk,
(R a’t?
Y(xt) = exp[l (_T — Ftx— T)}
00 0 1 iazt M+2k
kZOM:Zk (M +K)!K! (?)
Ft2\ 1.
Iniomk -2k (& X+ ik (42)

theM sum can be extended froawo, since we are adding
zeros to the sumﬁ]e_ = 0, whenn is a negative integer),

and using that

a2t 0 _1)k ia2t M+2k
JM (T> =2 r( +k))'k' (?) @3
k=0 K
we obtain the final result
. F2t3 2t2
Y(xt) = exp{—l (th+ — aT)]

i iMJnom |:a<X+F7t2>:|JM (?) (44)

M=—0c0

The initial conditiony(x,0) = Jy(ax) is realized, and with
some work, it can be verified that)(is fulfilled. Figures4,
5 and6 show|y(x,t)|?> whenF = 1, anda= 1 forn =0,
n=1, andn =7, respectively.

Fig. 4: The solution|@(xt)|?>, when the initial condition is
Y(x,0)=dh(ax), withF =1,n=0, anda=1.

Fig. 5: The solution|y(xt)[>, when the initial condition is
Y(x,0)=d(ax), withF =1,n=1, anda=1.

8 The Wigner function

Being the Wigner functionZ0] one of the most know
quasiprobability distribution function2],22], we want
to study it next. Using formula2Q), the Wigner function
[2q

W)= = [ dyw (x+y) 0 (x-y)exp(2ipy) (45)
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I e W Since the Wigner function is only non-negative for
s \ N W Gaussian state®8,24], it presents large regions where it
T iS negative, as expected. With time the Wigner function
// moves but it keeps its initial form (Figug).

0.10

W () 1 o0s

0.00

Fig. 6: The solution |y(xt)|?, when the initial condition is
Y(x,0)=dh(ax), withF =1,n=7,anda=1.

can be calculated in terms of the Fourier transform of any |
reasonable initial condition as s

W (X, p) = I—J'Texp{li—T(Ft+ p) {Ft3(Ft+ p)2+271x}} G

/:ode*(v)Y (7—2+ F—nt - )

exp<—4iv {Ft3 (Ft+p)? - [Ft3v(Ft+ p) — x| }) , Wix,m
(46)
whereY (v) has the same meaning of the previous sections

We present explicitty the case when the initial
condition is an Airy functiony(x,0) = Ai(ax); in this

case,
Fig. 8: The Wigner function when the initial condition is an Airy
1 [2(Ft+p)2— a3 (Ft2+ 2pt — 2x function witha=1 and wherF =1 fort = 1.
Wik p) = —eai | AP °(FE*+ 2pt = 2)
21/ 242
(47)

In Figure 7, we show the Wigner function at different

9 Conclusions

The operational methods are very easy to understand, and
in some conditions, also very easy to apply. In this work,
we present a direct generalization of the
Baker-Campbell-Hausdorff formula from the Zassenhaus
formula and we use it to solve the time-dependent
Schrodinger equation for a linear potential for arbitrary
initial condition, without solving the corresponding
stationary Schrodinger equation. The Wigner function can
be found and all physically measurable quantities can be
Fig. 7: The Wigner function for the Airy function as initial ~calculated directly from it.
condition withF = 1 anda = 1, fort from 0 to 5 in 1 steps. As the paraxial equation for a linear GRIN medium is
also (), with the adequate substitutions (axial coordinate
z substitutes time), these results can also be useful in
times ¢ from O to 5 in 1 steps) wheR = 1 anda = 1. optics, in particular, the Wigner function.
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