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Abstract: The time-dependent Schrödinger equation is solved for a linear potential using operational methods; in particular, an
extension of the Baker-Campbell-Hausdorff formula is exposed and used. Several initial conditions are considered. A closed form for the
Wigner function is presented. The results can be extended tothe propagation of an electromagnetic field in the paraxial approximation.
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1 Introduction

The main problem of non-relativistic quantum mechanics
is the solution of the Schrödinger equation; several exact
analytical, approximated analytic and numerical methods
have been invented for this purpose [1,2,3]. Between the
exact analytical methods, we can count the ones based on
operator techniques; such methods are relatively new and
can give very simple solutions, to otherwise complicated
approaches [4,5,6,7]. That is the case of the linear
potential; the solution of the Schrödinger equation for the
linear potential is very well known, but it has been
neglected in the quantum mechanics books [8,9]. The
time dependent solution is usually done in terms of the
eigenfunctions of the Hamiltonian, the Airy functions, as
an integral over the continuous eigenvalue, the energy;
however, an explicit solution for a given initial condition
is not normally presented.
In this work, we use operator techniques to find an exact
analytic solution of the time-dependent Schrödinger
equation with a linear potentialV(x) = Fx. We solve the
problem for several initial conditions. To do that, we use a
very easy and direct generalization of the
Baker-Campbell-Hausdorff formula [4,7,10], that is
derived from the Zassenhaus formula [11,12,10]. This
extended Baker-Campbell-Hausdorff formula allows us to
disentangle the evolution operator, and to analyze the

action of this operator over initial conditions adequately
written.
The explicit solution that it is found, allows us to write a
closed form for the Wigner function in terms of the
Fourier transform of the initial condition. The Wigner
function can then be calculated for the initial conditions
that we present; as the results are very cumbersome, we
present only the case when the initial condition is an Airy
function.
The Schrödinger equation for the linear potential mimics
exactly the paraxial equation in two dimensions [13,14,
15]; so, our results works perfectly well for beam
propagation under the influence of a linear gradient
refractive index [16].

2 The formal solution of the Schr̈odinger
equation for a linear potential using
operators

The one dimensional Schrödinger equation for a linear
potentialV (x) = Fx is

i
∂ψ (x, t)

∂ t
=

(

p̂2

2
+Fx̂

)

ψ (x, t) , (1)

where x̂ and p̂ are two Hermitian operators (i.e., two
non-commuting variables) with the commutation relation
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[x̂, p̂] = i [1,2,3]. We will use a unit system wherēh = 1
and the massm= 1.
As the Hamiltonian is time independent, equation (1) can
be integrated with respect to time, and the formal solution
found as

ψ(x, t) = exp

{

−i t

(

p̂2

2
+F x

)}

ψ(x,0), (2)

whereψ(x,0) is the initial condition, namely, the state of
the system at timet = 0.

3 The extended Baker-Campbell-Hausdorff
formula

The Zassenhaus formula establishes [11,12,10] that

eλ(X̂+Ŷ) = eλ X̂eλ Ŷeλ 2C2(X̂,Ŷ)eλ 3C3(X̂,Ŷ)eλ 4C4(X̂,Ŷ) . . . ,
(3)

where X̂ and Ŷ are two operators, that is, two
non-commuting variables, and

C2
(

X̂,Ŷ
)

=−1
2

[

X̂,Ŷ
]

, (4)

C3
(

X̂,Ŷ
)

=
1
3

[

Ŷ,
[

X̂,Ŷ
]]

+
1
6

[

X̂,
[

X̂,Ŷ
]]

, (5)

C4
(

X̂,Ŷ
)

=− 1
8

([

Ŷ,
[

Ŷ,
[

X̂,Ŷ
]]]

+
[

Ŷ,
[

X̂,
[

X̂,Ŷ
]]])

− 1
24

[

X̂,
[

X̂,
[

X̂,Ŷ
]]]

,

(6)

and so on. The general expression forCi
(

X̂,Ŷ
)

is very
complicated and we don’t need it here (See [11] and
references there in).
If
[

Ŷ,
[

X̂,Ŷ
]]

= 0 and
[

X̂,
[

X̂,Ŷ
]]

= 0, C3
[

X̂,Ŷ
]

= 0, all
the subsequentC’s are also zero, and we got the well
known Baker-Campbell-Hausdorff formula

eλ(X̂+Ŷ) = eλ X̂eλ Ŷe−
λ2
2 [X̂,Ŷ]. (7)

If at least one of the two
[

Ŷ,
[

X̂,Ŷ
]]

or
[

X̂,
[

X̂,Ŷ
]]

are
different from zero, and

[

Ŷ,
[

Ŷ,
[

X̂,Ŷ
]]]

= 0,
[

Ŷ,
[

X̂,
[

X̂,Ŷ
]]]

= 0,
[

X̂,
[

X̂,
[

X̂,Ŷ
]]]

= 0, only C2 and
C3will be different from zero, and all the others
subsequentC’s will be zero, obtaining the extended
Baker-Campbell-Hausdorff formula

eλ(X̂+Ŷ) = eλ X̂eλ Ŷe−
λ2
2! [X̂,Ŷ]e

λ3
3! (2[Ŷ,[X̂,Ŷ]]+[X̂,[X̂,Ŷ]]). (8)

There is also a “left oriented” version of the Zassenhaus
formula that is as useful as the normal one, that gives us
left oriented versions of the Baker-Campbell-Hausdorff
formula and of the extended Baker-Campbell-Hausdorff

formula. The “left oriented” version of the
Baker-Campbell-Hausdorff formula is

eλ(X̂+Ŷ) = e
λ2
2 [X̂,Ŷ]eλ Ŷeλ X̂ (9)

and the “left oriented” extended
Baker-Campbell-Hausdorff formula is

eλ(X̂+Ŷ) = e
λ3
3! (2[Ŷ,[X̂,Ŷ]]+[X̂,[X̂,Ŷ]])e

λ2
2! [X̂,Ŷ]eλ Ŷeλ X̂. (10)

4 Application of the extended
Baker-Campbell-Hausdorff formula to the
Schrödinger equation with a linear potential

We apply now expression (10) to the formal solution (2).

For that, we chooseλ = −i t , X̂ = p̂2

2 , andŶ = F x; we
have

[

X̂,Ŷ
]

= i
F
2

p̂, (11)

[

X̂,
[

X̂,Ŷ
]]

= 0,
[

Ŷ,
[

X̂,Ŷ
]]

= F2, (12)

and
[

Ŷ,
[

Ŷ,
[

X̂,Ŷ
]]]

= 0, (13)

[

Ŷ,
[

X̂,
[

X̂,Ŷ
]]]

= 0 (14)

[

X̂,
[

X̂,
[

X̂,Ŷ
]]]

= 0 (15)

so actually, we can apply the left oriented extended
Baker-Campbell-Hausdorff formula (10). Using (11) and
(12), we findC′

2 =−i F
2 p̂ andC′

3 =
F2

3 , so

ψ(x, t) =exp

(

i
F2t3

3

)

exp

(

i
Ft2

2
p̂

)

exp(−iFtx)

exp
(

−i
t
2

p̂2
)

ψ(x,0).

(16)

Using the Hadamard lemma [4,7,10], it is easy to show
that exp

(

−i t
2 p̂2

)

ψ (x,0) = ψ (x− t p̂,0) and that for an
arbitrary well behaved function f , we have

exp
(

i Ft2
2 p̂

)

f (x) = f
(

x+ Ft2
2

)

; thus,

ψ(x, t) = exp

[

−i
Ft

(

Ft2+6x
)

6

]

ψ
(

x+
Ft2

2
− t p̂,0

)

1.

(17)

5 Writing the initial condition as a Fourier
transform

Now, we write the initial condition in terms of its Fourier
transform; i.e., we write

ψ(x,0) =
∫ ∞

−∞
dvY(v)exp(−2π ixv) , (18)
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and we substitute it in equation (17), obtaining

ψ(x, t) =
∫ ∞

−∞
dvY(v)exp

(

−iπvFt2
)

exp[2π iv(x− t p̂)]1;

(19)
the operator in the last exponential can be disentangled
using the Baker-Campbell-Hausdorff formula [4,7,10],
and after some trivial algebra one gets

ψ(x, t) = exp

[

−i
Ft

(

Ft2+6x
)

6

]

∫ ∞

−∞
dvY(v)e−iπvFt2 exp

{

2π i

[(

x+
Ft2

2

)

v−πtv2
]}

,

(20)

where

Y (v) =
∫ ∞

−∞
dξ ψ(ξ ,0)exp(−2π iξ v). (21)

6 Some particular initial conditions

6.1 Initial condition:ψ(x,0) = Aexp(ikx)

We treat now the case when the initial state of the system
is a plane wave, namelyψ(x, t = 0) = eikx. It is a very easy
exercise in this case to find that

ψ(x, t) = Aexp

[

i

(

kx+
Fkt2

2
− F2t3

6
−Ftx− k2t

2

)]

.

(22)
This solution satisfies the Schrödinger equation (1) and the
initial conditionψ(x, t = 0) = eikx, so it is the solution.

6.2 Initial condition:ψ(x,0) = Ae−a(x−b)2

When the initial condition is a Gaussian function
ψ(x,0) = Aexp[−a(x−b)2], the Fourier transform is also
a Gaussian, and substituting it in expression (20), we
obtain after easy, but cumbersome, calculations

ψ(x, t) =
A√

1+2iat
exp[g1(t)+g2(t)+g3(t)], (23)

where

g1(t) =− i
(

−12ab2+12abFt2+aF2t4−2iF 2t3
)

12(2at− i)
, (24)

g2(t) =− ix
(

2ab+aFt2− iFt
)

2at− i
, (25)

and

g3(t) =
ax2

−1−2iat
. (26)

Fig. 1: The solution |ψ(x,t)|2, when the initial condition is

ψ(x,0)=Ae−a(x−b)2
, with F = 1, A= 1, a= 1, andb= 3.

Again it is not difficult to show that the initial condition is
fulfilled and that equation (1) is satisfied. In Figure1, we
show the squared amplitude as a function of the positionx
and as a function of timet, whenF = 1, A= 1, a= 1, and
b= 3. We observe that the peak of|ψ(x, t)|2 goes to lower
values ofx; if the sign ofF is inverted, the motion of the
peak is reversed, going in that case to the greater values of
x, as expected.

6.3 Initial condition:ψ(x,0) = Ai(ax)

In this case, we getF(v) = 1
a exp

(

i 8π3v3

3a3

)

, that inserted in

(20) take us to

ψ(x, t) =
1

2π a
exp

[

−i

(

F2t3

6
+Ftx

)]

∫ ∞

−∞
dvexp

[

i

(

v3

3a3 + xv+
Ft2

2
v− t

2
v2
)]

,

(27)

that after some trivial algebra can be cast as

ψ(x, t) =
1

2π a
exp

[

−i

(

F2t3

6
+Ftx− a6t3

24

)]

∫ ∞

−∞
dvexp

[

i
3a3

(

v− a3t
2

)3

+

(

x− a3t2

4
+

Ft2

2

)

v

]

.

(28)

Using the integral representation [17,18]

Ai(x) =
1

2π

∞
∫

−∞

exp

[

i

(

u3

3
+ xu

)]

du, (29)
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that it is valid forx real, we finally arrive to

ψ(x, t) =exp
{

−i
t

12

(

a3−2F
)[

t2(a3−F
)

−6x
]

}

Ai

[

ax− 1
4

at2(a3−2F)

]

(30)

Figure2 displays|ψ(x, t)|2 whenF = 1, anda= 1. As in

Fig. 2: The solution |ψ(x,t)|2, when the initial condition is
ψ(x,0)=Ai(ax), with F = 1 anda= 1.

the previous case, the direction of the twist of the
maximum of the probability distribution is inverted when
we change the sign ofF.

6.4 Initial condition:ψ(x,0) = e−cx2
Ai(ax)

First, the Fourier transform is calculated using the
convolution theorem; second, it is substituted in (20);
third, the integral representation (29) of the Airy function
is used, and finally

ψ(x, t) =
1√

1+2ict
exp[h1(t)+h2(t)+h3(t)]Ai [h4(t)]

(31)

where

h1(t) =
t3

12(2ct− i)3

[

a6−3a3F(1+2ict)+2F2
]

− icF2t4(−2ct+3i)2

12(2ct− i)3

(32)

h2(t) =− itx
(

a3+4c2Ft2−6icFt −2F
)

2(2ct− i)2 , (33)

h3(t) =
cx2

−1−2ict
, (34)

and

h4(t) =
a
[

a3t2−2i(2ct− i)
(

Ft2+2x
)]

4(−2ct+ i)2 . (35)

The behavior of the solution in this case is presented in

Fig. 3: The solution |ψ(x,t)|2, when the initial condition is
ψ(x,0)=e−cx2

Ai(ax), with F = 1, c= 1, anda= 1.

Figure3 for F = 1,c= 1, anda= 1. The same observation
made in the previous cases about the behavior of|ψ(x, t)|2
with respect to the sign ofF is valid.

7 Initial condition: ψ(x,0) = Jn(ax)

When the initial condition is a Bessel function of the first
kind, we can not use directly equation (20) because we do
not know the Fourier transform, so we go back to
expression (16) and we write [18,19]

Jn(ax) =
1

2π

π
∫

−π

exp(inτ)exp[−iaxsin(τ)]dτ, (36)

to obtain

ψ(x, t) =exp

(

i
F2t3

3

)

exp

(

i
Ft2

2
p̂

)

exp(−iFtx)

exp
(

−i
t
2

p̂2
) 1

2π

∫ π

−π
einτ exp[−iaxsin(τ)]dτ.

(37)

Following the same procedure that took us from equation
(16) to equation (17), we arrive to

ψ(x, t) =
1

2π
exp

[

i

(

−F2t3

6
−Ftx

)]

∫ π

−π
exp

{

i

[

nτ − aFt2sin(τ)
2

−xasin(τ)− ta2sin2(τ)
2

]}

dτ

(38)
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From here, we make

sin2 τ =
1
2
[1− cos(2τ)

]

=
1
4
[2−e2i τ −e−2i τ

]

,

to get

ψ(x, t) =
1

2π
exp

[

i

(

−F2t3

6
−Ftx

)]

∫ π

−π
exp

(

− ia2t
4

)

exp

{

i

[

nτ −
(

Ft2

2
+ x

)

asin(τ)
]}

exp

[

i

(

a2t
8

e2i τ
)]

exp

[

i

(

a2t
8

e−2i τ
)]

dτ, (39)

we write the last two exponentials inside the integral in
terms of their Taylor series,

ψ(x, t) = exp

[

i

(

−F2t3

6
−Ftx− a2t2

4

)]

∞

∑
j ,k=0

1
j!k!

(

ia2t
8

) j+k

1
2π

∫ π

−π
exp{i [(n+2 j −2k)τ

−
(

Ft2

2
+ x

)

asin(τ)
]}

dτ. (40)

Recalling (36), we obtain

ψ(x, t) = exp

[

i

(

−F2t3

6
−Ftx− a2t2

4

)]

∞

∑
j ,k=0

1
j!k!

(

ia2t
8

) j+k

Jn+2 j−2k

[

a

(

x+
Ft2

2

)]

.

(41)

Changing the index in thej sum toM = j − k,

ψ(x, t) = exp

[

i

(

−F2t3

6
−Ftx− a2t2

4

)]

∞

∑
k=0

∞

∑
M=−k

1
(M+ k)!k!

(

ia2t
8

)M+2k

Jn+2(M+k)−2k

[

a

(

x+
Ft2

2

)]

; (42)

theM sum can be extended from−∞, since we are adding
zeros to the sum (1η! = 0, whenη is a negative integer),
and using that

JM

(

a2t
4

)

=
∞

∑
k=0

(−1)k

(M+ k)!k!

(

ia2t
8

)M+2k

, (43)

we obtain the final result

ψ(x, t) = exp

[

−i

(

Ftx+
F2t3

6
+

a2t2

4

)]

∞

∑
M=−∞

iMJn+2M

[

a

(

x+
Ft2

2

)]

JM

(

a2t
4

)

. (44)

The initial conditionψ(x,0) = Jn(ax) is realized, and with
some work, it can be verified that (1) is fulfilled. Figures4,
5 and6 show|ψ(x, t)|2 whenF = 1, anda= 1 for n= 0,
n= 1, andn= 7, respectively.

Fig. 4: The solution |ψ(x,t)|2, when the initial condition is
ψ(x,0)=Jn(ax), with F = 1, n= 0, anda= 1.

Fig. 5: The solution |ψ(x,t)|2, when the initial condition is
ψ(x,0)=Jn(ax), with F = 1, n= 1, anda= 1.

8 The Wigner function

Being the Wigner function [20] one of the most know
quasiprobability distribution functions [21,22], we want
to study it next. Using formula (20), the Wigner function
[20]

W (x, p) =
1
π

∫ ∞

−∞
dyψ⋆ (x+ y)ψ (x− y)exp(2ipy) (45)
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Fig. 6: The solution |ψ(x,t)|2, when the initial condition is
ψ(x,0)=Jn(ax), with F = 1, n= 7, anda= 1.

can be calculated in terms of the Fourier transform of any
reasonable initial condition as

W(x, p) =
1
π

exp

{

i
π
(Ft + p)

[

Ft3 (Ft + p)2+2πx
]

}

∫ ∞

−∞
dvY⋆(v)Y

(

p
π
+

Ft
π

− v

)

exp
(

−4iv
{

Ft3(Ft + p)2−π
[

Ft3v(Ft + p)− x
]

})

,

(46)

whereY(v) has the same meaning of the previous sections.
We present explicitly the case when the initial

condition is an Airy function,ψ(x,0) = Ai(ax); in this
case,

W(x, p) =
1

21/3
Ai

[

2(Ft + p)2−a3
(

Ft2+2pt−2x
)

3
√

2a2

]

(47)
In Figure 7, we show the Wigner function at different

Fig. 7: The Wigner function for the Airy function as initial
condition withF = 1 anda= 1, for t from 0 to 5 in 1 steps.

times (t from 0 to 5 in 1 steps) whenF = 1 anda = 1.

Since the Wigner function is only non-negative for
Gaussian states [23,24], it presents large regions where it
is negative, as expected. With time the Wigner function
moves but it keeps its initial form (Figure8).

Fig. 8: The Wigner function when the initial condition is an Airy
function witha= 1 and whenF = 1 for t = 1.

9 Conclusions

The operational methods are very easy to understand, and
in some conditions, also very easy to apply. In this work,
we present a direct generalization of the
Baker-Campbell-Hausdorff formula from the Zassenhaus
formula and we use it to solve the time-dependent
Schrödinger equation for a linear potential for arbitrary
initial condition, without solving the corresponding
stationary Schrödinger equation. The Wigner function can
be found and all physically measurable quantities can be
calculated directly from it.
As the paraxial equation for a linear GRIN medium is
also (1), with the adequate substitutions (axial coordinate
z substitutes timet), these results can also be useful in
optics, in particular, the Wigner function.
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