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Abstract: In most recent clinical studies, the focus is on estimaticth® proportion of patients who are cured and who will theref
never experience the event of interest again. This artiolestigates a survival model with cure fraction and chamyet effect based
on the bounded cumulative hazard model (BCH). The maximugiitiood approach to estimate the unknown parameters & use
A major difficulty here is that the likelihood function is ndifferentiable with respect to a change point parameteraddress this
problem a smoothed likelihood approach is proposed. Stioulatudies have been conducted in this study to assesitierey of

the estimators under various practical situations. Nurtaéresults show the satisfying performance of the propeséichates and that
the proposed model represents a useful addition to thatitex of the BCH model.
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1 Introduction However, in many applications a smooth link function can
not describe the possible relationships between the

The survival cure rate models are usually used forcovariates and the failure rate or cure probability. For

analyzing life time data, particularly in cancer studies in example, cancer incidence rates remain relatively stable

which a proportion of patients are cured and will not in young people but change drastically after a certain age

experience the adverse event. In the literature there arthreshold 5. So far, a number of studies discussing the

two major approaches to modelling survival cure data.survival model under change-point scenario have been

The first one is the mixture model which was proposed byreleased to the literature (e.g.1617,18]). However,

[1] to study cases where a proportion of the patients aréhese models are not appropriate for modeling data with a

cured. This model has been studied extensively by manygure fraction. Recently,10] incorporated change-point

authors including 2,3,4,5,6] among others. The second effect in mixture cure models. In this paper, we develop a

approach to modeling the cure rate appeared in the workBCH model that accommodates a change-point effect in

of [7,8]. In this approach, the survival times are modeledcovariates. The estimation method is based on a

based on the assumption that the treatment leaves thgarametric maximum likelihood approach in which

subject with a number of cancer cells that may growlognormal distribution is used to model failure time for

slowly over time and produce a detectable cancer. Thighe uncured subjects.

model is known as the non-mixture cure model or the

bounded cumulative hazard model (BCH). Many

researchers have already adopted this approach to cure

fraction modeling (e.g.9,10,11,12,13,14)]).

The existent BCH models assume that the covariates act

smoothly on the cure probability or the survival rate.
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2 The bounded cumulative hazard model 3 The bounded cumulative hazard model
(BCH) with a change point effect

In 1999, Chen§] defined the BCH model as follows. Let " the model with change-point covariates we are dealing
N denote the number of carcinogenic cells that remainWith covariates that may be dichotomized according to
active and capable of developing a cancer for e SOMe unknown threshold. For now, assukies scalar
subject. Assume thall has a Poisson distribution with a @nd suppose that the change-point of the model depends
mean ofA. LetZj, j = 1,2,...,N express the random time O X, and that at this point the survival rate or cure

: ’ T bability takes a sudden jump or fall. ¥ < T, then
for the j!" cancer cell which can produce a detectableP"® o
cancer mass whei is assumed to be independently and ”(é) ~ pl_and|S(X)th: SL Wré'le if X > 1, thenn (X) = p
identically distributed with (t). Then, the time to relapse andS(X) = . In other words,
of cancer can be defined by the random variable _

. ) X . NX)=pIl(X<1)+p2d(X>1) and

T =min{Zj,j =1,2,...,N}. The survival function for the SX) = S (X < T)+ Sl (X > 1),

population is given by
The complete observed data afg;,d,X) and the

S(t) = P[No cancer by timelt unknown parameters are defined by
=PIN=0]+P[Z1>t,Zo>1t,--- ,Zy >t,N > 1] 6 = (p1, P2, M1, 2,01,02,T). Hence, the likelihood
e ® (S(t))N [exp(—)\ ))\N} function under changepointr is defined as:

=1 N L1(8) = [ (1= loatpy) a 8.3 ) "
= exp(~AF(t)) (=[] VTR
_ nF®) i 1(X>T1)
T W % ([~ log(p2) f2(6.3)]2 32 ™) )
. f.""hgre” is the probability of cure, which can be \yi the classical likelihood approach, the likelihood
elined as function @) is not differentiable with respect to the
o - o unknown change point parameter. Consequently,
n= tlm S{t) =P(N =0) =exp(—2). @ standard Taylor series methods cannot be used.

Let y; refer to the survival time for individual, which

may be right censored, theyy = min(T;,Ci) in which 4 Smoothed likelihood approach

Ti = min{Z1,Z2,---,Zn}, andC; is a right-censored

variable. Letd represent the censoring indicator, which To handle the critical problem of nersmoothing of the
equals 1 ify; is failure time and O if it is right censored. |ikelihood function, we approximate the indicator
Considering that censoring times are independent angunctions!(X < 1) andI(X > T) by using a continuous
non-informative, 8,20,21] showed that the likelihood and differentiable functioi (.) which satisfies:

function for the model takes the form lim K(uy=0 and IlimK(u)=1. By definition,
u——oo u—o0
n 3 Kn(u) = K(u/hn) andhy is a small positive constant that
Li = ni=1[_ log(m) f(yi)| Svi)- (3)  depends on the sample sizE9[. A special case of this
class of function is the logistic function, where
We can further incorporate covariatés into the cure expu/hp)

probability and the distribution function of the uncured Kn(4) =77 expu/hn]’ Thus, the smoothed likelihood

subjects. Moreover, a parametric model can be specifiefnction for the observed datg, &, X;) is

for the survival time. In this paper, we consider a

lognormal distribution to fit the failure time of uncured B n 18 FL(O.y) Kn(T=X;)
subjects. The density and cumulative distribution functio Ln(6) = H ([_ log(ps) f1(6,¥1)]% Py ) X
(cdf) for this distribution are: - )17Kn(rfxi)

< ([ log(pa) 12(0.y) 1 P . ®

f(y) = exp{— (Iny—u)z}
yo/21m 202 and the log-the likelihood function can be written as
n
and In(8) = 3 [Kn(T=X)12(8, )+ {1—Kn(T—X)}12(0, W),
i=
Fo)—o ("H), | ©)
g wherew; = (y;, &) fori=1,2,--- .nand
respectively. 15(6,w) = &log(—logp;) +1og f;(6,yi)] +F;(6,yi) (log pj),
(@© 2015 NSP

Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.9, No. 1, 69-74 (2015) www.naturalspublishing.com/Journals.asp NS = 71

Table 1.1 Parameters estimates based on logistic function for
two censoring rates

for J =12 X ~ Uniform(0, 1)

The maximum likelihood estimation of the parameters _Scenario1 True Mean Median  SE  MS[E000
Moderate censoring5%— 40%)

can be obtained by usmg'the Newteﬁaphspn iterative =300 p 04 0.381 0381 0037 1730
procedure. The smoothing parametdp is a key w03 0.322 0324 0009  0.565
component of the log-likelihood function and it can o ol 01 0100 oo 02
therefore be defined as a functionrothat approaches 0. Ez 04 0384 0384 0010 0.356
0y 0.1 0.106 0.105 0.006 0.072
T 0.5 0.501 0.500 0.055 3.026
n=500 p1 0.4 0.383 0.383 0.028 1.073
I 0.3 0.320 0.321 0.008 0.464
. B B o1 0.1 0.106 0.106 0.005 0.061
5 Simulation studies P, 03 0317 0318 0027  1.018
Lo 0.4 0.387 0.386 0.008 0.233
. . . . o} 0.1 0.105 0.105 0.005 0.050
Simulation studies have been conducted to examine the . 05 0.497 0499 0048 2313

performance of the proposed method. Two simulation  Heavy censoring60%-65%)

scenarios for two censoring rates were considered. The 17300 Ei P o Py B
first scenario used a uniform (0, 1) random variable with a o, 01 0.106 0106 0009 0117
change-point at 0.5 while the second scenario employed a Pz 03 0.318 0319 0048  2.628

. . U 04 0.386 0.386 0.015 0.421
truncated normal (1, 1, 0, 2) random variable with a o 01 0.106 0106 0009 0117
change-point at 1. The random survival times were T 05 0.508 0505 0071  5.105
generated by inverting the survival functigtt) = nF®. AR o o3 P
Thus, a uniform (0, 1) random variable u was generated g 01 0.106 0105 0007  0.085
and the subject is cured if < n. Otherwise, the failure EZ 82 82; 82;3 8-822 é;ig
time, y, was set to the solution ef= nF®. Censoring g 01 0.105 0.105  0.007 0.074
times followed a lognormal distributiofyt, o), where the r 05 0508 0506 0055  3.089

values ofu and o would be adjusted to get the desired
approximate censoring rate in the data.
Summary statistics based on 1000 replications of sampl

Table 1.2. Parameters estimates based on logistic function for
dwo censoring rates

sizes of 300 and 500 subjects are presented in Tables 1.1 X ~tN(1,1,0,2)
and 1.2. The standard errors (SE) and the mean square(il\sﬂc‘znaflo2 TFSU; - Mean Median SE  MSE000
error (MSE) are reported along with the average and the Mol oo, 0385 0037 1513
median of the estimates for each parameter. p 03 0.313 0.313  0.010 0.269
The simulation studies suggest that the proposed method o 01 0.104 0104 0.007  0.065
. . p2 03 0.311 0.312 0.032 1.145
has very small biases as the average and median of the I 0.4 0390 0390 0011 0221
estimates are very close to the respective true values. The o 01 0.104 0104 0007  0.065
estimation of the change-point is quite accurate and 1500 by o ppad P A e et
stable throughout all settings. The SE values, as well as w03 0.311 0311 0008  0.185
the MSE values decrease with the increase in sample o 01 0.104 0.104 0005  0.041
: ; . : p2 03 0.309 0.310  0.029 0.922
sizes. With respect to the censoring rate, the estimator of b 04 0,301 0392 0008 0145
6 performs well for low levels of censoring. o 01 0.103 0104 0005  0.034
The simulation studies have also been conducted with Censo;ﬂ@; 65% 0.989 0994 0061 3842
. . . . . 0— ()
different choice of the smoothing functidf(u), where it 00 ;L 04 0.390 0390 0048 2404
was chosen as the cumulative distribution funct|on of the w03 0.313 0312 0015 0394
o 01 0.103 0.103 0.010 0.109
standard normal distributior(u) = T e “Zdt P, 0.3 0.319 0317 0050  2.861
(2m)z /- Hp 0.4 0.390 0.390 0016  0.356
The results are presented in Table 2.1 and 2.2. Note that 02 01-1 g-glgg 8-;3; 8-332 8-8327
the estimated values are very similar for the two different o0 5 04 0.390 0393 0042 1864
K(u), and thus the precision of the estimates are not w03 0.310 0.310  0.012 0.244
it i i i o 01 0.103 0.103  0.008 0.073
sensitive to the choice of the smoothing function. o 03 0.309 0310 0040 1681
U 0.4 0.392 0.392 0.012 0.208
o, 01 0.104 0.104 0.007 0.065
T 1 0.992 0.995 0.074 5.540
6 Conclusion
In this paper, a change point cure model for censored data
is proposed. It extends the existing BCH models by
allowing a covariate to have non- smoothly effect on the
survival rate and cure probability. To estimate the
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Table 2.1. Parameters estimates based on logistic function for

two censoring rates

X ~ Uniform(0, 1)

Scenario 1 True Mean Median SE MSHEO000
Moderate censoringB5%— 40%)
n=300 pp 04 0.388 0.388  0.036 1.44
up 03 0.313 0.313 0.011 0.29
o 01 0.104 0.103  0.007 0.065
pp 03 0.313 0.313  0.036 1.465
U 0.4 0.391 0.391 0.011 0.202
g 0.1 0.104 0.104  0.007 0.065
T 05 0.496 0.497  0.056 3.152
n=500 pp 04 0.388 0.388  0.029 0.985
pp 03 0.312 0.312  0.008 0.208
o 0.1 0.104 0.104  0.006 0.052
pp 03 0.312 0.312  0.029 0.985
U 04 0.392 0.392  0.008 0.128
g 01 0.103 0.102  0.006 0.045
T 05 0.497 0.494  0.043 1.858
Heavy censoring60%— 65%)
n=300 pr 04 0.388 0.387  0.052 2.848
pp 03 0.314 0.314 0.015 0.421
o 01 0.103 0.103  0.009 0.090
p2 03 0.313 0.311  0.054 3.085
U2 0.4 0.391 0.390 0.016 0.337
g 01 0.103 0.103 0.011 0.130
T 05 0.506 0.508 0.072 5.220
n=500 pp 04 0.388 0.387 0.040 1.744
pp 03 0.312 0.312 0.012 0.288
op 01 0.103 0.104 0.007 0.058
p2 03 0.308 0.307 0.041 1.745
U 0.4 0.393 0.393 0.013 0.218
g 01 0.103 0.102  0.008 0.073
T 05 0.505 0.502  0.052 2.729

Table 2.2. Parameters estimates based on logistic function for

two censoring rates

parameters in the model, we used a modified objective
function so as to eliminate the non-smoothness problem
of the likelihood function and then the maximum
likelihood method was employed. The efficiency of the
estimation procedure was examined via simulation
studies. It was shown that the proposed parametric
estimation method has a good performance in the
situations considered. In addition, it was found that the
estimation method is more efficient when the censoring
rate is low than when it is high.
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Appendix

General considerations For j = 1,2, define the density
and distribution functions as follow:

1 1/Iny—y 2
J

X ~tN(1,1,0,2)
Scenario 2 True Mean Median SE MSE000
Moderate censoring35%— 40%) |ny_ Ui
n=300 p; 04 0.393 0.394 0038 1493 Fi(6,t)=® —2 M)
w03 0.306 0307 0011  0.57 AN lof
o 01 0.102 0.102 0.008  0.068
Ez 8}31 8-282 8'282 8'821 01-14557 Letw; = (y;, &) fori=1,2,...,n. Write the censored data
o 01 0.102 0.102 0007  0.053 log likelihood corresponding té; (6,y) andF;(6,y) as
T 1 0.991 0993 0076 5857
n=500 p; 0.4 0.398 0.397 0030  0.904 [:(8) = &[loa(—logp:i ) +log fi (0.vi)+Fi(0.v:)(logp:
e 0398 g3er 00 0904 j(8) = &[log(—logp;) +log f;(6.i)] +F;j(6.yi)(log pj),
o 01 0.102 0.102 0.006  0.040 . ial -
;03 0.307 0308 0028 0833 for j = 1,2. The averaged log-likelihood is
H 0.4 0.395 0.395 0008  0.089
o, 01 0.102 0.102  0.005 0.029 In(8) =231 [Kn(T — X)11(8,W) + {1 — Kn(T — X) H2(6,wW))].
Tl 0.991 0995 0057  3.330
Heavy censoring60%- 65%) Next we use the definition of the two functions
n=300 p; 04 0.393 0.391 0055  3.074 Iny— u
w03 0.306 0.305 0015  0.261 ¢ ( ——= ) andG(1,X) as:
o 01 0.101 001 0010  0.101 o ’
P, 0.3 0.310 0.307 0053  2.909
o 0.4 0.394 0.394 0017  0.325 2
g, 0.1 0.103 0.103 0010  0.109 Iny—u 1 1/Iny—pu
T 0.989 0997 0101  10.322 ¢ o = \/Z_exp 2\ T
n=500 p; 0.4 0.399 0.393 0039 1522 n
w03 0.306 0.306 0012  0.180
o 01 0.101 0.102  0.008 0.065 G(1,%)=2—)Kna(T=X)+ (] —D{1-Kn(T—X)}, j=1,2.
pp 0.3 0.307 0.305 0040  1.649 , ) ,
H 04 0.394 0395 0012  0.180 Write the score equations foy(0) with respect taf as
o, 01 0.102 0.102 0008  0.068
r 1 0.975 0977 0.075  6.250 Ra(0) = (Rupy (8); Ruyy (8), Rugy (8), Rupy (8), Reyiy (8). Rua, (8), Rur (6) )
= (Rop(6).Ruc(8)),  forj=12
Iny —yj
L2 I )
0)=n'Y |G(1,% + I
Foe; (0) = (5.%) x pj(logp;) pj
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| ¢ (P5")
R () =n"* 3 |G(T.X) x a(“y' “’)—(Iogpnxf‘j”
i= l

whereg (.) is the probability density function (PDF) of the
standard normal distribution.
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