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Abstract: Let Zn be the ring of residue classes modulon. Define f : Zn 7→ Zn by f (x) = x4. Action of this map is studied by means
of digraphs which produce an edge from the residue classesa to b if f (a)≡ b. For every integern, an explicit formula is given for the
number of fixed points off . It is shown that the graphG(pk), k ≥ 1 has four fixed points if and only if 3| p−1 and has two fixed
points if and only if 3∤ p−1. A classification of cyclic vertices of the graphG(pk) has been determined. A complete enumeration of
non-isomorphic cycles and components ofG(pk) has been explored.

Keywords: Congruences, Multiplicative Order, Cyclic Vertices, Components

1 Introduction

The notion of congruence is of great interest in number
theory. A strong emphasis on modular arithmetic leads in
a natural way to jump over many of new destinations
especially in pure mathematics. It has become a useful
device to solve most of the mathematical problems which
are integral based. Use of modular arithmetic in studying
discrete graphs and digraphs is becoming an increasingly
useful device to explore a broad range of applications. Let
f be any function assuming its values as the residues after
division by an integern. We can draw a graph that has the
remainders as vertices when divided byn and a directed
edge(a,b) if and only if f (a)≡ b(modn). For f (x) = xk,

the associated digraph is denoted byG(n,k). The digraph
of squaring modulo a primep, has been studied in [2].
Earle L. Blanton [4], L. Somer and M.Křı́žek [7], L.
Szalay [9], T.D. Rogers [12], Troy Vasiga [13] and Y.
Meemark [14] have considered and investigated
properties of a variety of digraphs corresponding to the
congruencea2 ≡ b(modn). The conditions for regularity,
semi regularity and symmetrically structured digraphs
have been discussed in [1] and [8]. The structures of
graphs of exponential congruences has been discussed in
[10]. Though many fascinating features like regularity,
semi-regularity and symmetry of such digraphs by means
of sub-diagraphs have been explored, yet there are some

topographies like classifications of vertices, number of all
possible cycles of all lengths , number of components etc
for which no explicit formula is present. In this piece of
work, a complete characterization free from
sub-diagraphs in terms of explicit formulas for the
number of fixed points, classifications of cyclic vertices,
number of non-isomorphic cycles and number of
non-isomorphic components of the graphG(4, pk), k ≥ 1,
wherep is an odd prime, has been discussed in detail.

2 Preliminaries

The verticesv1,v2, ...,vt−1,vt form a cycle of lengtht if
and only if

v4
1 ≡ v2 (modn)

v4
2 ≡ v3 (modn)

...

v4
t ≡ v1 (modn)

The graphG(n) is said to be connected if for each vertex
pair u andv, there exist some integral numberm such that
u4m ≡ v (modn). A maximal connected subgraph is termed
as component, [5]. A vertexz is referred to be a fixed point
if z4 ≡ z (modn).
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Fig. 1: G(169)

In Fig 1, the digraphG(169) has ten components. Among
these six are cyclic and four are the rooted trees. The
graph has four fixed points. That is, the vertices which has
self loops. These are 0, 1, 22 and 146. Precisely the graph
G(169) has three non-isomorphic components, one of
which contains a non-isomorphic cycle of length six, one
is a rooted tree with root at 0 and one with a non-zero
fixed point ( containing isomorphic cycles of length one).
We first recall a few definitions and some previous results
for use in the sequel.

Definition 2.1. [3] The functionφ(n) is defined as the
number of divisorsd such thatd | n, where 1≤ d < n and
(d,n) = 1. It is trivial thatφ(1) = 1, asgcd(1,1) = 1.

Theorem 2.2. [3] (Euler ) Let a be any integer such that
(a,m) = 1, wherem ≥ 1, thenaφ(m) ≡ 1 (modm).

The following result can be derived using Theorem 2.2.

Theorem 2.3. [3] Let k > 0 andp be a prime, then

φ(pk) = pk(1−
1
p
)

Definition 2.4. [3] Let n > 1 and gcd(a,n)=1. The order
of a modulon is the smallest positive integerk such that
ak ≡ 1 (modn). It is denoted asordna = k.

Theorem 2.5. [6] Let f (x) be a fixed polynomial with
integral coefficients, and for any positive integerm let
N(m) denote the number of solutions of the congruence
f (x)≡ 0 (modm). If m = m1m2 where(m1,m2) = 1, then
N(m) = N(m1)N(m2). If m = ∏ pα is the canonical
factorization ofm, thenN(m) = ∏N(pα ).

Theorem 2.6. [11] Consider an odd primep, and letp ∤
a 6= ±1, where ordpa = d. Let k0 be the greatest integer

such thatpk0 | ad −1. Then ordkpa = d for 1≤ k ≤ k0 and
d pk−k0 for k ≥ k0.

Theorem 2.7. [11] Let p,q, p 6= q be odd primes. Then,

(
p
q
)(

q
p
) = (−1)

p−1
2

q−1
2

Theorem 2.8. [7] There exists a cycle of lengtht in G1(n)
if and only if t = orddk for some divisord of λ (n).

3 Basic Results and Fixed Points of the Map

A point x is said to be a fixed point of the mapf if f (x)≡
x (mod p). To find the fixed point of the map, we give
the following elementary result whose proof is simple and
straight forward.

Lemma 3.1.Let x 6= 0,1 be a fixed point of the mappingf
overZp, then

(i) x+ x2 ≡ p−1 (mod p) (ii) xx2 ≡ 1 (mod p)

The following result describes a relationship between non-
trivial fixed points of the mapf .

Theorem 3.2.Let x 6= 0,1. Then,x is a fixed point of the
mapping f over Zp if and only if x2 is a fixed point off
overZp.

Proof. Let x 6= 0,1. Supposex is a fixed point off . That
is, x4 ≡ x (mod p). Then,x2 is a fixed point off as

(x2)4 = (x4)2 ≡ x2(mod p).

Conversely, Supposex2 is a fixed point off . That is,

(x2)4 ≡ x2(mod p). Or

x8 ≡ x2(mod p). (1)

Now x 6≡ 0 (mod p) implies thatx4 6≡ 0 (mod p).

Let x4 ≡ α (mod p),α ∈ Zp,α 6= 0. (2)

Then by (1),x2 ≡ α2 (mod p). This further implies that

x4 ≡ α4(mod p). (3)

Thusp | x2+α2 or p | x+α or p | x−α. We will exhibit,
the first two are not possible. This will complete the proof.
Let p | x2 +α2. That is,x2 +α2 ≡ 0 (mod p). Then by
equation (2),x2+ x8 ≡ 0 (mod p) or x8 ≡ −x2 (mod p),
a contradiction against (1). Otherwise,x2 ≡ −x2 (mod p)
yields that 2x2 ≡ 0 (mod p). But p is an odd prime, so
x2 ≡ 0 (modp) reveals thatx ≡ 0 (modp), a contradiction
asx 6≡ 0 (mod p). Hencep | x2+α2 is not possible.

Now, let p | x+α. That is,x+α ≡ 0 (mod p). Then
by equation (2), x + x4 ≡ 0 (mod p). This gives,
x ≡ −1 (mod p) or x2 − x + 1 ≡ 0 (mod p). But
x 6≡ −1 (mod p) since (−1)4 6≡ −1 (mod p). Thus
x2 − x + 1 ≡ 0 (mod p). This further can be written as,
x + x2 + 1 ≡ 2x (mod p). Also by Lemma 3.1,
x+ x2+1≡ 0 (mod p). Hence, 2x ≡ 0 (mod p). Sincep
is an odd prime, sox ≡ 0 (mod p) yields a contradiction
asx 6≡ 0 (mod p). Hencep ∤ x+α. �
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The following corollaries are the simple consequences of
Theorem 3.2.

Corollary 3.3 Fixed points ofG(pk) are the quadratic
residues ofpk

.

Corollary 3.4 The non zero fixed points of the graph
G(pk), k ≥ 1 form a cyclic subgroup of the groupZ∗

p.

Before giving the cardinality of fixed points ofG(n) for
any integern, we need the following important lemmas.

Lemma 3.5.The numbers 0, 1, 3k−1 + 1 and 2.3k−1+ 1
are the fixed points of the graphG(3k).

Proof. For k = 1, it is easy to see that 0 and 1 are the only
solutions of the congruencex4 ≡ x (mod 3k). Let k > 1 and
supposex is a fixed point ofG(3k), k > 1. Clearly 0 and
1 are the fixed points fork > 1 as well. For the numbers
3k−1+1 and 2.3k−1+1, it is easy to see that

(3k−1+1)2+(3k−1+1)+1≡ 3 (mod 3k) ask > 1 (4)

Using (4), we get,

(3k−1+1)4− (3k−1+1) = 3k−1(3k−1+1){(3k−1+1)2

+ (3k−1+1)+1)}

≡ 3k−1(3k−1+1)(3) (mod 3k)

≡ 3k(3k−1+1) (mod 3k)

≡ 0 (mod 3k), k > 1

This shows that 3k−1 + 1 is a fixed point of the graph
G(3k), k > 1. For the number 2.3k−1 + 1, we note that
(2.3k−1 + 1)2 ≡ 3k−1 + 1 (mod 3k). Hence by Theorem
3.2, 2.3k−1+1 is a fixed point of the graphG(3k), k > 1.
�

Lemma 3.6. Let p > 3 be any prime. Then the graph
G(pk), k ≥ 1 has four fixed points if and only if 3| p−1.

proof. Suppose 3| p − 1. Let x be a fixed point of the
graphG(pk), k ≥ 1. Then,x4 ≡ x (mod pk) yields that
x4 ≡ x (mod p). This gives, p | x or p | x − 1 or
p | x2+ x+1. Thus the graphG(pk), k ≥ 1 has four fixed
points if and only if the congruence
x2 + x + 1 ≡ 0 (mod p) is solvable. Now
x2 + x + 1 ≡ 0 (mod p) is solvable if and only if
y2 ≡ −3 (mod p), where 2x ≡ y− 1 (mod p) is solvable
for y. By Theorem 2.7, it is easy to establish that -3 is a
quadratic residue modulop if and only if p is a quadratic
residue modulo 3. But 3| p − 1 implies that
p ≡ 1 (mod 3). This clearly shows thatp is a quadratic
residue modulo 3 and hence -3 is a quadratic residue
modulo p. consequently, the congruence
y2 ≡ −3 (mod p) is solvable. Thus the graph
G(pk), k ≥ 1 has four fixed points if and only if 3| p−1.
�

Lemma 3.7.Let p be a prime of the form 6k+ 1. Then

the numbers 0, 1,(−3)
3k+1

2 −1
2 and (−3)

3k+1
2 +1

2 are the fixed
points of the of the graphG(pk).

Proof. Sincep ≡ 1 (mod 6), -3 is a quadratic residue of

p. Then by Euler’s Theorem,(−3)
p−1

2 ≡ 1 (mod p). This

means that(−3)3k+1 ≡ −3 (mod p). This can also be

written as((−3)
3k+1

2 )2 ≡ −3 (mod p). This shows that

(−3)
3k+1

2 is a solution of the congruence

y2 ≡ −3 (mod p). Hence by Lemma 3.6,(−3)
3k+1

2 −1
2 is a

fixed point of the graphG(p). Also by Theorem 3.2,
(−3)

3k+1
2 +1

2 is a fixed point since

(
(−3)

3k+1
2 −1

2
)2 =

(−3)
3k+1

2 +1
2

. �

Lemma 3.8. Let p > 3 be any prime. Then the graph
G(pk), k ≥ 1 has two fixed points if and only if 3∤ p−1.

Proof. Sincep 6≡ 1 (mod 3), sop is not a quadratic residue
modulo 3. Hence the congruencex2+ x+1≡ 0 (mod p)
is not solvable. Thus 0 and 1 are the only fixed points of
G(pk), k ≥ 1. �

For any integern. We define the functionsξ (n) andω(n)
as

ξ (n) =
{

0, if 3 ∤ n or 3 || n
1, if 3k | n, k > 1

and

ω(n) =

{

0, if 3 ∤ n or 3k | n, k > 1
−1, if 3 || n

Theorem 3.9. Let pk1
1 pk2

2 ...pkr
r be the canonical

representation of any integern, where p1, p2, ..., pr are
distinct odd primes. LetL(n) denote the number of fixed
points of the graphG(n), then,

L(n) =















2r+ξ (n)
, if 3 ∤ pi −1, 1≤ i ≤ r

22r+ω(n), if 3 | pi −1, 1≤ i ≤ r
22r−t+ξ (n), if 3 ∤ pi −1, 1≤ i ≤ t

and 3| pi −1, t +1≤ i ≤ r

Proof. To find the numberL(n), we need to count the
number of solutions of the congruencex4 ≡ x (mod n).
We note that the congruencex4 ≡ x (mod pk1

1 pk2
2 ...pkr

r ) is

solvable if and only ifx4 ≡ x (mod pki
i ) is solvable for

each i = 1,2, ...,r. Let 3 ∤ pi − 1 for eachi = 1,2, ...,r,
then by Lemma 3.8,L(pki

i ) = 2 for each i. Since
p1 < p2 < ... < pr are distinct primes, so by Theorem 2.5,
L(n) = 2r. Now if 3 | pi −1 for eachi = 1,2, ...,r, then by
Lemma 3.6,L(pki

i ) = 4 for eachi. Hence by Theorem 2.5,
L(n) = 4r. Finally, without any loss, we assume that
3 ∤ pi − 1 for eachi = 1,2, ..., t, then 3| pi − 1 for each
i = t + 1, t + 2, ...,r. Hence by Lemmas 3.6, 3.8,
L(pki

i ) = 2 for i = 1,2, ..., t and L(pki
i ) = 4 for

i = t + 1, t + 2, ...,r. Thus again by Theorem 2.5,
L(n) = 2t4r−t = 22r−t . Now we discuss the following
three cases.

(1) Let 3 ∤ n. Then by definition,ξ (n) = ω(n) = 0. Thus
result is true in this case.

c© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


106 M. K. Mahmood, F. Ahmad: A Classification of Cyclic Nodes and Enumeration of Components...

(2) Let 3 || n. Then by definitionξ (n) = 0 andω(n) =−1.
Now since 3|| n, so one of thepki

i = 3 for someith factor

of n. Without any loss, we letpk1
1 = 3. Then the condition

3 | pi −1, 1≤ i ≤ r must reduces to 3| pi −1, 2≤ i ≤ r.
Thus in this case, we must get,L(n) = 22r−1 = 22r+ω(n)

when 3| pi −1, 2≤ i ≤ r. Therefore, we setξ (n) = 0 and
ω(n) =−1 to get the desired result.
(3) Let 3k | n, k > 1. Then by definitionξ (n) = 1 and
ω(n) = 0. Now since 3k | n, k > 1, so one of the
pki

i = 3k, k > 1 for someith factor ofn. Without any loss,

we let pk1
1 = 3k, k > 1. Then by Theorem 2.5 and by

Lemma 3.5, we have,

L(n) = L(3k)L(pk2
2 ...pkr

r ) = 22L(pk2
2 ...pkr

r ).

Now if 3 ∤ pi − 1, 2 ≤ i ≤ r, then L(pk2
2 ...pkr

r ) = 2r−1.

Hence,L(n) = 22L(pk2
2 ...pkr

r ) = 2r+1 = 2r+ξ (n). Thus in
this case we setξ (n) = 1 andω(n) = 0 to get the desired
result. �

Remark 3.10.The numberL(n) is always even.
Corollary 3.11. Let p be an odd prime andα 6= 0,1, a
fixed point of the graph G(pk) such that
α,α2 ∈ Zp = {0,1,2, ..., p − 1}. Then α | p − 1 if and
only if 4p = 3+(2α +1)2.

4 Classifications of Cyclic Vertices

In this section we present explicit formulas to enumerate
cyclic vertices of the graphG(pk), wherep is prime. The
following inequalities can easily be proved using
mathematical induction.
Lemma 4.1.For k ≥ 4, k ≤ α(k−2), α = 2,3,4
Theorem 4.2.The vertices 1+4l3k−2 and 1+2.4l3k−2 for
l = 0,1,2 form cycles of length 3 in the graphG(3k).

Proof.The verticesa0,a1 anda2 form a cycle of length 3 in
G(3k) if and only if a4

0 ≡ a1 (mod 3k), a4
1 ≡ a2 (mod 3k)

and a4
2 ≡ a0 (mod 3k). Now,

(1+4l3k−2)4 = 1+4l+13k−2+
4

∑
α=2

(

4
α

)

4α l3α(k−2) (5)

Sincek ≥ 4, by Lemma 3.1,k ≤ α(k − 2), α = 2,3,4.
Then, 3k | 3α(k−2). Hence,

4

∑
α=2

(

4
α

)

4α l3α(k−2) ≡ 0 (mod 3k).

Putting in (5), we obtain,

(1+4l3k−2)4 ≡ 1+4l+13k−2 (mod 3k), l = 0,1,2 (6)

Finally,we note that

1+433k−2 = 1+(1+3)33k−2

= 1+(1+3.3+3.32+33)3k−2

= 1+3k−2+3k +2.3k+1

≡ 1+3k−2 (mod 3k) (7)

Equations (6) and (7) yields that the vertices 1+ 4l3k−2

for l = 0,1,2 form a cycle of length 3 in the graph
G(3k), k ≥ 4. Similarly, it is easy to see that the vertices
1+2.4l3k−2 for l = 0,1,2 form a cycle of length 3 in the
graphG(3k), k ≥ 3. �

Corollary 4.3. If the vertices 1+4l3k−2 for l = 0,1,2 are
at a 3-cycle inG(3k), k ≥ 3 then 1+4l3k−1 for l = 0,1,2
are at a 3-cycle inG(3k+1), k ≥ 3.

The proof of above corollary is evident if we takek = r+1
and apply Theorem 4.2. However, the importance of this
result is of great interest as we are lifting the vertices of a
3-cycle of a graph to a 3-cycle in its higher modulo graph.

Theorem 4.4. (i) The vertices 1+ 4l3k−r−1 for
l = 0,1,2, ...,3r − 1 form cycles of length
3r, r = 1,2, ...,q in the graphG(3k), k ≥ 4, where

q =







2, if k = 4
k−1

2 , if k is odd, k > 4
k
2 −1, if k is even, k > 4

(ii) For q < r ≤ k − 2, the vertices 1+ 2.4l3k−r−1 form
cycles of length 3r in the graphG(3k), k ≥ 5.

Proof. First, we prove that there exist cycles of length
3r, 0 ≤ r ≤ k − 2 in the graphG(3k). Let’s denote the
order of 4 modulo 3k by ord3r 4. Clearly ord34 = 1 and
ord324 = 3. Then by Theorem 2.6,k0 = 1. Hence
ord3r 4 = 3r−1. But the only odd divisors of
φ(3r) = 2 ∗ 3r−1 are 1,3,32, ...,3r−1, where,
ord3r−14= 3r−2. Thus by Theorem 2.8, there exist cycles
of length 3r, 0 ≤ r ≤ k − 2. Next for k > 4 and
r = 1,2, ...,q, it is easy to see that

k ≤ α(k− r−1), where, α = 3,4.

Thus, 3k | 3α(k−r−1) for α = 3,4.

Also for α = 2,

3k |

(

4
2

)

3α(k−r−1)

This shows that
(

4
α

)

3α(k−r−1) ≡ 0 (mod 3k), α = 2,3,4

Then the following equation

(1+4l3k−r−1)4 = 1+4l+13k−r−1+
4

∑
α=2

(

4
α

)

4α l3α(k−r−1)

reduces to

(1+4l3k−r−1)4 ≡ 1+4l+13k−r−1 (mod 3k) (8)

For k = 4, proof is simple and straight forward. So we
complete the proof in the following two cases.

Case (a). Letk be even. Then by definition ofq, q = k
2 −1.

We discuss the cycle of length 3q. In this case,r = q, then
equation (8) becomes

(1+4l3
k
2 )4 ≡ 1+4l+13

k
2 (mod 3k), l = 0,1, ...,3r −1.(9)
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Finally, if l = 3r −1= 3q −1, whereq = k
2 −1, then

1+4l+13
k
2 = 1+(1+3)3

k
2−1

3
k
2

= 1+(1+3.3
k
2−1+ ...) 3

k
2

= 1+3
k
2 +3k + terms involving 3k

≡ 1+3
k
2 (mod 3k) (10)

Case(b). Letk be odd. Thenq = k−1
2 . For a cycle of length

3q. Again by equation (8), we obtain,

(1+4l3
k−1

2 )4 ≡ 1+4l+13
k−1

2 (mod3k), l = 0, ...,3q −1(11)

Takel = 3q −1, then

1+4l+13
k−1

2 = 1+(1+3)3
k−1
2 3

k−1
2

= 1+(1+3.3
k−1
2 + ...) 3

k−1
2

= 1+3
k−1

2 +3k + terms involving 3k

≡ 1+3
k−1

2 (mod 3k) (12)

Let a0 = 1 + 403k−q−1, a1 = 1 + 413k−q−1,...,
a3q−1 = 1+ 43q−13k−q−1. Then equations (8), (10) and
(12) implies that

a4
0 ≡ a1 (mod 3k)

a4
1 ≡ a2 (mod 3k)

...

a4
3q−1 ≡ a0 (mod 3k)

This clearly shows that the verticesa0, a1,...,a3q−1 form a
cycle of length 3q. The proof of part (ii) is similar.�

The below results can be proved using Theorem 4.4.

Corollary 4.5. The vertices 1+ 4l3k−r−1 and
1+ 2.4l3k−r−1 for l = 0,1,2, ...,3r − 1 are always at a
cycle of length 3r where, 1≤ r ≤ k − 2 in the graph
G(3k), k ≥ 3.

Corollary 4.6. There existk−2 non-isomorphic cycles of
length greater than one inG(3k).

Corollary 4.7. The maximum length of any cycle inG(3k)
is 3k−2.

The following theorem gives the classifications of non-
cyclic vertices in the graphG(3k).
Theorem 4.8(i) The vertices 3k − (1+4l3k−r−1) and 3k−
(1+ 2.4l3k−r−1) for l= 0,1,2,...,3r − 1 are the non-cycle
vertices of the graphG(3k) and are always mapped on the
cyclic vertices.

(ii) The vertices±1, ±(1 + 3k) and ±(1 + 2.3k) are
mapped on 1, 1+3k and 1+2.3k respectively.

Proof.(i) This is simple since

(3k − (1+4l3k−r−1))4 ≡ 1+4l+13k−r−1 (mod 3k)

and

(1+4l+13k−r−1)4 6≡ −(1+4l3k−r−1) (mod 3k)
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Fig. 2: shows the 3,32 and 33 Cycles ofG(35)

where the vertices 1+4l3k−r−1 for l = 0,1,2, ...,3r−1 are
always at a cycle of length 3r. The proof for the vertices
3k − (1+2.4l3k−r−1) is similar.

(ii) By Lemma 3.5, the vertices 1, 1+3k and 1+2.3k are
the fixed points ofG(3k), so they mapped on themselves.
Since(−1)4 ≡ 1. �

Finally we classify the vertices inG(3k) which are not
prime to 3. We see that these vertices always form a tree
in G(3k) with root at 0. First we note that the vertices
3α, α = 1,2, ...,3k − 1 has 3k−5 branch points except

root. Forβ = 1,2,4, ..., 3k−4−1
2 , wheregcd(3,β ) = 1, the

vertices(3β )4 are the branch points of the graphG(3k).
That is the vertices 3α, α = 1,2, ...,3k −1 are mapped on
any of the branch points. It can easily be seen that if 3α
are mapped on(3β )4, then by definition

(3α)4 = (3β )4 (mod 3k) gives,

(α −β )(α +β )(α2+β 2)≡ 0 (mod 3k−4)

But α2+β 2 ≡ 0 (mod 3k−4) is not solvable for anyα as
proved in the proof of Theorem 3.2. Hence, the only
possibilities are α = ±β + 3k−4t. That is,
α ≡ β (mod 3k−4) where

β = ±1,±2,±4, ...,± 3k−4−1
2 , k ≥ 4 and gcd(3,β ) = 1.

Note that there are 2.3k−5 residues namely
±1.3,±2.3, , ...,±3k−5.3 modulo 3k−4 which are
divisible by 3. Thus to count the branch points excluding
0, we count the number of β ′s such that

β =±1,±2,±4, ...,± 3k−4−1
2 , k ≥ 4 in CRS modulo 3k−4

.

Thus the total number of such β ′s is
3k−4 − 2.3k−5 = 3k−5. This shows that there are 3k−5

branch points other than 0 in the tree component of the
graphG(3k).
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Fig. 3: shows the three branch points of the tree component of
G(36) with root at 0.

The above discussion leads to the following result.
Theorem 4.9. The undirected graph of the vertices
3α, α = 1,2, ...,3k −1 form a tree with root at 0 and have
3k−5 branch points.
Espousing the steps elucidated above, we can cheer to
extant the formula for finding the cycle vertices even to
higher powers of any primep. This can be entertained in
Theorem 4.11. The proof of the following proposition is
analogous to Theorem 2.6.
Proposition 4.10.Let p > 3 be any prime. The possible
cycle length of the graph G(pk) is at most
d.pr,r = 0,1,2, ...,k−1, where ordp4= d.

Theorem 4.11.(i) Let p > 3 be any prime andd > 0
divides φ(p)

2 . If 4d ≡ 1(mod pk). Then the vertices
1 + 4l pk−r−1, k > 1 form cycles of length

d.pr,r = 0,1,2, ...,⌊ k
2⌋−1 in the graphG(pk) where,

l = 0,1,2, ...,d.pr −1.
(ii) For ⌊ k

2⌋ ≤ r ≤ k−2, the vertices 1+2.4l3k−r−1 form
cycles of lengthd.pr in the graphG(pk), k ≥ 5.
Proof. We prove (i). The proof of (ii) can be derived in a
similar fashion. Note that

⌊
k
2
⌋−1=

{

k−3
2 , if k is odd

k
2 −1, if k is even

Now for anyr, we have,

k− r−1 =

{

k− k−3
2 −1, if k is odd

k− ( k
2 −1)−1, if k is even

=

{

k+1
2 , if k is odd

k
2, if k is even

Then, k ≤ α(k− r−1),α = 2,3,4. So, pk | pα(k−r−1) for
any primep.

This means that, pα(k−r−1) ≡ 0 (mod pk). Then the
following equation

(1+4l pk−r−1)4 = 1+4l+1pk−r−1+
4

∑
α=2

(

4
α

)

4α l pα(k−r−1)

reduces to

(1+4l pk−r−1)4 ≡ 1+4l+1pk−r−1 (mod pk) (13)

Also if 4d ≡ 1(mod pk) where,d > 0 dividesφ(p)
2 . Then

4d pr
= (4d)pr

≡ (1)pr
≡ 1(mod pk) (14)

Finally we discuss a cycle of maximum lengthd pr
. By

equation (13) and (14), we obtain

(1+4d pr−1pk−r−1)4 ≡ 1+4d pr
pk−r−1 (mod pk)

≡ 1+ pk−r−1 (mod pk)

That is, (1+4d pr−1pk−r−1)4 ≡ 1+ pk−r−1 (mod pk)(15)

Let a0 = 1+40pk−r−1, a1 = 1+41pk−r−1,..., andad pr−1 =

1+4d pr−1pk−r−1
. Then equations (13) and (15) yields that

a4
0 ≡ a1 (mod pk)

a4
1 ≡ a2 (mod pk)

...

a4
d pr−1 ≡ a0 (mod pk)

This clearly shows that the verticesa0, a1,...,ad pr−1 form
a cycle of lengthd pr. �

The below results can be proved using Theorem 4.11.

Corollary 4.12. Let p be any prime andd > 0 divides
φ(p)

2 . If 4d ≡ 1(mod pk). Then for k > 1, the sets of
vertices{1+4l p : 0≤ l ≤ d.pk−2−1},{1+4l p : 0≤ l ≤
d.pk−3 −1}, ...,{1+ 4l p : 0 ≤ l ≤ d − 1} form cycles of
lengthd.pk−2,d.pk−3,..., andd respectively in the graph
G(pk).

Corollary 4.13. If v1,v2, ...,vr form a cycle of lengthr in
G(pk) then for any integers, the verticesvs

1,v
s
2, ...,v

s
r also

form a cycle of lengthr in G(pk).

Proof. Since (vs
1)

4 = (v4
1)

s ≡ vs
2,(v

s
2)

4 = (v4
2)

s ≡

vs
3, ...,(v

s
r)

4 = (v4
r )

s ≡ vs
1. Hencevs

1,v
s
2, ...,v

s
r form a cycle

of lengthr in G(pk). �

Corollary 4.14. If v1,v2, ...,vr form a cycle of lengthr in
G(p) thenv1,v2, ...,vr are the quadratic residues ofp.

Proof. Since (v2
n)

2 ≡ v1,(v2
1)

2 ≡ v2, ...,(v2
n−1)

2 ≡ vn.

Hencev1,v2, ...,vr are the quadratic residues ofp. �

5 Enumeration of Cycles and Components

The verticesv1,v2, ...,vs. constitutes a componentG(pk)
if for eachi, 1≤ i ≤ s, there exist somej, 1≤ j ≤ s such
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that v4
i ≡ v j( mod pk), for all i 6= j. It is well known that

each component contains exactly one cycle in the graph
G(pk), k ≥ 1 but yet it is desirable to know that how
many components doesG(pk), k ≥ 1 have? In this section
we address this problem and enumerate number of cycles
of all lengths, and hence number of non-isomorphic
components of the graphG(pk), k ≥ 1. In the following
theorems, we discuss the possible cases and enumerate
the number of non-isomorphic components in detail.
Before giving the detail of non-isomorphic components,
we first give the following simple Lemma.

Lemma 5.1. (1) There are two non-isomorphic possible
components corresponding to all fixed points of the graph
G(pk).

(2) The graph G(3k),k > 1 has k non-isomorphic
components.

Proof. Let 3 ∤ p, then by Lemma 3.8, the vertices 0 and 1
are the only fixed points of the graphG(pk). Since
0 6≡ 1(mod pk), so 0 and 1 are not adjacent to each other.
Let (if possible)x andy be the vertices of the components
containing the fixed points 0 and 1 respectively such that
x4 ≡ y(mod pk). That is,x andy are the adjacent vertices.
By definition, there must exist integerst1, t2, ..., tr such
that x4 ≡ t1p(mod pk), (t1p)4 ≡ t2p(mod pk),...,
(tr p)4 ≡ 0(mod pk). Then clearlyx4t ≡ 0(mod pk) for
some integert. Similarly there exist integerss1,s2, ...,st
such thaty4 ≡ s1(mod pk) ands4

1 ≡ s2(mod pk) and so on
s4

r ≡ 1(mod pk). Then for some integers, we obtain,
y4s ≡ 1(mod pk). Let l be the least common multiple of
the integers 4t and 4s. Now if x4 ≡ y(mod pk), then
(x4)l ≡ yl(mod pk). This means that(xl)4 ≡ yl(mod pk)
or 0≡ 1(mod pk) which is not possible. Thus the fixed
points 0 and 1 are the vertices of disjoint components.
Finally, asdeg(1) is the number of incongruent solutions
of the congruencex4 ≡ 1(mod pk). Thus deg(1) ≤ 4

whereasdeg(0) is at leastp
k
4−1 as (t p)4 ≡ 0(mod pk).

Thus the components containing the fixed points 0 and 1
are the non-isomorphic components.

Again by Lemma 3.6, there are four fixed points of the
graphG(pk) if and only if 3 | p. Then by Lemma 3.7, if
α is a non zero fixed point of the graphG(pk) then 1,α
andα2 are the possible non zero fixed points of the graph
G(pk). As α is a fixed point so,(pk−α)4 ≡ (−α)4 ≡α4 ≡
α (mod pk). This shows thatα andpk −α are adjacent to
each other. The rest of the proof can easily be completed
adopting the steps explained above.

(2) By Theorem 4.4, there existk − 2 possible cycles of
length greater then one. Also by Theorem 2.8, each
component contains a cycle, so there existk − 2
non-isomorphic components inG(3k). Moreover by
Theorem 5.1 (i), there exist two non-isomorphic
components corresponding to all fixed points of the graph
G(3k). Thus, G(3k) has k − 2+ 2 = k non-isomorphic
components.�

Theorem 5.2. Let p > 3 be any prime such that
φ(p) = 2lqr, whereq is an odd prime and ordq4 = α. If

3 | φ(p) then G(p) contains r + 1 non-isomorphic
components. If 3∤ φ(p) then G(p) containsr − k0 + 3
non-isomorphic components, wherek0 is the largest
integer such that 4α ≡ 1 (mod pk0).

Proof. If 3 | φ(p) then q = 3. As
ord3r 4= 3r−1 | φ(p) = 2l3r, so by Theorem 2.8, we infer
that there exist cycles of lengths 3,32, ...,3r−1 in G(p).
That is, there existr − 1 possible cycles of length> 1.
Also by Lemma 5.1 (i), there exist two non-isomorphic
components corresponding to cycles of lengths one. Since
each component contains a cycle, we conclude that there
exist r−1+2= r+1 non-isomorphic components when
3 | φ(p). Next we suppose that 3∤ φ(p), then q > 3.
Clearly ordq4> 1. Sincek0 is the largest integer such that
4α ≡ 1 (mod pk0), so by Theorem 2.6, order of 4 modulo
qr is α for r = 1,2, ...,k0 and α pr−k0 for r ≥ k0. This
shows that there exist cycles of lengthsα,αq, ...,αqr−k0.
Thus there existr − k0 + 1 non-isomorphic cycles of
length > 1. By Lemma 5.1, there exist two
non-isomorphic components corresponding to cycles of
lengths one. Hence, we find that there existr − k0 + 3
non-isomorphic cycles of different lengths. Consequently,
if 3 | p, then the graph G(p) has r − k0 + 3
non-isomorphic components.�

Example 5.3 (1) Take p = 2431326594378257. Then
φ(p) = 24(3511)4. Takeq = 3511. Here,r = 4 andk0 = 2
as ordq4 = ordq24 = 1755, ordq34 = 6161805= 1755q
and ordq44 = 21634097355= 1755q2. Thus there exist
three non-isomorphic components containing cycles of
lengths 1755, 6161805 and 21634097355. Since 3∤ φ(p),
so by Lemma 3.8, 0 and 1 are the only fixed points of the
graph G(p). By Lemma 5.1, there are two
non-isomorphic components containing the fixed points 0
and 1. Hence, there are 5 = 4 - 2 + 3 =r− k0+3 possible
non-isomorphic components.

(2) Takep = 1373. Thenφ(p) = 2273. Here,q = 7, r = 3
andk0 = 1 as ord74 = 3, ord724 = 21 and ord734 = 147.
Thus there exist three non-isomorphic components
containing cycles of lengths 3, 21 and 147 plus two
non-isomorphic components containing corresponding to
fixed points 0 and 1. Hence, there are 5 = 3 - 1 + 3 =
r− k0+3 possible non-isomorphic components inG(p).

Theorem 5.4. Let p > 3 be any prime such that
φ(p) = 2lqk1

1 qk2
2 ...qkr

r , wherel > 0,ki ≥ 1 andq1,q2, ...,qr
are distinct odd primes. Let ordqi4= αi > 1. Then,

(a) If αi for eachi, are pairwise relatively prime integers.
Then the graph G(p) has 2r + 1 non-isomorphic
components.

(b) If αi | α j for eachi < j. Then there does not exist any
cycle of length∏α j, j > 1. In this caseG(p) hasr + 2
non-isomorphic components.

(c) Letαi ∤ α j for all i and j. If lcm(αi,∏ j≥1 α j) = l 6= αk
for all k = 1,2, ...,r. Then there exist a cycle of lengthl. In
this caseG(p) has 2r +1 non-isomorphic components as
well.
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Proof. (a) Let ordqi4 = αi and ordq j 4 = α j where
(αi,α j) = 1 for i 6= j. That is αi and α j are the least
positive integers such that

4αi ≡ 1 (modqi) and 4α j ≡ 1 (modq j) (16)

Let t be a least positive integer such that

4t ≡ 1 (modqiq j) (17)

Since(qi,q j) = 1, so by equation (16), it is easy to find
that

4αiα j ≡ 1 (modqiq j) (18)

But t is the least positive integer such that
4t ≡ 1 (modqiq j), we must get,

t | αiα j (19)

By equation (17), we get

4t ≡ 1 (modqi) and 4t ≡ 1 (modq j) (20)

But by equation (16),αi | t andα j | t as αi,α j are least
positive integers. Since(αi,α j) = 1, so

αiα j | t (21)

By equations (19) and (21), we getαiα j = t. This shows
that there exist a cycle of lengthαiα j in G(p). Now since
eachαi > 1 and are pairwise prime to each other, so there
must exist a cycle of lengthd = ∏α j for all j factors. As
there arer different odd primes inφ(p). Therefore the total
number of cycles of length greater then one must be

(

r
1

)

+

(

r
2

)

+ ...+

(

r
r

)

= 2r −1 (22)

Moreover, by Lemma 5.1 (i), there exist two
non-isomorphic components containing cycles of length
one. Consequently, there exist 2r − 1 + 2 = 2r + 1
components.

(b) On contrary we suppose that there exist a cycle of
lengthαiα j corresponding to some odd divisorqiq j. That
is αiα j is the least positive integer such that

4αiα j ≡ 1 (modqiq j) (23)

Sinceαi | α j, so there exist some integerα such thatα j =
ααi. Then by equation(16), 4α j ≡ 1 (modqiq j). Now by
equation (18),αiα j | α j. Henceαiα j = α j . This shows
thatαi = 1, which is a contradiction asαi > 1 for eachi.
This clearly shows that there does not exist any cycle of
length∏α j , j > 1. Thus there exist only cycles of lengths
αi, i = 1,2, ...,r. Using Lemma 5.1(i), the number of non-
isomorphic components is

(

r
1

)

+2= r+2 (24)

(c) Note that ifαi | t andα j | t and(αi,α j) 6= 1, then this
is false in general thatαiα j | t. However, lcm(αi,α j) | t is
true in either case. That is,l | t. The rest of the proof is
similar to part (a). �

Remark 5.5. In view of Theorem 5.2, we note that the
number of non-isomorphic cycles of different lengths> 1
are actually the number of distinct orders modulo prime
powers appearing in the canonical form ofφ(p). Thus to
count the non-isomorphic cycles of length> 1, our task is
to count the number of distinct orders modulo all possible
divisors of φ(p). For instance, if
φ(p) = 2lqr1

1 qr2
2 , r1,r2 > 1. Suppose for eachi, there does

not exist any integerki0 > 1 such that 4α ≡ 1 (modq
ki0
i ).

Then there must exist cycles of lengths
α,αq1,αq2

1, ...,αqr1−1
1 and β ,β q2,β q2

2, ...,β qr2−1
2 in

G(p) if ordq14 = α and ordq24 = β provided α 6= β .
Finally, we need to know whether there exist some more
orders moduloqi

1q j
2, for all i, j where, 1≤ i ≤ r1 −1 and

1 ≤ j ≤ r2 − 1. Thus by Theorem 5.4 (c), we need to
know all possible distinct lcm’s of all possible products of
integers α,αq1,αq2

1, ...,αqr1−1
1 and

β ,β q2,β q2
2, ...,β qr2−1

2 different fromαqi
1 andβ q j

2 for all
i, j. To generalize the concept, we define the following
notation.
Notation. Let αiq

j
i , where, 1≤ i ≤ r and 1≤ j ≤ ki−1 be

distinct integers. Letl 6= αiq
j
i for all i, j. We denoteN(l)

as the number of distinct lcm’s of all possible products of
the integersαiq

j
i for all i, j.

Theorem 5.6.Let q1,q2, ...,qr and p > 3 be distinct odd
primes such thatφ(p) = 2lqk1

1 qk2
2 ...qkr

r , l > 0, where
ordqi4 = αi > 1. Suppose for eachi, there does not exist

any integerki0 > 1 such that 4α ≡ 1 (modq
ki0
i ). Then the

graph G(p) has ∑r
i=1 ki + N(l) + 2 non-isomorphic

components, whereN(l) is defined above.
Proof. Let ordqi4 = αi. Since for eachi, there does not
exist any integerki0 > 1 such that 4α ≡ 1 (mod pki0 ).

Then by Theorem 2.6, ord
q

ki
i

4= αiq
ki−1
i . Thus there exist

cycles of lengthαiq
j
i , 1≤ j ≤ ki −1, wherei = 1,2, ...,r.

That is, there exist∑r
i=1 ki non-isomorphic components

containing cycles of lengthαiq
j
i , 1 ≤ j ≤ ki − 1. Also if

lcm(ordqu
m
4,∏n≥1ordqv

n
4) = l 6= αiq

j
i for all i, j, where

1≤ u ≤ km −1 and 1≤ v ≤ kn −1, then by Theorem 5.4
(c), there exist a cycle of lengthl in G(p). Now if N(l) is
the number of distinct lcm’s of all possible products of
the ordersαiq

j
i for all i, j. Then there exist∑r

i=1 ki +N(l)
non-isomorphic cycles of length> 1. Using Lemma 5.1,
we conclude that the graph G(p) contains
∑r

i=1 ki +N(l)+2 non-isomorphic components.�
Theorem 5.7. Let p > 3 be any prime such that
φ(pk) = 2lqr pk−1, where q is an odd prime. Let
ordq4 = α and ordp4 = β . Suppose there does not exist
any integerss0, t0 > 1 such that 4α ≡ 1 (mod qs0) and
4β ≡ 1 (mod pt0)

(a) If αqi−1 | β for all i = 1,2, ...,r. Then the graphG(pk)
hasr+ k+1 non-isomorphic components.
(b) If αqi−1 and β p j−2 are pairwise relatively prime
integers for alli = 1,2, ...,r and j = 2,3, ...,k. Then the
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graph G(pk) has (r + 1)k + 1 non-isomorphic
components.
Proof. Let ordq4 = α and ordp4 = β . Since there does
not exist any integers s0, t0 > 1 such that
4α ≡ 1 (mod qs0) and 4β ≡ 1 (mod pt0). Then by
Theorem 2.6, we must obtain, ordqi4 = αqi−1 and
ordp j−14= β p j−2 for i = 1,2, ...,r and j = 2,3, ...,k. This
shows that there existr + k − 1 cycles of lengths
α,αq,αq2, ...,αqr−1,β ,β p,β p2, ...,β pk−3 and β pk−2.

Next we show that there does not exist any other cycle of
length> 1. Let t 6= αβ qi−1p j−2 for all i, j. We suppose
that there exist integersu and v such that
ordqu pv4= t, 1≤ u ≤ r−1, 1≤ v ≤ k−2. Thent is the
least positive integer such that

4t ≡ 1 (modqu pv) (25)

Sincep andq are distinct primes, so we have

4t ≡ 1 (modqu) and 4t ≡ 1 (mod pv) (26)

But ordpv4 = β pv−1, so by (25), β pv−1 | t. Also
ordqu4= αqu−1 andαqu−1 | β , hence, ordqu pv4= β pv−1

,

since lcm(αqu−1,β pv−1) = β pv−1. As ordqu pv4= t. This
clearly shows thatt | β pv−1. Consequentlyt = β pv−1,

which is a contradiction ast 6= αβ qi−1p j−2 for all i, j.
Thus the only cycles of lengths> 1 are of lengths
α,αq,αq2, ...,αqr−1,β ,β p,β p2, ...,β pk−3 and β pk−2.

Moreover there exist two non-isomorphic components
containing cycles of length one. Thus in this case, graph
G(pk) containsr+ k+1 non-isomorphic components. For
the proof of part (b), it is enough to show that there exist a
cycle of lengthαβ qu−1pv−2, 1≤ u ≤ r, 2≤ v ≤ k. Since
ordqu4 = αqu−1 and ordpv4 = β pv−1. That isαqu−1 and
β pv−1 are the least positive integers such that

4αqu−1
≡ 1 (modqu) and 4β pv−1

≡ 1 (mod pv) (27)

Since(αqi−1,β p j−2) = 1, for all i, j so we deduce that

4αβ qi−1p j−2
≡ 1 (modqu pv) (28)

then by equation (25),

t | αβ qi−1p j−2 (29)

Aa ordqu4 = αqu−1 and ordpv4 = β pv−1, so (27) yields
that,αqi−1 | t andβ p j−2 | t. Since(αqi−1

,β p j−2) = 1, so

αβ qi−1p j−2 | t (30)

Hence,αβ qi−1p j−2= t. This shows that there exist a cycle
of lengthαβ qi−1p j−2 for all i, j. Since there existr(k −
1) such products, so we must getr(k−1) more cycles of
lengths> 1. Finally, the total number of non-isomorphic
components is

r+ k+1+ r(k−1)= (r+1)k+1. �

The following corollary is a simple consequence of
Theorem 5.7.

Corollary 5.8. If αqi−1 ∤ β p j−2 andβ p j−2 ∤ αqi−1 for all
i = 1,2, ...,r and j = 2,3, ...,k. Then the graphG(pk) has
(r+1)k+1 non-isomorphic components.

The below result is the more general case of Theorem 5.6,
and can be established easily by adopting the technique
explained in the proof of Theorems 5.6 and 5.7.

Theorem 5.9Let q0 > 3 be any prime andq1,q2, ...,qr be
distinct odd primes such that
φ(qk0

0 ) = 2lqk1
1 qk2

2 ...qkr
r qk0−1

0 , l > 0. If ordqi4 = αi > 1.
Then the graphG(pk) has at most∑r

i=0 ki + N(l) + 1
non-isomorphic components, whereN(l) denote the
number of distinct lcm’s of all possible products of the
integersαiq

j
i , where, 0≤ i ≤ r and 1≤ j ≤ ki −1.
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[7] L. Somer and M.Křı́žek, On a connection of number theory
with graph theory, Czechoslovak Math. J.,54, 465-485
(2004).
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