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Abstract: Let Z, be the ring of residue classes moduldDefine f : Z, — Z, by f(x) = x*. Action of this map is studied by means
of digraphs which produce an edge from the residue clasteb if f(a) = b. For every integen, an explicit formula is given for the
number of fixed points of. It is shown that the grapﬁ;(pk), k > 1 has four fixed points if and only if Bp— 1 and has two fixed
points if and only if 3t p— 1. A classification of cyclic vertices of the gra{ pk) has been determined. A complete enumeration of
non-isomorphic cycles and components’&ﬁb“) has been explored.
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1 Introduction topographies like classifications of vertices, number bf al
possible cycles of all lengths , number of components etc

The notion of congruence is of great interest in numberfor which no explicit formula is present. In this piece of

theory. A strong emphasis on modular arithmetic leads inwork, a complete characterization free from

a natural way to jump over many of new destinationssub-diagraphs in terms of explicit formulas for the

especially in pure mathematics. It has become a usefuhumber of fixed points, classifications of cyclic vertices,

device to solve most of the mathematical problems whichnumber of non-isomorphic cycles and number of

are integral based. Use of modular arithmetic in studyingnon-isomorphic components of the gra@s, p¥), k> 1,

discrete graphs and digraphs is becoming an increasinglwherep is an odd prime, has been discussed in detail.

useful device to explore a broad range of applications. Let

f be any function assuming its values as the residues after

division by an integen. We can draw a graph that has the 2 preliminaries

remainders as vertices when divided tyand a directed

edge(a,b) if and only if f (a) = b(modn). For f(x) =X, The verticesiy, v, .., 1, form a cycle of lengttt if

the associated digraph is denoted®n, k). The digraph  anq only f

of squaring modulo a prim@, has been studied ir2].

Earle L. Blanton #], L. Somer and M.Kfizek ], L. Vi = v, (modn)

Szalay P], T.D. Rogers 17, Troy Vasiga ﬂ3] and' Y. \/21 = v3 (modn)

Meemark [L4] have considered and investigated

properties of a variety of digraphs corresponding to the :

congruence? = b(modn). The conditions for regularity, VA= v (modn)

semi regularity and symmetrically structured digraphs t="

have been discussed ifd][and [8]. The structures of The graphG(n) is said to be connected if for each vertex

graphs of exponential congruences has been discussed pairu andv, there exist some integral numbrarsuch that

[10]. Though many fascinating features like regularity, u*™ = v (modn). A maximal connected subgraph is termed

semi-regularity and symmetry of such digraphs by meansas componentd]. A vertexzis referred to be a fixed point

of sub-diagraphs have been explored, yet there are soméz* =z (modn).
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161 116 g5 5, 2 10 54 62 %2 such thatpo | a® — 1. Then orffa=d for 1 < k < ky and
so\\‘!,_‘};ﬁo 135 1450\%_“}//0115 65:&\///0026 dpk—ko for k > kO
9% 40 53 125 2 29 159 75 NN _ .
T 1>o€°<>158 141"52}3;7810“ Theorem 2.7. [L1] Let p,q, p # qbe odd primes. Then,
o e/ e 0 \gw) P, 9 p1g1
227/} o2t 63771 AN (D)D)= z7
164 5 21 148 153 106 15 36 16@\@/070 q p
123,46 45 108 119 49 127 102 1 Theorem 2.8. [7] There exists a cycle of lengthn G4 (n)
leoely 12 oy yeer o if and only ift = ordyk for some divisod of A (n).
30 139 9 5 114, 42 68 , 101
720?0 152 61 ‘\’o" 59 3707\0‘120 3 0’%0 141
97 3/5—2:1/ 110 132 55 810/ 2 23, 80 . . .
2o A Roeaas L N o 3 Basic Results and Fixed Points of the Map
17 °7 g4 85 76 93 128 41 146 |

13656 121 20 w2 138 151 * A point x is said to be a fixed point of the mdif f(x) =
B/ o1 Boy  Wer . x (mod p). To find the fixed point of the map, we give

163 48 126 86 105 27 2 H i i
o34 1}%’3‘;7 45 gzoé:w lQO\CT/O the following elementary result whose proof is simple and
s o 1 St \olisﬁ e 22| straight forward.
s/l [N AT R 150 Lemma 3.1.Letx # 0,1 be a fixed point of the mapping
11 4 7169 47 122 109 60 oveer, then
(i) x+x2 =p—1(modp) (ii) =1 (modp
Fig. 1: G(169) ( ) ( )

The following result describes a relationship between non-
trivial fixed points of the mag .

Theorem 3.2.Letx £ 0,1. Thenx is a fixed point of the

In Fig 1, the digrap!&(169) has ten components. Among Mappingf overZ; if and only if x* is a fixed point off
these six are cyclic and four are the rooted trees. ThéverZp.

graph has four fixed points. That is, the vertices which hasProof. Let x £ 0, 1. Suppose is a fixed point off. That
self loops. These are 0, 1, 22 and 146. Precisely the grapis, x* = x (modp). Then,x? is a fixed point off as

G(169) has three non-isomorphic components, one of ()% = (x*)2 = x3(mod p).

which contains a non-isomorphic cycle of length six, one . i . .

is a rooted tree with root at 0 and one with a non-zeroConversely, Supposé is a fixed point off. That s,

fixed point ( containing isomorphic cycles of length one). (x*)* = x?(mod p). Or
We first recall a few definitions and some previous results 8 = x2(mod 1
for use in the sequel. =x"(modp). @)
Definition 2.1. [3] The functiong(n) is defined as the NowXxz 0 (modp) implies thatx* 0 (mod p).
number of divisorsl such thad | n, where 1< d < nand _

(d,n) = 1. Itis trivial that (1) = 1, asged(1,1) = 1. Let x* = a (modp),a € Z,a #0. @)
Theorem 2.2. B] (Euler) Let a be any integer such that Then by (1)x* = a® (modp). This further implies that
(a,m) = 1, wherem > 1, thena®™ = 1 (modm). X = a*(mod p). 3)

The following result can be derived using Theorem 2.2. Thusp |2+ a2 or p | x+a or p| x— a. We will exhibit,

Theorem 2.3. B] Letk > 0 andp be a prime, then the first two are not possible. This will complete the proof.
1 Let p | x*+ a?. That is,x? + a? = 0 (mod p). Then by
(P = p(1-2) equation (2)x2+x8 = 0 (mod p) or x = —x2 (mod p),
P a contradiction against (1). Otherwis€,= —x? (mod p)

yields that 2> = 0 (mod p). But p is an odd prime, so
x? =0 (modp) reveals thak = 0 (mod p), a contradiction
asx # 0 (mod p). Hencep | x? + a? is not possible.

Now, let p | x . That is,x =0 (m . Then
Theorem 2.5. B] Let f(x) be a fixed polynomial with by e?qu:';\tieonp |(2)+)?+ X4aEs(,) 4(—rgod Op)( ?—?“g) givgs
integral coefficients, and for any positive integerlet x= -1 (mod p), or ¥ —x+1=0 (mod p). But’
N(m) denote the number of solutions of the congruence, # —1 (mod p) since (_1)4 # —1 (mod p). Thus
f(x) =0(modm). If m=rmm, where(my,mp) =1,then = 2"y, 19 (mod p). This further can be written as,
N(m) = N(m)N(mp). If m = I_IPOIOIIS the canonical | 2 4 1 = 2x (mod p). Also by Lemma 3.1,
factorization ofm, thenN(m) = [TN(p®). X+x?+1=0 (modp). Hence, 2 = 0 (mod p). Sincep
Theorem 2.6. [L1] Consider an odd prime, and letp { is an odd prime, sa = 0 (mod p) yields a contradiction
a# £1, where orga = d. Let kg be the greatest integer asx# 0 (modp). Hencep{x+a. O

Definition 2.4. [3] Let n > 1 and gcda,n)=1. The order
of a modulon is the smallest positive integ&rsuch that
a“= 1 (modn). It is denoted asrdna = k.
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The following corollaries are the simple consequences ofneans that—3)%*! = —3 (mod p). This can also be

Theorem 3.2.

Corollary 3.3 Fixed points of G(p*) are the quadratic
residues opX.

Corollary 3.4 The non zero fixed points of the graph y* = —3 (mod p). Hence by Lemma 3.6;

G(pK), k> 1 form a cyclic subgroup of the grouty,.
Before giving the cardinality of fixed points @(n) for
any integen, we need the following important lemmas.

Lemma 3.5.The numbers 0, 1,31 +-1 and 23141
are the fixed points of the graj(3¥).

Proof. Fork =1, it is easy to see that 0 and 1 are the only

solutions of the congruene® = x (mod ¥). Letk > 1 and
suppose is a fixed point ofG(3%), k > 1. Clearly 0 and
1 are the fixed points fok > 1 as well. For the numbers
314 1and 23K 1+1,itis easy to see that

(3 14124+ (314+1)+1=3(mod ¥) ask>1

Using (4), we get,

(314 (3 +1) = 3@+ {3+ 1)
+ @+ 1))
= 31311 1)(3) (mod )
=331+ 1) (mod )
=0(mod 3), k>1

This shows that 81+ 1 is a fixed point of the graph
G(3Y), k > 1. For the number 21+ 1, we note that
(231 4+1)2 =314 1 (mod ). Hence by Theorem
3.2, 23“1 1 1is a fixed point of the grap&(3%), k > 1.
U

Lemma 3.6.Let p > 3 be any prime. Then the graph
G(pX), k> 1 has four fixed points if and only if Bp — 1.

proof. Suppose 3 p— 1. Let x be a fixed point of the
graphG(p¥), k> 1. Then,x* = x (mod p¥) yields that
x* = x (mod p). This gives,p | x or p|x—1 or
p | X2 +x+ 1. Thus the grapts(pX), k > 1 has four fixed
points if and only if the congruence
¥ +x+1 =0 (mod p) is solvable. Now
X +Xx+1=0 (mod p) is solvable if and only if
2 = (mod p), where X=y—1 (mod p) is solvable

(4)

written as((—B)Lkzﬂ)2 = —3 (mod p). This shows that
3k+1 . .
(—=3)2 is a solution of the congruence
%
is a

fixed point of the graphG(p). Also by Theorem 3.2,
3k+1
“3)#2” is a fixed point since

3k+1

(=372 -1
( 2

2=

Lemma 3.8.Let p > 3 be any prime. Then the graph
G(pX), k> 1 has two fixed points if and only if Bp — 1.

Proof. Sincep# 1 (mod 3), sopis not a quadratic residue
modulo 3. Hence the congruence+ x+ 1 = 0 (mod p)

is not solvable. Thus 0 and 1 are the only fixed points of
G(pY), k>1. O

For any integen. We define the function&(n) andw(n)

as f 3¢nor3)|
0, if 3tnor3||n
E(”):{l, if 3K|n, k>1
and
o0, if3tnor3|n k>1
“’(”)—{—1, it 3|1

Theorem 3.9. Let p‘f p'gz...p‘r<r be the canonical
representation of any integer, where py, po,..., pr are
distinct odd primes. Lek(n) denote the number of fixed
points of the grapls(n), then,

2+ if 34p—1,1<i<r
) orre i 3| p—1,1<i<r
22— if 34p—1,1<i<t

and 3| pi—1, t+1<i<r

Proof. To find the numbel(n), we need to count the
number of solutions of the congrueng®= x (mod n).

We note that the congrueng&= x (mod p‘f p'éz...p‘ﬁf) is

for y. By Theorem 2.7, it is easy to establish that -3 is asclvable if and only ifx* = x (mod piki) is solvable for

quadratic residue modulpif and only if p is a quadratic
residue modulo 3. But 3 p— 1 implies that
p=1 (mod 3. This clearly shows thap is a quadratic

eachi =1,2,...,r. Let 31 pj— 1 for eachi = 1,2,....r,
then by Lemma 3.8,L(p!“) = 2 for eachi. Since
p1 < p2 < ... < pr are distinct primes, so by Theorem 2.5,

residue modulo 3 and hence -3 is a quadratic residué(n) =2". Now if 3| pj— 1 for eachi = 1,2,...,r, then by

modulo p. consequently, the

y> = -3 (mod p) is solvable. Thus the graph

G(pX), k> 1 has four fixed points if and only if Bp— 1.

U

Lemma 3.7.Let p be a prime of the form 6+ 1. Then
3k+1 3k+1

the numbers 0, 1217 —t and =32 +1

points of the of the grap&(pX).

Proof. Sincep =1 (mod 6), -3 is a quadratic residue of

p. Then by Euler’'s Theorern{,—?:)ﬂi—1 =1 (modp). This

are the fixed

congruence emma 3.6L(p!“) = 4 for eachi. Hence by Theorem 2.5,

L(n) = 4". Finally, without any loss, we assume that
3t pi —1 for eachi = 1,2,....t, then 3| p; — 1 for each
i=t+1t+ 2,...,r. Hence by Lemmas 3.6, 3.8,
L(pik‘) =2 for i = 1,2,...,t and L(pik‘) = 4 for

i =t+1t+2,..r Thus again by Theorem 2.5,
L(n) = 214"t = 22~ Now we discuss the following
three cases.

(1) Let 31 n. Then by definition (n) = w(n) = 0. Thus
result is true in this case.
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(2) Let3|| n. Then by definitionE(n) =0andw(n) = —1.
Now since 3| n, so one of thep,' = 3 for someith factor
of n. Without any loss, we Ie|bkl = 3. Then the condition
3lpi—1,1<i grmustreducestoni—l, 2<i<r.
Thus in this case, we must gét(n) = 22 ~1 = 22+
when 3| pi—1, 2<i <r. Therefore, we sef(n) =0 and
w(n) = —1to get the desired result.

(3) Let 3| n, k> 1. Then by definition& (n) = 1 and
a)()_O Now since 8| n, k> 1, so one of the
pI =3 k> 1 for someith factor ofn. Without any loss,

we let pi = 3% k > 1. Then by Theorem 2.5 and by
Lemma 3.5, we have,

L(n) = L(3IL(PS2... P ) = 22L(p2...PY).
Now if 3+pi—1, 2<i <r, thenL(pi2...pk) = 21,

Hence,L(n) = 22L(pi2...pl) = 271 = 2r+¢(0) Thus in
this case we sef(n) = 1 andw(n) = 0 to get the desired
result. O

Remark 3.10.The numbet.(n) is always even.
Corollary 3.11. Let p be an odd prime and # 0,1, a
fixed point of the graph G(p¥) such that
a,0? € Z, ={0,1,2,...,p—1}. Thena | p—1 if and
only if 4p= 3+ (2a 4 1)2,

4 Classifications of Cyclic Vertices

Equations (6) and (7) yields that the vertices- 4'3k—2

for | = 0,1,2 form a cycle of length 3 in the graph
G(3Y), k> 4. Similarly, it is easy to see that the vertices
1+42.4'3%2for | =0,1,2 form a cycle of length 3 in the
graphG(3¥), k>3. O

Corollary 4.3. If the vertices 1+ 4'3x2 for| =0,1,2 are

at a 3-cycle inG(3¥), k>3 then 1+ 4'3< 1 for| =0,1,2

are at a 3-cycle iB(3“"1), k> 3.

The proof of above corollary is evident if we take-r + 1

and apply Theorem 4.2. However, the importance of this
result is of great interest as we are lifting the vertices of a
3-cycle of a graph to a 3-cycle in its higher modulo graph.
Theorem 4.4. (i) The vertices 1+ 4'3< ™1 for
0,1,2,...3 — 1 form cycles of length
3, r=1,2,...,qin the graphG(3X), k > 4, where

.

(i) For g < r < k—2, the vertices 1 2.4'3x"-1 form
cycles of length Bin the graphG(3¥), k > 5.

Proof. First, we prove that there exist cycles of length
3, 0 <r < k-2 in the graphG(3X). Let's denote the
order of 4 modulo 8 by ordy4. Clearly org4 = 1 and
ordp4 = 3. Then by Theorem 2.6ky = 1. Hence
ordy 4 31 But the only odd divisors of
o(3) 2%« 31 are 1332..3 1 where,

2, if k=4
k1, ifkisodd k>4
K—1, if kis even k > 4

In this section we present exehcn formulas to enumerateordy-14 = 32, Thus by Theorem 2.8, there exist cycles

cyclic vertices of the grap(p
following
mathematical induction.

Lemma4.l.Fork>4 k<a(k—2),a=23,4
Theorem 4.2.The vertices 3 4'3*-2 and 1+ 2.4'3< 2 for

| =0,1,2 form cycles of length 3 in the gragh(3X).
Proof. The verticesy, a; anda, form a cycle of length 3 in
G(3¥) ifand onlyif a}=a (mod3), a} =a, (mod ¥)
and aj = ap (mod ). Now,

, wherepis prime. The

4
(1+4|3k72)4: 1+4|+13k72+ z <§> 4C{|3G(k72> (5)
a=2

Sincek > 4, by Lemma 3.1k < a(k—2), a = 2,3,4.
Then, ¥ | 392 Hence,

i <§> 49'30=2) = 0 (mod ).

a=2
Putting in (5), we obtain,

inequalities can easily be proved usingr=12,...

of length 3, 0 <r < k—2. Next for k > 4 and
,q, itis easy to see that

k<ak—r—1), where a =3,4.

Thus, &| 39k for a =3 4.

el (g) a(k-r-1)

This shows that

(;)3‘” U =0(mod3), a =234

Also fora = 2,

Then the following equation

(1_|_4I3k—r—1)4 —_ 1+4I+13k—r 1

4
z( >4aI3akr1)
2

reduces to

lpk—r—1\4 _ I +1ok—r—1
(1+4324=114713 2 (mod &), 1=0,1,2  (6) (L4437 =14 4737 (mod 3)  (8)
Finally,we note that For k = 4, proof is simple and straight forward. So we
3 'k 5 o complete the proof in the following two cases.

1+437°=1+(1+3)°3 Case (a). Lek be even. Then by definition of q =& — 1.

=1+ (1+3.3+3.3243%)32 We discuss the cycle of lengt.3n this caser = g, then

— 1432 gk gkl equation (8) becomes

= 1+ 32 (mod &) (7))  (1+435)4=1+43% (mod ), 1=0,1,...,3 — 1(9)
(@© 2015 NSP
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Finally, if | = 3" — 1=239—1, whereq = & — 1, then T - o T oa
191 Tie7 BB 3 o 146 P d
Kk <. 97 . * a2 /208" 154\, o
1444135 =14 (1+3)% '35 L N B
0%y 88 - 29 197 ."L'\. 1.16
=1+ (1+ 3.3%_1 + ) 3l2< $5t178 125213\1«- 92 170 224
*-% 160 1065«
— 1435 + 3¢ terms involving & 128,115 2c>7(, 20
K 119.’_%1 1?§.\ 137 71.\ z }79
_ X 25 A
= 1+32 (mod é) (10) 218101., L 1§¢224 - 17.\/117%9541(;}}.3.33
Y %2 226 145
Case(b). Lek be odd. Them = ¥51. For a cycle of length B CI 125 \}&9{/ 206
39. Again by equation (8), we obtain, e 5 0% 17 152 98
ke ke 50 % e —e F 140
(1443744 = 14 4713 (modd),1 = 0,..., 39— 1(11) 133 g 70 19067 163 s e
23p /193 94.\.,.149 '\'L.%G_ —*
Takel = 39— 1, then 239/ 1%° BN a2 aarf %
5 %13 31 %
_ .o 121s-e 188
14+47%13%" =14 (1+ 3)3%13%1 e ol
k-1 k1 14.'\\529 22/0'4 134 215
- S 167 -
=1+(14332 +..)37 e rgp e 150 ioe
k—1 K . . 41'4.\33112 49 1751987 .\95 = 128
=1+37 +3%+ termsinvolving & 1811940 o 77 5o 53
k—1
=1+37 (mod 3 (12) Fig. 2: shows the 3% and 3 Cycles ofG(3°)
Let ap = 1+ 49391 g = 1 4 43«01 |
agi_1 = 1+ 43-13xa-1 Then equations (8), (10) and
(12) implies that where the vertices+4'3%"~1for1 =0,1,2,...,3 — 1 are
al = a, (mod &) always at a cycle of length’ 3The proof for the vertices

3~ (14243 1) s similar.
(ii) By Lemma 3.5, the vertices 1,4 3% and 1+ 2.3 are
the fixed points of5(3%), so they mapped on themselves.
Since(-1)*=1. O
Finally we classify the vertices iG(3%) which are not
This clearly shows that the verticag, ai,...,aza_1 forma  prime to 3. We see that these vertices always form a tree
cycle of length 8. The proof of part (i) is similarC] in G(3) with root at 0. First we note that the vertices
The below results can be proved using Theorem 4.4, 30, a = 1,2,..,3*— 1 has &5 branch points except
34
Corollary 4.5. The vertices 1+ 43<7-1 and root. Forf =124, .. ===, wheregcd(3,8) = 1, the
142431 for| =0,1,2,...,3 — 1 are always at a Vertices(3B)* are the branch points of the grag{3).
cycle of length 8 where, 1< r < k— 2 in the graph  Thatis the vertices®, a =1,2,...,3— 1 are mapped on
G(39), k>3. any of the branch points. It can easily be seen thatif 3
are mapped ofB3p3)*, then by definition

a} = ap (mod &)

aly ; = ap (mod &)

Corollary 4.6. There exisk — 2 non-isomorphic cycles of

length greater than one @(3%). (3a)* = (3B)* (mod &) gives
i(;o3rkclll<';\ry 4.7. The maximum length of any cycle ®(3%) (a—B)(a+B)(a?+B2) =0 (mod I %

The following theorem gives the classifications of non- But a? + % =0 (mod 3~*) is not solvable for anyr as
cyclic vertices in the grap@(sk). proveq in the proof of Theorem 3|;2. Hence, the_ only
Theorem 4.8(i) The vertices 8 (1+4'3¢"1)and %  possibilities are a = £ + 3% That is,
(1+24'3<1) for 1= 0,1,2,...,.8— 1 are the non-cycle & = B (mod 3 where
vertices of the grapfs(3) and are always mapped onthe g = +1,+2, i4,...,i3k7;*l, k> 4 andgcd(3,8) = 1.
cyclic vertices. Note that there are .2 > residues namely
(i) The vertices+1, +(1+ 3% and +(1+2.3%) are  +£13,+23,,...,£3“%3 modulo ¥4 which are
mapped on 1, 1 3% and 1+ 2.3 respectively. divisible by 3. Thus to count the branch points excluding

0, we count the number off’s such that
B=+41+2 44, +3=1 k>4in CRS modulo 3.
(3~ (1+43" ) =14+4"13 (mod I Thus the total number of such B's is
34 _ 235 = 35 This shows that there are<®
branch points other than 0 in the tree component of the
(14 4+ 14 £ _(144'3<"1) (mod &) graphG(3%).

Proof.(i) This is simple since

and
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Then, k< a(k—r—1),a =2,3,4. So,p* | p?*k="=1 for
any primep.

This means that, p?*-Y =0 (mod pX). Then the
following equation

(144 pkr1yd = gy ghipher1y i (3) 401 pakr=1)
a=2

reduces to
(1+4p T Hr =144 (modp¥)  (13)
Also if 49 = 1(mod p) where d > 0 divides%E . Then
4% = (4P = (1) = 1(mod p¥) (14)

Finally we discuss a cycle of maximum lengtip". By
equation (13) and (14), we obtain

(1_|_4dp'—1pk—r—1)4 = 1_|_4dp' pk—r—l (mOd pk)
=1+ p“ "1 (modp¥)
Fig. 3: shows the three branch points of the tree component ofThat is (14—4dpr’lpk’r’l)4 = 14 p*"! (modp*)(15)

6 .
G(3") with root at 0. Letag=1+4%pK "1 a; = 1+ 41pK "1 . andagy_1 =
14 49P~1pk-T-1 Then equations (13) and (15) yields that

4 _ k
The above discussion leads to the following result. ap = a, (modp’)

Theorem 4.9. The undirected graph of the vertices af = & (modp")
3a, a =1,2,...,3“— 1 form a tree with root at 0 and have

3“5 branch points. :

Espousing the steps elucidated above, we can cheer to aépr_l = ap (mod pk)
extant the formula for finding the cycle vertices even to . :
higher powers of any primp. This can be entertained in ;T;C?éegfrll)éﬁgfr;v; thaéthe Vertices, a...., a1 form
Theorem 4.11. The proof of the following proposition is ’ ]

analogous to Theorem 2.6. The below results can be proved using Theorem 4.11.
Proposition 4.10.Let p > 3 be any prime. The possible Corollary 4.12. Let p be any prime andl > 0 divides
cycle length of the graphG(p¢) is at most op) p> If 49 = 1(mod pX). Then fork > 1, the sets of
d.p’,r=0,12,.. k-1 whereor¢g4=d. vertlces{1+4' p:0<I<d.p?-1},{1+4p:0<I<
Theorem 4.11.(i) Let p > 3 be any prime andl > 0 1},.. {1+4'p 0<|<d~-1} form cycles of
divides 22 If 49 = 1(mod p*). Then the vertices Iengthd p°2,d.p*"2,..., andd respectively in the graph

1+ 4p<™1 k > 1 form cycles of length Corollary 4.13. I . o of lenat i
— A K orollary 4.13. If vq,V, ..., v; form a cycle of length in
Idférl_z 0 1626'lL12 1 in the graphG(p®) where, G(p¥) then for any integes, the verticess, Vs, ..., v also
- : K
(i) For [§] <r < k-2, the vertices & 2.4'3*"~1 form formfa cy(l:le of I(\a,ggith_m ?’gps)'_ ELOS1E — (A —
cycles of lengttd.p' in the graphG(p¥), k> 5. \Ijsroo '(VS?A:H_Ce(V})S})_Vg I—(Ielr)lcejs VSZ’( 2\),5 fo_rm( aZ)c c:Ie
Proof. We prove (i). The proof of (ii) can be derived ina 3~ \1/ —2%) = br2en y

i K
similar fashion. Note that of lengthr in G(p*). O .
Corollary 4.14. If vy, Vs, ...,V form a cycle of lengthr in

X J— _ { 3, if kis odd G(p) thenvy, Vs, ..., are the quadratic residues of
51, if kiseven Proof. Since (V3)? = vi,(V3)? = va,...,(V2_1)? = .
Hencevy, Vs, ..., V; are the quadratic residuesf [

Now for anyr, we have,

k—k3_1 if kis odd
k—r—1 = ’
e i

—1, if kis even 5 Enumeration of Cycles and Components
_ [ if kis odd The verticesvy, vy, ..., Vs constitutes a compone@(p*)
- g, if Kis even if for eachi, 1 <i < s, there exist somg, 1 < j < ssuch
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thatv! = vj( mod pX), for all i # j. Itis well known that 3 | @(p) then G(p) containsr + 1 non-isomorphic
each component contains exactly one cycle in the grapltomponents. If 3 ¢(p) then G(p) containsr — kg + 3
G(pX), k> 1 but yet it is desirable to know that how non-isomorphic components, wheig is the largest
many components do& p¥), k > 1 have? In this section integer such that%= 1 (mod p¢).

we address this problem and enumerate number of cycleg .ot |t 3 | @(p) then q = 3. As

of all lengths, and hence number of non-isomorphicord3r4:3r71 | @(p) = 2'3", so by Theorem 2.8, we infer
components of the grapB(p*), k > 1. In the following  nat there exist cycles of lengths33,...,31 in G(p).
theorems, we discuss the possible cases and enumer at is, there exist — 1 possible cyéleé of length 1.

the number of non-isomorphic components in detail. o\;5o by Lemma 5.1 (i), there exist two non-isomorphic
Before giving the detail of non-isomorphic components, ¢omponents corresponding to cycles of lengths one. Since
we first give the following simple Lemma. each component contains a cycle, we conclude that there
Lemma 5.1.(1) There are two non-isomorphic possible existr — 1+ 2 =r + 1 non-isomorphic components when
components corresponding to all fixed points of the graptg | ¢(p). Next we suppose that B3¢(p), thenq > 3.

G(pY). Clearly orgi4 > 1. Sinceko is the largest integer such that
(2) The graph G(3¥),k > 1 has k non-isomorphic 49 = 1 (mod p), so by Theorem 2.6, order of 4 modulo
components. q is a forr =1,2,...kg and ap— for r > ko. This

Proof. Let 34 p, then by Lemma 3.8, the vertices 0 and 1 Shows that there exist cycles of lengthsag, ..., ag e

are the onla/ fixed points of the grapB(pX). Since Thus there exist — ko + 1 non-isomorphic cycles of
0+ 1(mod pX), s0 0 and 1 are not adjacent to each other!ength > 1. By Lemma 5.1, there exist two
Let (if possible)x andy be the vertices of the components Non-isomorphic components corresponding to cycles of
containing the fixed points 0 and 1 respectively such thaﬂe”gt.hs Oone. I_—Ience, we f'.nd that there exist ko +3

x* = y(mod pX). That is,x andy are the adjacent vertices. non—|somorph|c cycles of different lengths. Consequently
By definition, there must exist integetstp,....t such | 3 | P, then the graphG(p) has r — ko + 3
that ¥* = tp(mod pX), (p)* = tep(mod pPY),..., non-isomorphic componentd.]

(tp)* = 0(mod pX). Then clearlyx* = 0(mod p¥) for ~ Example 5.3 (1) Take p = 2431326594378257Then
some integet. Similarly there exist integers;, s, ...,& o(p) = 2*(3511)* Takeq = 3511. Herer = 4 andko = 2
such that* = s;(mod p¥) ands! = s,(mod p¥) and soon  as org4 = ordp4 = 1755, orgs4 = 6161805= 1755

s = 1(mod pX). Then for some integes, we obtain, and orge4 = 21634097355- 1755 Thus there exist
y* = 1(mod p¥). Let | be the least common multiple of three non-isomorphic components containing cycles of
the integers #and 4. Now if x* = y(mod p*), then  |engths 1755, 6161805 and 21634097355. Sint@(®),
(x*" = y'(mod Ek)' This means thatx')* = y'(mod p¥)  so by Lemma 3.8, 0 and 1 are the only fixed points of the
or 0= 1(mod p“) which is not possible. Thus the fixed graph G(p). By Lemma 5.1, there are two
points 0 and 1 are the vertices of disjoint componentsnon-isomorphic components containing the fixed points 0
Finally, asdeg(1) is the number of incongruent solutions and 1. Hence, there are 5 = 4 - 2 + 3 = kg + 3 possible

of the congruenced = 1(mod pX). Thus deg(1) < 4 non-isomorphic components.

. k
whereasdeg(0) is at leastps * as (tp)* = 0(mod P*).  (2) Takep = 1373 Theng(p) = 2278. Here,q = 7,1 = 3
Thus the components containing the fixed points 0 and landk, = 1 as org4 = 3, ord.4 = 21 and ores4 = 147.
are the non-isomorphic components. Thus there exist three non-isomorphic components
Again by Lemma 3.6, there are four fixed points of the containing cycles of lengths 3, 21 and 147 plus two
graphG(pX) if and only if 3| p. Then by Lemma 3.7, if non-isomorphic components containing corresponding to
a is a non zero fixed point of the grag®(p¥) then 1a  fixed points 0 and 1. Hence, there are 5 =3 -1 + 3 =
anda? are the possible non zero fixed points of the graphr — ko + 3 possible non-isomorphic components&3(p).
G(pY). Asais afixed pointso(p* —a)* = (—a)*=a*=  Theorem 5.4. Let p > 3 be any prime such that
a (mod pX). This shows thatr andpk — a are adjacent to ok ko

= ke >
each other. The rest of the proof can easily be Completegr(g)distizng% géd'bqrrin’“:vsh?_r;l >£’_k' - iinfjrﬂlégz’ oo O
adopting the steps explained above. ' & =i ' '

(2) By Theorem 4.4, there exikt— 2 possible cycles of (a) If aj for eachi, are pairwise relatively prime integers.
length greater then one. Also by Theorem 2.8, eachThen the graphG(p) has 2+ 1 non-isomorphic
component contains a cycle, so there exist- 2 components.

non-isomorphic components iG(3%). Moreover by  (b) If ai | aj for eachi < j. Then there does not exist any
Theorem 5.1 (i), there exist two non-isomorphic cycle of length[]aj,j > 1. In this caseG(p) hasr + 2
components corresponding to all fixed points of the graphnon-isomorphic components.

G(3). Thus, G(3) hask — 2+ 2 = k non-isomorphic  (¢) Letq; taj foralli andj. If lem(ai, []j>10j) = | # 0k
components.[] forallk=1,2,...,r. Then there exist a cycle of lengthin
Theorem 5.2. Let p > 3 be any prime such that this caseG(p) has 2 + 1 non-isomorphic components as
@(p) = 2'q’, whereq is an odd prime and ogd = a. If well.
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Proof. (a) Let ordy4 = ai and or¢;4 = aj where Remark 5.5.In view of Theorem 5.2, we note that the
(ai,aj) = 1 for i # j. That is a; and aj are the least number of non-isomorphic cycles of different lengthsd
positive integers such that are actually the number of distinct orders modulo prime
o o powers appearing in the canonical formgg(fp). Thus to
4% =1(modg;) and 41 =1 (modq;)  (16)  count the non-isomorphic cycles of lengthl, our task is

Lett be a least positive integer such that to count the number of distinct orders modulo all possible
. divisors of o(p). For instance, if
4 =1 (modqq;) (A7) o(p) = 2'qi*q, r1,r2 > 1. Suppose for each there does
Since(q;,qj) = 1, so by equation (16), it is easy to find not exist any integek;, > 1 such that 4 = 1 (mod qikio).
that Then there must exist cycles of lengths
4% =1 (modgq;) (18) a,aq,ac},....aqt and BBz, BA3,....BoF " in

G(p) if ordg,4 = a and ord,4 = B provided a # 3.
But t is the least positive integer such that Finally, we need to know whether there exist some more

4" =1 (modgiq;), we must get, orders modulay; g}, for all i, j where, 1< i <r; —1 and

t|aa; (19) 1< j<rp—1 Thus by Theorem 5.4 (c), we need to

_ 'J know all possible distinct Icm’s of all possible products of
By equation (17), we get integers a,aq1,aqd, ... ad ~and
4t =1 (modq;) and 4 = 1 (modq;) (20)  B.BG2.B,....Bay " different fromad) andBa} for all

. i,j. To generalize the concept, we define the following
But by equation (16)a; |t andaj |t asaj,aj are least  otation.
positive integers. Sincen, ;) = 1, so Notation. Let aiq/, where, I<i<rand1<j<k-—1be

aiaj |t (21)  distinct integers. Let # ajq] for all i, j. We denoteN(l)

By equations (19) and (21), we geta; = t. This shows as the numberj of dlstlhgt Icm’s of all possible products of
that there exist a cycle of lengtha; in G(p). Now since the integersig; for alli, j. o
eacha; > 1 and are pairwise prime to each other, so thereTheorem 5.6.Let g, 0p, ..., and p > 3 be distinct odd
must exist a cycle of lengtth = [ a; for all j factors. As  primes such thatp(p) = Z'q'fq'gz...q‘ﬁf, | > 0, where
there are different odd primes imp(p). Therefore the total  ord; 4 = a; > 1. Suppose for each there does not exist

number of cycles of length greater then one must be any integetk;, > 1 such that & = 1 (mod q:«o)_ Then the

r r r graph G(p) has S{_;k + N(I) + 2 non-isomorphic
(1) * <2> Tt <r) =2-1 (22) components, WherHI(I) is defined above.

. . Proof. Let 4= qj. Si f h, th t
Moreover, by Lemma 5.1 (i), there exist two roof. Let ord, d. Since for eac ere does no

| i . _ "

non-isomorphic components containing cycles of length€XiSt any integeiki, > 1 such thal';_ﬁl: 1 (mod p O)_'

one. Consequently, there exist 21+2 = 2" +1 Then by Theorem 2.6, oggM: aig’ ~. Thus there exist
I

components. ) cycles of Iengtmiq{, 1<j<k—1,wherei=12,...r.

(b) On contrary we suppose that there exist a cycle ofthat is, there existy!_, ki non-isomorphic components

lengthaia; corresponding to some odd divisqn;. That containing cycles of lengtyg), 1 < j < k — 1. Also if

is ajaj is the least positive integer such that ! i .
lcm(ordgu 4, [n>10rd4) = | # aiq; for all i,j, where

4%% =1 (modgiq;) (23) 1<u<kp—1and1<v<k,—1, then by Theorem 5.4

(c), there exist a cycle of lengthin G(p). Now if N(l) is

the number of distinct Icm’s of all possible products of

the ordersiq! for all i, j. Then there exisy!_, ki +N(I)

Sinced; | aj, so there exist some integersuch thatr; =

aai. Then by equation(16),4 = 1 (modg;q;). Now by
equation (18)aia; | aj. Henceajaj = aj. This shows , , :
thata; — 1, which is a contradiction ag; > 1 for eachi. ~ Non-isomorphic cycles of length 1. Using Lemma 5.1,
This clearly shows that there does not exist any cycle of¥¢ conclude that the graphG(p) contains
length[] a;, j > 1. Thus there exist only cycles of lengths 2i=1ki +N(l) +2 non-isomorphic components.]

ai, i=1,2,....r. Using Lemma 5.1(i), the number of non- Thekorem |5-7-kat p >3 be any prime such that
isomorphic components is o(p*) = 2d'p“+, where q is an odd prime. Let
ordy4d = a and org4 = B. Suppose there does not exist
(;) +2=r42 (24) any integerssy,to > 1 such that 4 = 1 (mod g%®) and
4B =1 (mod p»)

(c) Note that ifa; | t anda; |t and(aj, aj) # 1, then this (@) If ag~* | B foralli=1,2,....r. Then the grapiG(p")
is false in general thatia; | t. However, lenjai, aj) [tis ~ hasr 4+ k41 non-isomorphic components.

true in either case. That i$,| t. The rest of the proofis (b) If ag~! and Bp/~2 are pairwise relatively prime
similar to part (a). O integers for alli = 1,2,...,r and j = 2,3,...,k. Then the
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graph G(p¥) has (r + 1)k + 1 non-isomorphic  The below result is the more general case of Theorem 5.6,
components. and can be established easily by adopting the technique
Proof. Let ordy4 = a and org4 = B. Since there does explained in the proof of Theorems 5.6 and 5.7.

not exist any integers sp,fo > 1 such that Theorem 5.9Letqy > 3 be any prime ands, dp, ...,q be

4% = 1 (mod q%) and # = 1 (mod p©). Then by distinct odd primes such that

. _ 71
Theorem 2.6, we must obtain, grd = aq~" and q)(q(k)O) _ zlqilqumqlr(,qgoflj | > 0. If ordy4 = a; > 1.

ordy14=Bp/?fori=12...randj =23,k ThiS  Then the graphG(p*) has at mostsT_oki + N(I) + 1
shows that there exist + k —1 cycles of lengths non-isomorphic components, whens(l) denote the

a,aq,ad?,....ad*,B,Bp.Bp’....BP"% and BP"%  numper of distinct lcm's of all possible products of the
Next we show that there does not exist any other cycle Oﬁntegersaiqj where, 0<i <rand 1< j <k — 1
I’ 1 — i — —_— .

length> 1. Lett # afBqg~1pi—2 for all i,j. We suppose
that there exist integersu and v such that
ordppd =t, 1<u<r—1, 1<v<k-2 Thentisthe
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