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Abstract: In most recent clinical studies, the focus is on estimation of the proportion of patients who are cured and who will therefore
never experience the event of interest again. This article investigates a survival model with cure fraction and change-point effect based
on the bounded cumulative hazard model (BCH). The maximum likelihood approach to estimate the unknown parameters is used.
A major difficulty here is that the likelihood function is notdifferentiable with respect to a change point parameter. Toaddress this
problem a smoothed likelihood approach is proposed. Simulation studies have been conducted in this study to assess the efficiency of
the estimators under various practical situations. Numerical results show the satisfying performance of the proposedestimates and that
the proposed model represents a useful addition to the literature of the BCH model.
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1 Introduction

The survival cure rate models are usually used for
analyzing life time data, particularly in cancer studies in
which a proportion of patients are cured and will not
experience the adverse event. In the literature there are
two major approaches to modelling survival cure data.
The first one is the mixture model which was proposed by
[1] to study cases where a proportion of the patients are
cured. This model has been studied extensively by many
authors including [2,3,4,5,6] among others. The second
approach to modeling the cure rate appeared in the works
of [7,8]. In this approach, the survival times are modeled
based on the assumption that the treatment leaves the
subject with a number of cancer cells that may grow
slowly over time and produce a detectable cancer. This
model is known as the non-mixture cure model or the
bounded cumulative hazard model (BCH). Many
researchers have already adopted this approach to cure
fraction modeling (e.g., [9,10,11,12,13,14]).
The existent BCH models assume that the covariates act
smoothly on the cure probability or the survival rate.

However, in many applications a smooth link function can
not describe the possible relationships between the
covariates and the failure rate or cure probability. For
example, cancer incidence rates remain relatively stable
in young people but change drastically after a certain age
threshold [15]. So far, a number of studies discussing the
survival model under change-point scenario have been
released to the literature (e.g., [16,17,18]). However,
these models are not appropriate for modeling data with a
cure fraction. Recently, [19] incorporated change-point
effect in mixture cure models. In this paper, we develop a
BCH model that accommodates a change-point effect in
covariates. The estimation method is based on a
parametric maximum likelihood approach in which
lognormal distribution is used to model failure time for
the uncured subjects.
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2 The bounded cumulative hazard model
(BCH)

In 1999, Chen [8] defined the BCH model as follows. Let
N denote the number of carcinogenic cells that remain
active and capable of developing a cancer for theith

subject. Assume thatN has a Poisson distribution with a
mean ofλ . Let Z j, j = 1,2, ...,N express the random time
for the jth cancer cell which can produce a detectable
cancer mass whereZ j is assumed to be independently and
identically distributed withF(t). Then, the time to relapse
of cancer can be defined by the random variable
T = min{Z j, j = 1,2, ...,N}. The survival function for the
population is given by

S(t) = P[No cancer by time t]

= P[N = 0]+P[Z1 > t,Z2 > t, · · · ,ZN > t,N ≥ 1]

= exp(−λ )+
∞

∑
N=1

(

S(t)
)N[exp(−λ )λ N

N!

]

= exp(−λ F(t))

= ηF(t), (1)

where η is the probability of cure, which can be
defined as

η = lim
t→∞

S(t)≡ P(N = 0) = exp(−λ ). (2)

Let yi refer to the survival time for individuali, which
may be right censored, thenyi = min(Ti,Ci) in which
Ti = min{Zi1,Zi2, · · · ,ZiNi}, and Ci is a right−censored
variable. Letδi represent the censoring indicator, which
equals 1 ifyi is failure time and 0 if it is right censored.
Considering that censoring times are independent and
non-informative, [8,20,21] showed that the likelihood
function for the model takes the form

Li = Π n
i=1

[

− log(η) f (yi)
]δi

S(yi). (3)

We can further incorporate covariatesX into the cure
probability and the distribution function of the uncured
subjects. Moreover, a parametric model can be specified
for the survival time. In this paper, we consider a
lognormal distribution to fit the failure time of uncured
subjects. The density and cumulative distribution function
(cdf) for this distribution are:

f (y) =
1

yσ
√

2π
exp
[

− (lny− µ)2

2σ2

]

and

F(y) = Φ
(

lny− µ
σ

)

,

respectively.

3 The bounded cumulative hazard model
with a change point effect

In the model with change-point covariates we are dealing
with covariates that may be dichotomized according to
some unknown threshold. For now, assumeX as scalar
and suppose that the change-point of the model depends
on X , and that at this pointτ the survival rate or cure
probability takes a sudden jump or fall. IfX ≤ τ, then
η(X) = p1 andS(X) = S1 while if X > τ, thenη(X) = p2
andS(X) = S2. In other words,

η(X) = p1I(X ≤ τ)+ p2I(X > τ) and

S(X) = S1I(X ≤ τ)+ S2I(X > τ),

The complete observed data are(yi,δi,Xi) and the
unknown parameters are defined by
θ = (p1, p2,µ1,µ2,σ1,σ2,τ). Hence, the likelihood
function under change−pointτ is defined as:

L∗
n(θ ) =

n

∏
i=1

(

[− log(p1) f1(θ ,yi)]
δi pF1(θ ,yi)

1

)I(Xi≤τ)
×

×
(

[− log(p2) f2(θ ,yi)]
δi pF2(θ ,yi)

2

)I(Xi>τ)
(4)

With the classical likelihood approach, the likelihood
function (4) is not differentiable with respect to the
unknown change point parameterτ. Consequently,
standard Taylor series methods cannot be used.

4 Smoothed likelihood approach

To handle the critical problem of non−smoothing of the
likelihood function, we approximate the indicator
functionsI(X ≤ τ) and I(X > τ) by using a continuous
and differentiable functionK(.) which satisfies:
lim

u→−∞
K(u) = 0 and lim

u→∞
K(u) = 1. By definition,

Kn(u) = K(u/hn) andhn is a small positive constant that
depends on the sample size [19]. A special case of this
class of function is the logistic function, where

Kn(u) =
exp[u/hn]

1+exp[u/hn]
. Thus, the smoothed likelihood

function for the observed data(yi,δi,Xi) is

Ln(θ ) =
n

∏
i=1

(

[− log(p1) f1(θ ,yi)]
δi pF1(θ ,yi)

1

)Kn(τ−Xi)×

×
(

[− log(p2) f2(θ ,yi)]
δi pF2(θ ,yi)

2

)1−Kn(τ−Xi)
, (5)

and the log−the likelihood function can be written as

ln(θ )=
n

∑
i=1

[Kn(τ−Xi)l1(θ ,wi)+{1−Kn(τ−Xi)}l2(θ ,wi)],

(6)
wherewi = (yi,δi) for i = 1,2, · · · ,n and

l j(θ ,wi)= δi[log(− logp j)+ log f j(θ ,yi)]+Fj(θ ,yi)(logp j),
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f or j = 1,2.
The maximum likelihood estimation of the parameters
can be obtained by using the Newton−Raphson iterative
procedure. The smoothing parameterhn is a key
component of the log-likelihood function and it can
therefore be defined as a function ofn that approaches 0.

5 Simulation studies

Simulation studies have been conducted to examine the
performance of the proposed method. Two simulation
scenarios for two censoring rates were considered. The
first scenario used a uniform (0, 1) random variable with a
change-point at 0.5 while the second scenario employed a
truncated normal (1, 1, 0, 2) random variable with a
change-point at 1. The random survival times were
generated by inverting the survival functionS(t) = ηF(t).
Thus, a uniform (0, 1) random variable u was generated
and the subject is cured ifu ≤ η . Otherwise, the failure
time, y, was set to the solution ofu = ηF(t). Censoring
times followed a lognormal distribution(µ ,σ), where the
values ofµ and σ would be adjusted to get the desired
approximate censoring rate in the data.
Summary statistics based on 1000 replications of sample
sizes of 300 and 500 subjects are presented in Tables 1.1
and 1.2. The standard errors (SE) and the mean squared
error (MSE) are reported along with the average and the
median of the estimates for each parameter.
The simulation studies suggest that the proposed method
has very small biases as the average and median of the
estimates are very close to the respective true values. The
estimation of the change-pointτ is quite accurate and
stable throughout all settings. The SE values, as well as
the MSE values decrease with the increase in sample
sizes. With respect to the censoring rate, the estimator of
θ performs well for low levels of censoring.
The simulation studies have also been conducted with
different choice of the smoothing functionK(u), where it
was chosen as the cumulative distribution function of the

standard normal distribution;K(u) =
1

(2π) 1
2

∫ u

−∞
e−

t2
2 dt.

The results are presented in Table 2.1 and 2.2. Note that
the estimated values are very similar for the two different
K(u), and thus the precision of the estimates are not
sensitive to the choice of the smoothing function.

6 Conclusion

In this paper, a change point cure model for censored data
is proposed. It extends the existing BCH models by
allowing a covariate to have non- smoothly effect on the
survival rate and cure probability. To estimate the

Table 1.1 Parameters estimates based on logistic function for
two censoring rates

X ∼ Uniform(0,1)
Scenario 1 True Mean Median SE MSE×1000
Moderate censoring(35%−40%)

n=300 p1 0.4 0.381 0.381 0.037 1.730
µ1 0.3 0.322 0.324 0.009 0.565
σ1 0.1 0.106 0.106 0.006 0.072
p2 0.3 0.322 0.324 0.032 1.508
µ2 0.4 0.384 0.384 0.010 0.356
σ2 0.1 0.106 0.105 0.006 0.072
τ 0.5 0.501 0.500 0.055 3.026

n=500 p1 0.4 0.383 0.383 0.028 1.073
µ1 0.3 0.320 0.321 0.008 0.464
σ1 0.1 0.106 0.106 0.005 0.061
p2 0.3 0.317 0.318 0.027 1.018
µ2 0.4 0.387 0.386 0.008 0.233
σ2 0.1 0.105 0.105 0.005 0.050
τ 0.5 0.497 0.499 0.048 2.313

Heavy censoring(60%−65%)
n=300 p1 0.4 0.377 0.377 0.046 2.645

µ1 0.3 0.324 0.324 0.014 0.772
σ1 0.1 0.106 0.106 0.009 0.117
p2 0.3 0.318 0.319 0.048 2.628
µ2 0.4 0.386 0.386 0.015 0.421
σ2 0.1 0.106 0.106 0.009 0.117
τ 0.5 0.508 0.505 0.071 5.105

n=500 p1 0.4 0.381 0.380 0.036 1.657
µ1 0.3 0.321 0.321 0.010 0.541
σ1 0.1 0.106 0.105 0.007 0.085
p2 0.3 0.317 0.317 0.038 1.733
µ2 0.4 0.387 0.387 0.012 0.313
σ2 0.1 0.105 0.105 0.007 0.074
τ 0.5 0.508 0.506 0.055 3.089

Table 1.2. Parameters estimates based on logistic function for
two censoring rates

X ∼ tN(1,1,0,2)
Scenario 2 True Mean Median SE MSE×1000
Moderate censoring(35%−40%)

n=300 p1 0.4 0.388 0.385 0.037 1.513
µ1 0.3 0.313 0.313 0.010 0.269
σ1 0.1 0.104 0.104 0.007 0.065
p2 0.3 0.311 0.312 0.032 1.145
µ2 0.4 0.390 0.390 0.011 0.221
σ2 0.1 0.104 0.104 0.007 0.065
τ 1 0.985 0.976 0.084 7.281

n=500 p1 0.4 0.389 0.389 0.030 1.021
µ1 0.3 0.311 0.311 0.008 0.185
σ1 0.1 0.104 0.104 0.005 0.041
p2 0.3 0.309 0.310 0.029 0.922
µ2 0.4 0.391 0.392 0.008 0.145
σ2 0.1 0.103 0.104 0.005 0.034
τ 1 0.989 0.994 0.061 3.842

Heavy censoring(60%−65%)
n=300 p1 0.4 0.390 0.390 0.048 2.404

µ1 0.3 0.313 0.312 0.015 0.394
σ1 0.1 0.103 0.103 0.010 0.109
p2 0.3 0.319 0.317 0.050 2.861
µ2 0.4 0.390 0.390 0.016 0.356
σ2 0.1 0.104 0.104 0.009 0.097
τ 1 0.986 0.996 0.094 9.032

n=500 p1 0.4 0.390 0.393 0.042 1.864
µ1 0.3 0.310 0.310 0.012 0.244
σ1 0.1 0.103 0.103 0.008 0.073
p2 0.3 0.309 0.310 0.040 1.681
µ2 0.4 0.392 0.392 0.012 0.208
σ2 0.1 0.104 0.104 0.007 0.065
τ 1 0.992 0.995 0.074 5.540
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Table 2.1. Parameters estimates based on logistic function for
two censoring rates

X ∼ Uniform(0,1)
Scenario 1 True Mean Median SE MSE×1000
Moderate censoring(35%−40%)

n=300 p1 0.4 0.388 0.388 0.036 1.44
µ1 0.3 0.313 0.313 0.011 0.29
σ1 0.1 0.104 0.103 0.007 0.065
p2 0.3 0.313 0.313 0.036 1.465
µ2 0.4 0.391 0.391 0.011 0.202
σ2 0.1 0.104 0.104 0.007 0.065
τ 0.5 0.496 0.497 0.056 3.152

n=500 p1 0.4 0.388 0.388 0.029 0.985
µ1 0.3 0.312 0.312 0.008 0.208
σ1 0.1 0.104 0.104 0.006 0.052
p2 0.3 0.312 0.312 0.029 0.985
µ2 0.4 0.392 0.392 0.008 0.128
σ2 0.1 0.103 0.102 0.006 0.045
τ 0.5 0.497 0.494 0.043 1.858

Heavy censoring(60%−65%)
n=300 p1 0.4 0.388 0.387 0.052 2.848

µ1 0.3 0.314 0.314 0.015 0.421
σ1 0.1 0.103 0.103 0.009 0.090
p2 0.3 0.313 0.311 0.054 3.085
µ2 0.4 0.391 0.390 0.016 0.337
σ2 0.1 0.103 0.103 0.011 0.130
τ 0.5 0.506 0.508 0.072 5.220

n=500 p1 0.4 0.388 0.387 0.040 1.744
µ1 0.3 0.312 0.312 0.012 0.288
σ1 0.1 0.103 0.104 0.007 0.058
p2 0.3 0.308 0.307 0.041 1.745
µ2 0.4 0.393 0.393 0.013 0.218
σ2 0.1 0.103 0.102 0.008 0.073
τ 0.5 0.505 0.502 0.052 2.729

Table 2.2. Parameters estimates based on logistic function for
two censoring rates

X ∼ tN(1,1,0,2)
Scenario 2 True Mean Median SE MSE×1000
Moderate censoring(35%−40%)

n=300 p1 0.4 0.393 0.394 0.038 1.493
µ1 0.3 0.306 0.307 0.011 0.157
σ1 0.1 0.102 0.102 0.008 0.068
p2 0.3 0.309 0.309 0.037 1.45
µ2 0.4 0.394 0.393 0.011 0.157
σ2 0.1 0.102 0.102 0.007 0.053
τ 1 0.991 0.993 0.076 5.857

n=500 p1 0.4 0.398 0.397 0.030 0.904
µ1 0.3 0.305 0.306 0.008 0.089
σ1 0.1 0.102 0.102 0.006 0.040
p2 0.3 0.307 0.308 0.028 0.833
µ2 0.4 0.395 0.395 0.008 0.089
σ2 0.1 0.102 0.102 0.005 0.029
τ 1 0.991 0.995 0.057 3.330

Heavy censoring(60%−65%)
n=300 p1 0.4 0.393 0.391 0.055 3.074

µ1 0.3 0.306 0.305 0.015 0.261
σ1 0.1 0.101 0.101 0.010 0.101
p2 0.3 0.310 0.307 0.053 2.909
µ2 0.4 0.394 0.394 0.017 0.325
σ2 0.1 0.103 0.103 0.010 0.109
τ 1 0.989 0.997 0.101 10.322

n=500 p1 0.4 0.399 0.393 0.039 1.522
µ1 0.3 0.306 0.306 0.012 0.180
σ1 0.1 0.101 0.102 0.008 0.065
p2 0.3 0.307 0.305 0.040 1.649
µ2 0.4 0.394 0.395 0.012 0.180
σ2 0.1 0.102 0.102 0.008 0.068
τ 1 0.975 0.977 0.075 6.250

parameters in the model, we used a modified objective
function so as to eliminate the non-smoothness problem
of the likelihood function and then the maximum
likelihood method was employed. The efficiency of the
estimation procedure was examined via simulation
studies. It was shown that the proposed parametric
estimation method has a good performance in the
situations considered. In addition, it was found that the
estimation method is more efficient when the censoring
rate is low than when it is high.
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Appendix

General considerations For j = 1,2, define the density
and distribution functions as follow:

f j(θ ,y) =
1

σ jy
√

2π
exp

(

−1
2

(

lny− µ j

σ j

)2
)

Fj(θ , t) = Φ
(

lny− µ j

σ j

)

.

Let wi = (yi,δi) for i = 1,2, ...,n. Write the censored data
log likelihood corresponding tof j(θ ,y) andFj(θ ,y) as

l j(θ )= δi[log(− logp j)+ log f j(θ ,yi)]+Fj(θ ,yi)(logp j),

for j = 1,2. The averaged log-likelihood is

ln(θ ) = n−1 ∑n
i=1[Kn(τ −Xi)l1(θ ,wi)+ {1−Kn(τ −Xi)}l2(θ ,wi)].

Next we use the definition of the two functions

ϕ
(

lny− µ
σ

)

andG(τ,X) as:

ϕ
(

lny− µ
σ

)

=
1√
2π

exp

(

−1
2

(

lny− µ
σ

)2
)

G(τ,Xi) = (2− j)Kn(τ −Xi)+ ( j−1){1−Kn(τ −Xi)}, j = 1,2.

Write the score equations forln(θ ) with respect toθ as

Rn(θ) =
(

Rnp1(θ),Rnµ1(θ),Rnσ1(θ),Rnp2(θ),Rnµ2(θ),Rnσ2(θ),Rnτ (θ)
)

=
(

Rnφ (θ),Rnτ (θ)
)

, for j = 1,2.

Rnp j (θ) = n−1
n

∑
i=1






G(τ ,Xi)×







δi

p j(logp j)
+

Φ
(

lnyi−µ j
σ j

)

p j












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Rnµ j (θ) = n−1
n

∑
i=1






G(τ ,Xi)×






δi

(

lnyi −µ j

σ2
j

)

− (logp j)×
ϕ
(

lnyi−µ j
σ j

)

σ j













whereϕ(.) is the probability density function (PDF) of the
standard normal distribution.

Rnσ j(θ ) = n−1
n

∑
i=1

[

G(τ,Xi)×
(

δi

(

−1
σ j

+
(lnyi − µ j)

2

σ3
j

)

−

− (logp j)(lnyi − µ j)×
ϕ
(

lnyi−µ j
σ j

)

σ2
j

)]

Rnτ(θ ) = n−1
n

∑
i=1

K̇n(τ −Xi) [l1(θ ,yi)− l2(θ ,yi)]

General considerations

We write the second derivation of the likelihood
function:
Let Qn(θ ) = ∂ (Rn(θ )/∂ (θ )

Qnp j p j (θ) =
∂ Rnp j (θ)

∂ p j

= n−1
n

∑
i=1






G(τ ,Xi)×






δi

(

− (1+ logp j)

(p j logp j)2

)

−
Φ
(

lnyi−µ j
σ j

)

p2
j













Qnµ j µ j (θ) =
∂ Rnµ j (θ)

∂ µ j

= n−1
n

∑
i=1






G(τ ,Xi)×







−δi

σ2
j

− (logp j)







(lnyi −µ j)ϕ
(

lnyi−µ j
σ j

)

σ3
j



















Qnσ jσ j (θ) =
∂ Rnσ j (θ)

∂ σ j

= n−1
n

∑
i=1

[

G(τ ,Xi)×
(

δi

(

1
σ2

j

− 3(lnyi −µ j)
2

σ4
j

)

− (logp j)×

×







(lnyi −µ j)
3ϕ
(

lnyi−µ j
σ j

)

σ5
j

−
2(lnyi −µ j)ϕ

(

lnyi−µ j
σ j

)

σ3
j



















Qnµ j p j (θ) =
∂ Rnµ j (θ)

∂ p j

= n−1
n

∑
i=1






G(τ ,Xi)×







−ϕ
(

lnyi−µ j
σ j

)

σ j p j













Qnσ j p j (θ) =
∂ Rnσ j (θ)

∂ p j

= n−1
n

∑
i=1

[

G(τ ,X − i)×
(

−(lnyi −µ j)

p jσ2
j

×ϕ
(

lnyi −µ j

σ j

)

)]

Qnσ j µ j (θ) =
∂ Rnσ j (θ)

∂ µ j

= n−1
n

∑
i=1

[

G(τ ,Xi)

(

δi

[

−2(lnyi −µ j)

σ3
j

]

− (logp j)×

×







(lnyi −µ j)
2ϕ
(

lnyi−µ j
σ j

)

σ4
j

−
ϕ
(

lnyi−µ j
σ j

)

σ2
j



















Qnττ (θ) =
∂ Rnτ (θ)

∂ τ
= n−1

n

∑
i=1

K̈n(τ −Xi)[l1(θ ,yi)− l2(θ ,yi)]
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