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Abstract: In the present paper we introduced the notiori@fg)-derivations of 8BCl-algebraX. Some interesting results on inside
(or outside)( 8, @)-derivations in BCl-algebras are discussed. It is showhftiveany commutativéBCl-algebraX, every insideg(6, ¢)-
derivation ofX is isotone. Furthermore it is also proved that for any oets&l ¢)-derivationd g o) of a BCl-algebraX, dg ¢)(X) =
8(x) Adg,g)(x) if and only ifd g 4 (0) = O for allx € X.
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1 Introduction research papers have been devoted to the study of various
kinds of derivations in BCl-algebras (see for example,
Several authors have studied derivations in rings and4], [5], [6], [7], and [8], where further references can be
near-rings (see for example][[2], [12] and [14], where  found).
further references can be found). Jun and >dhgpplied
the notion of derivation in ring and near-ring theory to In this paper, we introduce the notion of
BCl-algebras, and as a result they introduced a new(6, ¢)-derivations of aBCl-algebraX and discuss some
concept, called a (regular) derivation, BCl-algebras. interesting results on inside (or outsidé) ¢)-derivations
Using this concept as defined they investigated some oin a BCl-algebraX. In the sequel, we obtain that every
its properties. As ing], a self mapd : X — X is called a inside (6, ¢)-derivation of X is isotone if X is
left-right derivation (briefly (I,r)-derivation)of X if commutativeBCl-algebra. Furthermore, it is also prove
d(xxy) = d(x) *xy A xxd(y) holds for all x,y € X. that for any outside (6, @)-derivation dg 4 of a
Similarlly, a self_ mapd : X — X is_ called a right-lgft BCl-algebraX, d(@,(p)(x) =0(x) /\d<9‘¢)(x) if and only if
derivation  (briefly (r,I)-derivation) of X if d(g.¢)(0) =0 forallx € X.
d(xxy) = x*d(y) Ad(x) «y holds for all x,y € X.
Moreover, ifd is both(l,r)— and(r,l)—derivation, it is a
derivation onX. Later on, Zhan and Luillg] introduced P
the notion of left-right (or right-left)f-derivation of a 2 Preliminaries
BCl-algebra, and investigated some related propertiesA
Using the idea of regularf-derivation, they gave
characterizations of a p-semisimple BCl-algebra.
Following [16], a self mapd; : X — X is said to be a
left-right f-derivation or (I,r)-f-derivation of X if it (N ((xxy)* (Xx*x2)) * (zxy) =0,
satisfies the identitd (xxy) = d¢ (X) * f(y) A f(X) xds (y) (I (x* (xxy)) xy=0,
for all x,y € X. Similarly, a self mapls : X — Xissaidto  (lll[)xxx=0,
be a right-leftf-derivation or(r,|)-f-derivation ofX if it (IV)xxy=0andy+*x=0implyx=y.
satisfies the identitgl; (xxy) = f(X) xds (y) Ad¢(X) * f(y)
for all x,y € X. Moreover, if di is both (I,r) and
(r,1)-f-derivation, it is said thatl; is an f—derivation,
where f is an endomorphism. Recently, a number of(al)xx0=x.

nonempty seX with a constant 0 and a binary operation
x is called aBCl-algebraif for all x,y,z € X the following
conditions hold:

A BCl-algebraX has the following properties: for all
X,y,ze X
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(@2)xxy)xz= (X*2Z) *Y.

(@3x <yimpliesxxz<ysxzandzxy < zxX.
(@4)x*Z) % (y*x2Z) < XxV.

(@5) (X (XxY)) = XxV.

(a6)0x (xxy) = (0% X) * (0xy).

(@7x+0= 0 impliesx= 0.

For aBCl-algebraX, denote byX; (resp.G(X)) the
BCK-part (resp. th®CI-G part) ofX, i.e., X is the set of
allxe X such that < x (resp.G(X) := {x e X | 0xx=Xx}).
Note thatG(X) N X, = {0} (see [L1)). If X; = {0}, then
X is called ap-semisimple BCl-algebr#n a p-semisimple
BCl-algebraX, the following hold:

(a8)x*2) * (yx2) = XxV.

(29)0x (0« x) = xfor all x € X.
(@l0xx (0xy) =yx* (0*X).
(allx*xy =0 impliesx=y.
(al2x+a=xxbimpliesa=b.
(al3p*x=bxximpliesa=b.
(aldpx (axx) =X

Let X be a p-semisimpleBCl-algebra. We define
addition “+” asx+y = xx (0xy) for all x,y € X. Then
(X,+) is an abelian group with identity 0 and
Xx—Yy = xxYy. Conversely le{X,+) be an abelian group
with identity O and letxxy = x—y. Then X is a
p-semisimpleBCl-algebra andk +y = xx (0 y) for all
X,y € X (see [L3)).

For aBCl-algebraX we denotex Ay =y (yx*X), in
particular O« (0% X) = ay, andLp(X) :={ae X |xxa=
0 = x=a,Vxe X}. We call the elements dfy(X) the p-
atomsof X. For anya € X, letV(a) := {xe€ X |axx= 0},
which is called théoranchof X with respect ta. It follows
thatx«y € V(axb) wheneveix € V(a) andy € V(a) for
all x,y € X and alla,b € Ly(X). Note thatLp(X) = {x
X'| ax = x}, which is thep-semisimple part oK, andX
is a p-semisimpleBCl-algebra if and only ifLp(X) = X
(see [LO, Proposition 3.2]). Note also thag € Lp(X), i.e.,
0+ (0x* ax) = ax, which implies thaty xy € Lp(X) for all
y € X. Itis clear thatG(X) C Lp(X), andx* (x+xa) = a
andaxx e Lp(X) for all a € Lp(X) and allx € X. For more
details, refer to3], [10], [11], [13].

3 Generalizations of derivations in
BCl-algebras

In what follows, 8 and ¢ are endomorphisms of BCI-
algebraX unless otherwise specified.

Definition 1.A self map ¢ ;) of a BCK/BCl-algebra X is
called '

(1)an inside (6, ¢)-derivation of X if it satisfies:
(dig,g) (xy) = (dig,9)(X) % B(y)) A (@(X) ¥ 6,4 (Y)))
for all x,y € X.

(2)an outside (8, @)-derivation of X if it satisfies:
(dig, g (xxy) = (B(X) x 9,4 (¥)) A (dig.9)(X) * @(Y)))
forall x,y € X.

(3)a (6, @)-derivation of X if it is both an insid¢6, ¢)-
derivation and an outsidéd, @)-derivation.

Note that if 86 = @ = f, then the inside
(6, p)-derivation of a BCK/BCl-algebra X is an
(I,r)-f-derivation of a BCK/BCl-algebra X and the
outside (8, @)-derivation of aBCK/BCl-algebraX is an
(r,1)-f-derivation of aBCK/BCl-algebraX. In this case,
d(eﬂ,) is denoted byl;.

Example IConsider aBCl-algebraX = {0,a,b} with the
following Cayley table:

Define a map

bif xe {0,a},

d(9’¢):X—>X, XH{OIf X:b,

and define two endomorphisms

0if xe {0,a},

e:X%X’XH{bifx:b,

and
@: X — X such thatp(x) = x for all x € X.

Itis routine to verify thatl g o) is both an insid¢6, ¢)-
derivation and an outsid®, ¢)-derivation ofX.

Lemma 1([3]). Let X be a BCl-algebra. For any,y € X,
if X <y, then x and y are contained in the same branch of
X.

Lemma 2([3]). Let X be a BCl-algebra. For any,y € X,
if x and y are contained in the same branch of tken
XY, YrXE Xy.

Proposition 1Let X be a commutative BCl-algebra. Then
every inside(6, g)-derivation dg 4 of X satisfies the
following assertion:

(VX,y € X) (X <y= d(@,(p) (X) < d(9,(p) (y)) ) (1)

that is, every insidé6, ¢)-derivation of X is isotone.

ProofLet x,y € X be such thatx <y. Since X is
commutative, we have= xAy. Hence

d(a,¢) (X) = dig,p)(XAY)
= (dig,¢) () * B(y* X)) A (@(y) * dig,g) (Y X))
< (dg,¢) (¥) * B(y*X))
2
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Since every endomorphism of is isotone, we have

6(x) < B(y). It follows from Lemmasl and 2 that
0=0(x)*0(y) € Xy andB(y) *
existsa(# 0) € Xy such thatd(y=x) = 8(y) * 6(x) = a.
Hence ) implies thatd g g)(X) < d(g¢)(y) *a Using
(a3), (a2) and (I11), we have

d(0,¢)(X) * d(g.¢) (¥) < (dig,¢)(¥) * )
= (dg,¢) (¥) *

and sadg ) (X) *dg,¢) (Y) =
die.p)(¥)-

(8.9) (Y)

0 by (a7), that iSd(gm) (X) <

Proposition 2Every inside(8, ¢)-derivation dg 4 of a
BCl-algebra X satisfies the following assertion:

9N A QX)) . 3)

ProofLetd g 4 be an inside 6, g)-derivation ofX. Using
(a2) and (a4), we have

d(97(p) (X) = d(g ?) (X* O)
= (dia.9)(%) % 8(0)) A (@(X) *d(,4)(0))
6.0

(VX S X) (d(97(p) (X) = d(gv

(d
=die.g)

Obviouslyd(g ) (X) A @(X) < d(g ¢)(X) by (I). Therefore

the equality 8) is valid.

If we take@ = ¢ = 1x in Propositior2 where X is the
identity map, then we have the following corollary.

Corollary 1([9]). Every (I,r)-derivation d of a
BCl-algebra X satisfies the following assertion:

(WVx e X) (d(x) =d(x) AX).

If we take 6 = ¢ = f, then we have the following

corollary.

Corollary 2([16]). Every(l,r)-f-derivation ¢ of a BCI-

0(x) € X+ so that there

oY) xa=0xa=0,

Proof(1) = (2) is straightforward by taking = 0.
Assume that (2) is valid. Then

die,g) (X) = d(g,)(x*0)
= (8(x) *d(g,9)(0)) A (dg,9)
= (8(x)*0) A (dig,)(x) +0)
=0(X)A d(gy(p) (x).

This completes the proof.

(X) * @(0))

If we takeB = ¢ = 1x in PropositiorB where X% is the
identity map, then we have the following corollary.

Corollary 3([9]). For any (r,l)-derivation d of a
BCl-algebra X the following are equivalent:
(1)(vx € X) (d(x) =xAd(X)).
(2)d(0) =0.

If we take 8 = ¢ = f, then we have the following
corollary.

Corollary 4([ 16]). For any(r,1)- f-derivation ¢ of a BCI-

algebra X the following are equivalent:

(1)(vx € X) (di (x) = f(x) Ads(X)).

(2)dt(0) = 0.

Proposition 4Let dg ) be an inside(8, ¢)-derivation of

a BCl-algebra X Then

(1)d(g,4)(0) is a p-atom of X

(2)(vaeX)(aeLp(X) = ( a), ¢(a) € Lp(X)).

) (Vae Lp(X)) (d(e () =dig,(0)+6(a)).

(4 (vaeX) (aeLp(X) = dig g (@) €Lp(X)).

(5)(d(g,9)(@+b) = d(g ¢ (a) +dg,¢)(b) — d(g.4)(0)) for
alla,b e Lp(X).

Proof(1) follows from @) by takingx = 0.

(2) Let a € Lp(X). Thena = 0x(0xa), and so
6(a) = 6(0« (0+a) = 0=x (0=x B(a). Thus
B(a) € Lp(X). Similarly, ¢p(a) € Lp(X).

(3) Leta e Lp(X). Using (2), (a2) and (a8), we have

d(g q,)(a) = d( )(0* (O*a))
= (d, 8(0xa)) A (¢(0) xdg (0 a))
(d 8(0xa)) A (0% d(g p)(0xa))
(O*d (6,9) O*a))*((O*d (0,9 (0%a))*

(d(g.(0) % 8(0xa)))

algebra X satisfies the following assertion: = (0xd(g,¢)(0xa)) * ( (0 (dig,)(0) + B(0xa))) *
d(gy(p)(o*a))
(VX (S X) (df (X) = df(X) A f(X)) . — 0« (0* (d(e,@ (0) % 9(0* a)))
Proposition 3For any outside(8, ¢)-derivation dg 4 of =0 (0% (dig,¢(0) % (8(0) x 6(a))))
a BCl-algebra X the following are equivalent: = 0 (0 (d(9,4)(0) * (0% 6(a))))
(L)(Vx € X) (d(,9) ) = O(x) Ade.0)(X)) - =di9,¢)(0)+ (0% 6(a))
(2)di6,4)(0) = 0. — dip.y)(0)+6(a)
(@© 2015 NSP
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(4) It follows directly from (1) and (3). since 0« dg ¢) (@) € Lp(X). Henced g ¢ (a) € G(X).
LS) Leta,b € Ly(X). Thena+b € Lp(X). Using (3), (2) For anya € Lp(X), we have
we have
di6.9)(@) = di6,) (0% (0% 2))
d +b)=d 0)+6(a+b
_(QSL(aKO))jL e(gﬁ(eib) o = (6(0) *d (6.9)(0%2)) A (di6,)(0) * 9(0+a))
o @ * * * *
~ d0.)(0)+ 0(a) +dio./(0) + 6(5) ~dyo.(0) Eg ent ?) a))(d‘( (;(0) o 2) e
= d(g,(p)(a) + d(g!(p)(b) — d(e,(p)(o)- (O . (O a(j)(p)) Q@
This completes the proof. =0xd(g q)(0*a) € (E)F;q();().

If we takeB = @ = 1x in Propositiond where X is the

: . , (3) For anya € Lp(X), we have
identity map, then we have the following corollary.

c L da,¢)(8) = dg,¢)(@x0)
orollary 5([9]). Let d be an(l,r)-derivation of a BCI-
algebra X Then = (6(a) xd(g,¢)(0)) A (d(g.¢(a) * (0))
(1)d(0) € Lp(X), i.e., d(0) = 0+ (0+d(0)). = (6(a) +d(6,9)(0)) A (de.g)(a) < 0)
(2)(va € Ly(X)) (d(a) = d(0) < (0+2) — d(0)+ ) = (dio.g)(3) %0) = ((d(o.¢)(2) * 0) * (6(2) * d(6.4)(0)))
3)(Vae X)(ac Lp(X) = d(a) € Lp(X)).
E&vgie)l_( (X ))FE( (; b) (a)f)i%&))_d(on. =di0.)(@) * (dio.g) (@) * (6(2) *do.4)(0)))
— 0() 0(9.4)(0) = 6(a) (0% dg.4)(0))

If we take 8 = @ = f in Propositiond, then we have
the following corollary. =0(a) +d,4)(0)
)

Corollary 6([16]). Let di be an (I,r)-f-derivation of a  Since6(a)«d(g 4)(0) € Lp(X) anddg,4)(0) € G(X).

BCl-algebra X Then (4) If a,b € Lp(X), thena+b € Lp(X). Using (3), we
(1)ds(0) is a p-atom of X have

(2)(Vae Lp(X)) (d(a) = d(0) + f (). dig,¢(a+b) =6(a+b)+di ¢)(0)

(3)(Vae X) (a€Lp(X) = df(a) € Lp(X)). = 6(a) + 6(b) +dg,4)(0)

(4)(Va,b e Lp(X)) (dr (a+b) = df(a) +dr (b) — dr(0)) . = 0(a) +d(g,¢)(0) + 8(b) + d(g,4)(0) — (9,4 (0)
Proposition 5 For any outside(8, )-derivation dg 4 of = d(g,p)(8) +d(g,p)(b) — (g, (0).

a BCl-algebra X we have the following assertions:
(D(VaeX) (ae G(X) = dig,q (@) € G(X)).

(2)(Vae X) (aeLp(X) = dgg (@) € Lp(X)).
(3)ae Lp(X) implies

(5) It follows from (3).

If we take8 = @ = 1x in Propositiorb where % is the
identity map, then we have the following corollary.

Corollary 7([9]). For any (r,l)-derivation d of a

die.¢)(@) = 6(a) *dg ¢ (0) = 6(a) + g4 (0) BCl-algebra X we have the following assertions:
foralla e X. Egga € Q Ea € (L;(( )) = dd(?))e ?-()8()).)
_ _ aeX)(ae = d(a) e :
(4)25%2(5:(-)*(3)).— di6,¢)(@) +dg,¢)(b) — g, (0) for all g:g?ve pr( L) (:;()(;Ed)( a;)d(o&(:)aig((t()))) fo(;(%;)a X,
; ; : o ; abe a+b)y=d(a)+ — .
P00 and oy gy (0) 0. 04O (e isidentiy on b(x) fand oniy ifd0) ~0
’ If we take 8 = @ = f in Proposition5, then we have
Proof(1) Leta € G(X). Then G«a=a, and so the following corollary.
die,)(a) = d(g 4 (0% a) Corollary 8([ 16]). For any(r,|)-f-derivation & of a BCI-
N ’(6(0) o 7 (@) A (d6.0)(0) * 9(a) algebra X we have the following assertions:
- (0.9) (6.9)() @ (D(vaeX)(ae G(X) = di( )e G( ))
(d(07(p)(o) * (p(a‘)) * ((d(G,(p) (0) * qo(a)) * (2)(Va c X) (a c Lp(x) = df )
(6(0)*d(g,¢)(a))) (3)a”e Lp(>)§) = df(a) = f( )*df( ) f(a)+d¢(0) for
allaeX.
(o (0) = 0() + { (Ao (0« 0(@) = (@)(va,b & Lp(X)) (dy (a-+b) = di (a) + ds b) — d(0)).
(0xdig.q(a))) (5)If f is the identity map on Xthen & is identity on
— 0%d(5,4(a) Lp(X) if and only if dk (0) =
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4 Applications [2] H. E. Bell and G. Mason©On derivations in near-rings,
Near-rings and Near-fields, North-Holland Math. Studies

Over the past decade, the theory of derivation in algebraic __ 137(1987), 31-35.

structure more specifically in logical algebras becomes [3]S- A. Bhatti, M. A. Chaudhry and B. AhmadOn
much more interesting research area in mathematics. Our g?sssg;:gtlon of BCl-algebrasMath. Japon.34 (1989),
present research emphasizes on derivations of P . -
BCK/BCl-algebras. BCK-algebras and BCl-algebras are %] Sl. gﬂt;igdigs?gdcférvd i!-rol?é’dorjb\tr;glez\i/satl(\)lglsu%fBeCIZ-O 1
algebraic formulation of BCK-system and BCI-system in Ar%icle D 872784 (2012) fgpages ysIS, '
E%Tglgifrg logic. Age';e'fa‘l’z’zea'i'ﬁ'é’;o"gfth:t tgglzf’;;ggb?; [5] G. Mudiuddin and A. M. A-rogi,On (. B)-derivations

in BCl-algebras, Discrete Dynamics in Nature and Society,
Therefore, most of the aIQEbraS related to t-norm base Volume 2012. Article ID 403209 (2012) 11 pages.

login ~ such ~as  MTL-algebras,  BL-algebras, [6]G. Muhiuddin, Abdullah M. Al-rogj, Y.B. Jun and Y. Ceven,

Hoop-algebras, MV-algebras and Boolean algebras etc. " on Symmetric Left Bi-Derivations in BCl-algebrdat. J.

are extensions of BCK-algebras i.e. they are subclasses of  math. Math. Sci2013(2013), Article ID 238490, 6 pages.

BCK-algebras which have lot of applications in computer [7] G. Muhiuddin and Abdullah M. Al-rogiOn left (theta, phi)-

science(seelp)). derivations in BCl-algebras]. Egyptian Math. Soc. (2013)
(In Press).

[8] YB Jun, CH Park, Applications of soft sets in ideal theofy
BCK/BCl-algebras, Information Sciences, Elsevier, (2008

[9] Y. B. Jun and X. L. Xin,On derivations of BCl-algebras,

) ) Inform. Sci.159(2004), 167-176.

In the present paper, we have considered the notion of10] . B. Jun, X. L. Xin and E. H. RohThe role of atoms in

(8, p)-derivations in BCl-algebras and investigated its BCl-algebras Soochow J. Math30 (2004), 491-506.

useful properties. In our opinion, these definitions and[11] Y. B. Jun and E. H. RohOn the BCI-G part of BCI-

main results can be similarly extended to some other  algebrasMath. Japon38(1993), 697-702.

algebraic systems such as subtraction algebrag12] K. Kaya, Prime rings witha derivations,Hacettepe Bull.

B-algebras, MV-algebras, d-algebras, Q-algebras etc. In  Mat. Sci. & Engineerind.6-17(1987-1988), 63-71.

future we can study the notion @B, ¢)-derivations on  [13]D. J. Meng, BCl-algebras and abelian groupsviath.

various algebraic structures which may have a lot of  Japon32(1987), 693-696.

applications in different branches of theoretical physics [14] E. PosnerDerivations in prime ringsProc. Amer. Math.

engineering and computer science. It is our hope that this _ S0c.8 (1957), 1093-1100. _ o

work would serve as a foundation for the further study in [15] J E. Whitesitt:Boolean algebras and its applicatiori¥ew

the theory of derivations of BCK/BCl-algebras. York, Courier Dover Publications (1995).
[16] J. Zhan and Y. L. LiuOn f-derivations of BCl-algebras,

Int. J. Math. Math. Sci2005(2005), 1675-1684.

5 Conclusion

In our future study of (6,¢)-derivations in
BCl-algebras, may be the following topics should be
considered:

G. Muhiuddin is
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He received a Ph.D. degree
4.To consider conditions for an outsitig, )-derivation o Eatﬁgrrr?aticMaallthrg?eeglrii a':;‘s
to be regular. . o include Algebras related to
5.To find more results in (6,¢)-derivations of |o5ic (BCK, BCI, BCC-algebras, Hilbert algebras,
BCI-a!gebras and its appl[cat!ons. implication algebras), Fuzzy logical algebras and
6.To find the (6,¢)-derivations of B-algebras, cateqory theory. He has published a number of research
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1.To introduce the concepts ofdgg 4 -invariant inside
(or outside) (8, p)-derivation, a regular inside (or
outside)(6, g)-derivation, and-ideal.

2.To provide conditions for an inside (or outsidé) @)-
derivation to be regular.

3.To find the generalized(6,¢)-derivations of
BCl-algebras.
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