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1 Introduction

Several authors have studied derivations in rings and
near-rings (see for example, [1], [2], [12] and [14], where
further references can be found). Jun and Xin [9] applied
the notion of derivation in ring and near-ring theory to
BCI-algebras, and as a result they introduced a new
concept, called a (regular) derivation, inBCI-algebras.
Using this concept as defined they investigated some of
its properties. As in [9], a self mapd : X → X is called a
left-right derivation (briefly (l , r)-derivation)of X if
d(x ∗ y) = d(x) ∗ y ∧ x ∗ d(y) holds for all x,y ∈ X.
Similarly, a self mapd : X → X is called a right-left
derivation (briefly (r, l)-derivation) of X if
d(x ∗ y) = x ∗ d(y) ∧ d(x) ∗ y holds for all x,y ∈ X.
Moreover, ifd is both(l , r)− and(r, l)−derivation, it is a
derivation onX. Later on, Zhan and Lui [16] introduced
the notion of left-right (or right-left) f -derivation of a
BCI-algebra, and investigated some related properties.
Using the idea of regularf -derivation, they gave
characterizations of a p-semisimple BCI-algebra.
Following [16], a self mapdf : X → X is said to be a
left-right f -derivation or (l , r)- f -derivation of X if it
satisfies the identitydf (x∗y) = df (x)∗ f (y)∧ f (x)∗df (y)
for all x,y∈ X. Similarly, a self mapdf : X → X is said to
be a right-left f -derivation or(r, l)- f -derivation ofX if it
satisfies the identitydf (x∗y) = f (x)∗df (y)∧df (x)∗ f (y)
for all x,y ∈ X. Moreover, if df is both (l , r) and
(r, l)- f -derivation, it is said thatdf is an f−derivation,
where f is an endomorphism. Recently, a number of

research papers have been devoted to the study of various
kinds of derivations in BCI-algebras (see for example,
[4], [5], [6], [7], and [8], where further references can be
found).

In this paper, we introduce the notion of
(θ ,φ)-derivations of aBCI-algebraX and discuss some
interesting results on inside (or outside)(θ ,φ)-derivations
in a BCI-algebraX. In the sequel, we obtain that every
inside (θ ,φ)-derivation of X is isotone if X is
commutativeBCI-algebra. Furthermore, it is also prove
that for any outside (θ ,φ)-derivation d(θ ,φ) of a
BCI-algebraX, d(θ ,φ)(x) = θ (x)∧d(θ ,φ)(x) if and only if
d(θ ,φ)(0) = 0 for all x∈ X.

2 Preliminaries

A nonempty setX with a constant 0 and a binary operation
∗ is called aBCI-algebraif for all x,y,z∈ X the following
conditions hold:

(I)((x∗ y)∗ (x∗ z))∗ (z∗ y)= 0,
(II)(x∗ (x∗ y))∗ y= 0,

(III) x∗ x= 0,
(IV)x∗ y= 0 andy∗ x= 0 imply x= y.

A BCI-algebraX has the following properties: for all
x,y,z∈ X

(a1)x∗0= x.
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(a2)(x∗ y)∗ z= (x∗ z)∗ y.
(a3)x≤ y impliesx∗ z≤ y∗ zandz∗ y≤ z∗ x.
(a4)(x∗ z)∗ (y∗ z)≤ x∗ y.
(a5)x∗ (x∗ (x∗ y)) = x∗ y.
(a6)0∗ (x∗ y) = (0∗ x)∗ (0∗ y).
(a7)x∗0= 0 impliesx= 0.

For aBCI-algebraX, denote byX+ (resp.G(X)) the
BCK-part (resp. theBCI-G part) ofX, i.e.,X+ is the set of
all x∈X such that 0≤ x (resp.G(X) := {x∈X | 0∗x= x}).
Note thatG(X)∩X+ = {0} (see [11]). If X+ = {0}, then
X is called ap-semisimple BCI-algebra.In a p-semisimple
BCI-algebraX, the following hold:

(a8)(x∗ z)∗ (y∗ z) = x∗ y.
(a9)0∗ (0∗ x) = x for all x∈ X.

(a10)x∗ (0∗ y) = y∗ (0∗ x).
(a11)x∗ y= 0 impliesx= y.
(a12)x∗a= x∗b impliesa= b.
(a13)a∗ x= b∗ x impliesa= b.
(a14)a∗ (a∗ x) = x.

Let X be a p-semisimpleBCI-algebra. We define
addition “+” asx+ y = x∗ (0∗ y) for all x,y ∈ X. Then
(X,+) is an abelian group with identity 0 and
x− y = x∗ y. Conversely let(X,+) be an abelian group
with identity 0 and let x ∗ y = x − y. Then X is a
p-semisimpleBCI-algebra andx+ y = x∗ (0∗ y) for all
x,y∈ X (see [13]).

For aBCI-algebraX we denotex∧ y = y∗ (y∗ x), in
particular 0∗ (0∗ x) = ax, andLp(X) := {a ∈ X | x∗ a =
0 ⇒ x= a,∀x∈ X}. We call the elements ofLp(X) thep-
atomsof X. For anya∈ X, letV(a) := {x∈ X | a∗x= 0},
which is called thebranchof X with respect toa. It follows
that x∗ y∈ V(a∗ b) wheneverx ∈ V(a) andy ∈ V(a) for
all x,y ∈ X and alla,b ∈ Lp(X). Note thatLp(X) = {x ∈
X | ax = x}, which is thep-semisimple part ofX, andX
is a p-semisimpleBCI-algebra if and only ifLp(X) = X
(see [10, Proposition 3.2]). Note also thatax ∈ Lp(X), i.e.,
0∗ (0∗ax) = ax, which implies thatax∗ y∈ Lp(X) for all
y ∈ X. It is clear thatG(X) ⊂ Lp(X), andx∗ (x∗ a) = a
anda∗x∈ Lp(X) for all a∈ Lp(X) and allx∈X. For more
details, refer to [3], [10], [11], [13].

3 Generalizations of derivations in
BCI-algebras

In what follows,θ and φ are endomorphisms of aBCI-
algebraX unless otherwise specified.

Definition 1.A self map d(θ ,φ) of a BCK/BCI-algebra X is
called

(1)an inside (θ ,φ)-derivation of X if it satisfies:
(

d(θ ,φ)(x∗ y) =
(

d(θ ,φ)(x)∗θ (y)
)

∧
(

φ(x)∗d(θ ,φ)(y)
))

for all x,y∈ X.
(2)an outside (θ ,φ)-derivation of X if it satisfies:

(

d(θ ,φ)(x∗ y) =
(

θ (x)∗d(θ ,φ)(y)
)

∧
(

d(θ ,φ)(x)∗φ(y)
))

for all x,y∈ X.

(3)a (θ ,φ)-derivation of X if it is both an inside(θ ,φ)-
derivation and an outside(θ ,φ)-derivation.

Note that if θ = φ = f , then the inside
(θ ,φ)-derivation of a BCK/BCI-algebra X is an
(l , r)- f -derivation of a BCK/BCI-algebra X and the
outside(θ ,φ)-derivation of aBCK/BCI-algebraX is an
(r, l)- f -derivation of aBCK/BCI-algebraX. In this case,
d(θ ,φ) is denoted bydf .

Example 1.Consider aBCI-algebraX = {0,a,b} with the
following Cayley table:

∗ 0 a b
0 0 0 b
a a 0 b
b b b 0

Define a map

d(θ ,φ) : X → X, x 7→

{

b if x∈ {0,a},
0 if x= b,

and define two endomorphisms

θ : X → X, x 7→

{

0 if x∈ {0,a},
b if x= b,

and

φ : X → X such thatφ(x) = x for all x∈ X.

It is routine to verify thatd(θ ,φ) is both an inside(θ ,φ)-
derivation and an outside(θ ,φ)-derivation ofX.

Lemma 1([3]). Let X be a BCI-algebra. For any x,y∈ X,
if x ≤ y, then x and y are contained in the same branch of
X.

Lemma 2([3]). Let X be a BCI-algebra. For any x,y∈ X,
if x and y are contained in the same branch of X, then
x∗ y, y∗ x∈ X+.

Proposition 1.Let X be a commutative BCI-algebra. Then
every inside(θ ,φ)-derivation d(θ ,φ) of X satisfies the
following assertion:

(∀x,y∈ X)
(

x≤ y ⇒ d(θ ,φ)(x)≤ d(θ ,φ)(y)
)

, (1)

that is, every inside(θ ,φ)-derivation of X is isotone.

Proof.Let x,y ∈ X be such thatx ≤ y. Since X is
commutative, we havex= x∧y. Hence

d(θ ,φ)(x) = d(θ ,φ)(x∧y)

=
(

d(θ ,φ)(y)∗θ (y∗ x)
)

∧
(

φ(y)∗d(θ ,φ)(y∗ x)
)

≤
(

d(θ ,φ)(y)∗θ (y∗ x)
)

(2)
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Since every endomorphism ofX is isotone, we have
θ (x) ≤ θ (y). It follows from Lemmas1 and 2 that
0 = θ (x) ∗ θ (y) ∈ X+ andθ (y) ∗ θ (x) ∈ X+ so that there
existsa(6= 0) ∈ X+ such thatθ (y∗ x) = θ (y) ∗ θ (x) = a.
Hence (2) implies that d(θ ,φ)(x) ≤ d(θ ,φ)(y) ∗ a. Using
(a3), (a2) and (III), we have

d(θ ,φ)(x)∗d(θ ,φ)(y)≤
(

d(θ ,φ)(y)∗a
)

∗d(θ ,φ)(y)

=
(

d(θ ,φ)(y)∗d(θ ,φ)(y)
)

∗a= 0∗a= 0,

and sod(θ ,φ)(x)∗d(θ ,φ)(y) = 0 by (a7), that is,d(θ ,φ)(x)≤
d(θ ,φ)(y).

Proposition 2.Every inside(θ ,φ)-derivation d(θ ,φ) of a
BCI-algebra X satisfies the following assertion:

(∀x∈ X)
(

d(θ ,φ)(x) = d(θ ,φ)(x)∧φ(x)
)

. (3)

Proof.Let d(θ ,φ) be an inside(θ ,φ)-derivation ofX. Using
(a2) and (a4), we have

d(θ ,φ)(x) = d(θ ,φ)(x∗0)

=
(

d(θ ,φ)(x)∗θ (0)
)

∧
(

φ(x)∗d(θ ,φ)(0)
)

=
(

d(θ ,φ)(x)∗0
)

∧
(

φ(x)∗d(θ ,φ)(0)
)

= d(θ ,φ)(x)∧
(

φ(x)∗d(θ ,φ)(0)
)

=
(

φ(x)∗d(θ ,φ)(0)
)

∗
((

φ(x)∗d(θ ,φ)(0)
)

∗d(θ ,φ)(x)
)

=
(

φ(x)∗d(θ ,φ)(0)
)

∗
((

φ(x)∗d(θ ,φ)(x)
)

∗d(θ ,φ)(0)
)

≤ φ(x)∗
(

φ(x)∗d(θ ,φ)(x)
)

= d(θ ,φ)(x)∧φ(x)

Obviouslyd(θ ,φ)(x)∧ φ(x) ≤ d(θ ,φ)(x) by (II). Therefore
the equality (3) is valid.

If we takeθ = φ = 1X in Proposition2 where 1X is the
identity map, then we have the following corollary.

Corollary 1([ 9]). Every (l , r)-derivation d of a
BCI-algebra X satisfies the following assertion:

(∀x∈ X)(d(x) = d(x)∧x) .

If we take θ = φ = f , then we have the following
corollary.

Corollary 2([ 16]). Every(l , r)- f -derivation df of a BCI-
algebra X satisfies the following assertion:

(∀x∈ X)
(

df (x) = df (x)∧ f (x)
)

.

Proposition 3.For any outside(θ ,φ)-derivation d(θ ,φ) of
a BCI-algebra X, the following are equivalent:

(1)(∀x∈ X)
(

d(θ ,φ)(x) = θ (x)∧d(θ ,φ)(x)
)

.

(2)d(θ ,φ)(0) = 0.

Proof.(1)⇒ (2) is straightforward by takingx= 0.
Assume that (2) is valid. Then

d(θ ,φ)(x) = d(θ ,φ)(x∗0)

=
(

θ (x)∗d(θ ,φ)(0)
)

∧
(

d(θ ,φ)(x)∗φ(0)
)

= (θ (x)∗0)∧
(

d(θ ,φ)(x)∗0
)

= θ (x)∧d(θ ,φ)(x).

This completes the proof.

If we takeθ = φ = 1X in Proposition3 where 1X is the
identity map, then we have the following corollary.

Corollary 3([ 9]). For any (r, l)-derivation d of a
BCI-algebra X, the following are equivalent:

(1)(∀x∈ X)(d(x) = x∧d(x)) .
(2)d(0) = 0.

If we take θ = φ = f , then we have the following
corollary.

Corollary 4([ 16]). For any(r, l)- f -derivation df of a BCI-
algebra X, the following are equivalent:

(1)(∀x∈ X)
(

df (x) = f (x)∧df (x)
)

.
(2)df (0) = 0.

Proposition 4.Let d(θ ,φ) be an inside(θ ,φ)-derivation of
a BCI-algebra X. Then

(1)d(θ ,φ)(0) is a p-atom of X.
(2)(∀a∈ X)(a∈ Lp(X) ⇒ θ (a), φ(a) ∈ Lp(X)) .

(3)(∀a∈ Lp(X))
(

d(θ ,φ)(a) = d(θ ,φ)(0)+θ (a)
)

.

(4)(∀a∈ X)
(

a∈ Lp(X) ⇒ d(θ ,φ)(a) ∈ Lp(X)
)

.

(5)
(

d(θ ,φ)(a+b) = d(θ ,φ)(a)+d(θ ,φ)(b)−d(θ ,φ)(0)
)

for
all a,b∈ Lp(X).

Proof.(1) follows from (3) by takingx= 0.
(2) Let a ∈ Lp(X). Then a = 0 ∗ (0 ∗ a), and so

θ (a) = θ (0 ∗ (0 ∗ a)) = 0 ∗ (0 ∗ θ (a)). Thus
θ (a) ∈ Lp(X). Similarly, φ(a) ∈ Lp(X).

(3) Leta∈ Lp(X). Using (2), (a2) and (a8), we have

d(θ ,φ)(a) = d(θ ,φ)(0∗ (0∗a))

=
(

d(θ ,φ)(0)∗θ (0∗a)
)

∧
(

φ(0)∗d(θ ,φ)(0∗a)
)

=
(

d(θ ,φ)(0)∗θ (0∗a)
)

∧
(

0∗d(θ ,φ)(0∗a)
)

=
(

0∗d(θ ,φ)(0∗a)
)

∗
((

0∗d(θ ,φ)(0∗a)
)

∗
(

d(θ ,φ)(0)∗θ (0∗a)
))

=
(

0∗d(θ ,φ)(0∗a)
)

∗
((

0∗
(

d(θ ,φ)(0)∗θ (0∗a)
))

∗

d(θ ,φ)(0∗a)
)

= 0∗
(

0∗
(

d(θ ,φ)(0)∗θ (0∗a)
))

= 0∗
(

0∗
(

d(θ ,φ)(0)∗ (θ (0)∗θ (a))
))

= 0∗
(

0∗
(

d(θ ,φ)(0)∗ (0∗θ (a))
))

= d(θ ,φ)(0)∗ (0∗θ (a))
= d(θ ,φ)(0)+θ (a).
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(4) It follows directly from (1) and (3).
(5) Let a,b ∈ Lp(X). Thena+ b∈ Lp(X). Using (3),

we have

d(θ ,φ)(a+b) = d(θ ,φ)(0)+θ (a+b)

= d(θ ,φ)(0)+θ (a)+θ (b)
= d(θ ,φ)(0)+θ (a)+d(θ ,φ)(0)+θ (b)−d(θ ,φ)(0)

= d(θ ,φ)(a)+d(θ ,φ)(b)−d(θ ,φ)(0).

This completes the proof.

If we takeθ = φ = 1X in Proposition4 where 1X is the
identity map, then we have the following corollary.

Corollary 5([ 9]). Let d be an(l , r)-derivation of a BCI-
algebra X. Then

(1)d(0) ∈ Lp(X), i.e., d(0) = 0∗ (0∗d(0)).
(2)(∀a∈ Lp(X))(d(a) = d(0)∗ (0∗a) = d(0)+a).
(3)(∀a∈ X)(a∈ Lp(X) ⇒ d(a) ∈ Lp(X)) .
(4)(∀a,b∈ Lp(X))(d(a+b) = d(a)+d(b)−d(0)).

If we takeθ = φ = f in Proposition4, then we have
the following corollary.

Corollary 6([ 16]). Let df be an (l , r)- f -derivation of a
BCI-algebra X. Then

(1)df (0) is a p-atom of X.
(2)(∀a∈ Lp(X))

(

df (a) = df (0)+ f (a)
)

.

(3)(∀a∈ X)
(

a∈ Lp(X) ⇒ df (a) ∈ Lp(X)
)

.

(4)(∀a,b∈ Lp(X))
(

df (a+b) = df (a)+df (b)−df (0)
)

.

Proposition 5.For any outside(θ ,φ)-derivation d(θ ,φ) of
a BCI-algebra X, we have the following assertions:

(1)(∀a∈ X)
(

a∈ G(X) ⇒ d(θ ,φ)(a) ∈ G(X)
)

.

(2)(∀a∈ X)
(

a∈ Lp(X) ⇒ d(θ ,φ)(a) ∈ Lp(X)
)

.
(3)a∈ Lp(X) implies

d(θ ,φ)(a) = θ (a)∗d(θ ,φ)(0) = θ (a)+d(θ ,φ)(0)

for all a ∈ X.
(4)d(θ ,φ)(a+b) = d(θ ,φ)(a)+d(θ ,φ)(b)−d(θ ,φ)(0) for all

a,b∈ Lp(X).
(5)If θ is the identity map on X, then d(θ ,φ) is identity on

Lp(X) if and only if d(θ ,φ)(0) = 0.

Proof.(1) Leta∈ G(X). Then 0∗a= a, and so

d(θ ,φ)(a) = d(θ ,φ)(0∗a)

=
(

θ (0)∗d(θ ,φ)(a)
)

∧
(

d(θ ,φ)(0)∗φ(a)
)

=
(

d(θ ,φ)(0)∗φ(a)
)

∗
((

d(θ ,φ)(0)∗φ(a)
)

∗
(

θ (0)∗d(θ ,φ)(a)
))

=
(

d(θ ,φ)(0)∗φ(a)
)

∗
((

d(θ ,φ)(0)∗φ(a)
)

∗
(

0∗d(θ ,φ)(a)
))

= 0∗d(θ ,φ)(a)

since 0∗d(θ ,φ)(a) ∈ Lp(X). Henced(θ ,φ)(a) ∈ G(X).
(2) For anya∈ Lp(X), we have

d(θ ,φ)(a) = d(θ ,φ)(0∗ (0∗a))

=
(

θ (0)∗d(θ ,φ)(0∗a)
)

∧
(

d(θ ,φ)(0)∗φ(0∗a)
)

=
(

0∗d(θ ,φ)(0∗a)
)

∧
(

d(θ ,φ)(0)∗φ(0∗a)
)

=
(

d(θ ,φ)(0)∗φ(0∗a)
)

∗
((

d(θ ,φ)(0)∗φ(0∗a)
)

∗
(

0∗d(θ ,φ)(0∗a)
))

= 0∗d(θ ,φ)(0∗a) ∈ Lp(X).

(3) For anya∈ Lp(X), we have

d(θ ,φ)(a) = d(θ ,φ)(a∗0)

=
(

θ (a)∗d(θ ,φ)(0)
)

∧
(

d(θ ,φ)(a)∗φ(0)
)

=
(

θ (a)∗d(θ ,φ)(0)
)

∧
(

d(θ ,φ)(a)∗0
)

=
(

d(θ ,φ)(a)∗0
)

∗
((

d(θ ,φ)(a)∗0
)

∗
(

θ (a)∗d(θ ,φ)(0)
))

= d(θ ,φ)(a)∗
(

d(θ ,φ)(a)∗
(

θ (a)∗d(θ ,φ)(0)
))

= θ (a)∗d(θ ,φ)(0) = θ (a)∗
(

0∗d(θ ,φ)(0)
)

= θ (a)+d(θ ,φ)(0)

sinceθ (a)∗d(θ ,φ)(0) ∈ Lp(X) andd(θ ,φ)(0) ∈ G(X).

(4) If a,b∈ Lp(X), thena+b∈ Lp(X). Using (3), we
have

d(θ ,φ)(a+b) = θ (a+b)+d(θ ,φ)(0)

= θ (a)+θ (b)+d(θ ,φ)(0)

= θ (a)+d(θ ,φ)(0)+θ (b)+d(θ ,φ)(0)−d(θ ,φ)(0)

= d(θ ,φ)(a)+d(θ ,φ)(b)−d(θ ,φ)(0).

(5) It follows from (3).

If we takeθ = φ = 1X in Proposition5 where 1X is the
identity map, then we have the following corollary.

Corollary 7([ 9]). For any (r, l)-derivation d of a
BCI-algebra X, we have the following assertions:

(1)(∀a∈ X)(a∈ G(X) ⇒ d(a) ∈ G(X)) .
(2)(∀a∈ X)(a∈ Lp(X) ⇒ d(a) ∈ Lp(X)) .
(3)a∈ Lp(X) ⇒ d(a) = a∗d(0)= a+d(0) for all a∈X.
(4)(∀a,b∈ Lp(X))(d(a+b) = d(a)+d(b)−d(0)).
(5)d is identity on Lp(X) if and only if d(0) = 0.

If we takeθ = φ = f in Proposition5, then we have
the following corollary.

Corollary 8([ 16]). For any(r, l)- f -derivation df of a BCI-
algebra X, we have the following assertions:

(1)(∀a∈ X)
(

a∈ G(X) ⇒ df (a) ∈ G(X)
)

.

(2)(∀a∈ X)
(

a∈ Lp(X) ⇒ df (a) ∈ Lp(X)
)

.
(3)a∈ Lp(X) ⇒ df (a) = f (a)∗df (0) = f (a)+df (0) for

all a ∈ X.
(4)(∀a,b∈ Lp(X))

(

df (a+b) = df (a)+df (b)−df (0)
)

.
(5)If f is the identity map on X, then df is identity on

Lp(X) if and only if df (0) = 0.
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4 Applications

Over the past decade, the theory of derivation in algebraic
structure more specifically in logical algebras becomes
much more interesting research area in mathematics. Our
present research emphasizes on derivations of
BCK/BCI-algebras. BCK-algebras and BCI-algebras are
algebraic formulation of BCK-system and BCI-system in
combinatory logic. As it is well know that the notion of
BCI-algebra is a generalization of a BCK-algebra.
Therefore, most of the algebras related to t-norm base
login such as MTL-algebras, BL-algebras,
Hoop-algebras, MV-algebras and Boolean algebras etc.
are extensions of BCK-algebras i.e. they are subclasses of
BCK-algebras which have lot of applications in computer
science(see [15]).

5 Conclusion

In the present paper, we have considered the notion of
(θ ,φ)-derivations in BCI-algebras and investigated its
useful properties. In our opinion, these definitions and
main results can be similarly extended to some other
algebraic systems such as subtraction algebras,
B-algebras, MV-algebras, d-algebras, Q-algebras etc. In
future we can study the notion of(θ ,φ)-derivations on
various algebraic structures which may have a lot of
applications in different branches of theoretical physics,
engineering and computer science. It is our hope that this
work would serve as a foundation for the further study in
the theory of derivations of BCK/BCI-algebras.

In our future study of (θ ,φ)-derivations in
BCI-algebras, may be the following topics should be
considered:

1.To introduce the concepts of ad(θ ,φ)-invariant inside
(or outside) (θ ,φ)-derivation, a regular inside (or
outside)(θ ,φ)-derivation, andθ -ideal.

2.To provide conditions for an inside (or outside)(θ ,φ)-
derivation to be regular.

3.To find the generalized(θ ,φ)-derivations of
BCI-algebras.

4.To consider conditions for an outside(θ ,φ)-derivation
to be regular.

5.To find more results in (θ ,φ)-derivations of
BCI-algebras and its applications.

6.To find the (θ ,φ)-derivations of B-algebras,
Q-algebras, subtraction algebras, d-algebras etc.
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