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Abstract: System identification plays an important role in the develept of process simulators and controllers. The ability to
determine correctly the model parameters directly affdwsnodel quality and, therefore, the model based contrnpdgormance.

This work details the development of a system identificagpproach and its computational implementation based oues¢iql
quadratic programming (SQP) in which first and second oiideal systems, represented in state-space, are identifiemdsimulated
and from real industrial process data. Both single-inpaglsi-output and multivariable processes are considerbd. résulting
optimization problem may become not trivial to solve as ofithe examples illustrates. It is shown how a rescaling ofdéeision
variables or the use of a priori process knowledge may be insedler to overcome the difficulties and to improve the gyaif the
results.
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1 Introduction to function properly, these controllers need to be tuned

. ) ) according to a specific performance criterion. A
A mathematical model is a representation of a real systeny poptimal tuning may result not only in undermined
that allows to predict its behavior in different scenarios.  ontrol performance but may also cause process

should result in a compromise between realism andngtapility [8,9].
simplicity, i.e., it should incorporate most of the real
system significant features yet it should not be so The tuning of PID controllers requires a mathematical
complex and difficult or even impossible to understand ormodel of the processlf] of a sufficiently good quality.
experiment with {]. Besides, an overly large number of This notwithstanding, it is desirable to use the simplest
parameters may be simply impossible to identify with the possible model form as long as it is capable of capturing
existing measurements. the most important steady-state and dynamic
System identification deals with the construction of characteristics of the processl].
mathematical models based on the experimental
observation of the system response to some stimuli.
use is widespread across all engineering fields (fro
aerospace, to civil or health industries 3,4]). It is also
used for control purposes in the manufacturing and
process industries. The operation of production lines ha
to be kept under control for economical and/or legal
regulation reasons. The Proportional Integral
Derivative (PID) controller is unquestionably the most  This article builds up on a previous workd] for FO
common algorithm used in industry. In fact, more than models, extends it to SO models, and exemplifies its
95% of the controllers used in industrial processes are thapplicability in both scenarios depending on the
PID algorithm or its advanced versiorns §,7]. In order  characteristics of the datasets.

Dynamic models derived from physical principles
It%ypically consist of one or more ordinary differential
rnequations (ODE). Therefore, this kind of equations are
also good candidate models for system identification
urposes. The first order (FO), first order with time delay,
nd second order (SO) models are very useful to design
and implement process controllers.
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The FO model is defined as step in which higher order dynamics is represented by a
set of first order equationd4,15]. In the particular case
Ty (t)+y'(t) =Kpu'(t), (1)  of asecond order MIMO system, given in the form
wherey* andu* are the output observed variable and M 2(t) + D2(t) + Kz (t) = Fu(t)
the input variable, respectively, both expressed via 0 = Haz(t ; (6)
deviation variablesKp is the static gain and is the time y(t) =Hz(t)
constant. The deviation variablgs andu* are related to wherez € R andM, D, K (€ R"2*") F (e R"2*M),
the original variableg andu through a simple translation H (¢ R™*") are constant matrices, it is possible to write
of the initial steady-statg andu, respectively, that is, equivalently that
—y-y 2
y=y-y @) O (zt)] | O 1| [z(t) 0 ¢
and oMm| [2t)] = |-k —D| |2(t)| T [F| Y® .
U =u—u. 3 _ z(t) ’
®3) y(t) = [H O] {Z(t)

The static gainK,, represents how much the process
output changes, from a steady-state to another, for a wherel andOrepresentthe identity matrix and the zero
unitary variation of the process input while the time matrix of appropriate sizes, respectively. Therefore,
constantyt, represents how fast the process responds to a
change in the process input.

The SO model is mathematically described b z(t)| _ 0 ' z(t) 0
Y Y {2(0 =Mk —Mm1p] [z(t)] T [m2F| UV
X(t) A X(t) B

V() +28wy (1) +w’y =Ky w?u'(t),  (4)
t)=[Ho] [2Y
where & is the damping factor that determines the yib= z(t)

oscillatory behavior of the systens is the undamped c
natural frequency, anp is the gain of the system. X(t) 8
In simple processes, each output variable depends )

essentially on a single input variable. These may be The first step of system identification consists of the
modelled as the so callegingle-input single-output so-calledprocess activationDuring this procedure the

(SISO) systems. However, a large class of processegroce.SS is subjected to a set of disturbances yvhose
exhibits interaction among variables, i.e., each outpulmagr"tuqe Sh.OUId be carefully .chosen. Indeed, if th_e

variable is dependent on a subset of the input variablegPrOC€ss 1S activated too aggressively, the product quality
These latter processes are regardedmastiple-input may not be acceptable or the process safety may not be

multiple-outputMIMO) systems. The common industrial guarar;]teed. On thetz other hand, ':; tlhe actl\;agon 'St notd
practice is to assume that there is no interaction or tognoug , an accurate process model cannot be obtaine

design controllers in a way that weakens the interaction ecause the information included in the activated data is

However, such approaches may result in suboptimal plan][Imlteol and the \uncertainties (due for example to
measurement noise and disturbances) may become

performance. Therefore, multivariable controller tuning dominant 1.6.1.
and thus, the multivariable system identification which is ominant 16,17]. . e
In the present work, a methodology for identification

the subject of this work, have a big practical |mportance.u?f systems in the process industry is presented. The

State-space models provide a compact and usef . T :
representation of a set of linear ODEs and can beprocedur.e consists on minimizing the mismatch between
generally written as the candidate quel prediction and the ac;ual response of
the system, obtained after an adequate stimulation of the
X(t) = Ax(t) +Bu(t) system. The process acti\_/atio_n is pgrformepl through the
y(t) = Cx(t) + Eu(t)’ (5) use of a series of stepwise input signals in open loop
scenarios. The optimization is performed via SQP
wherex(t) is the state vectou(t) is the input variables  technique. The developed tool can play an important role
vector,y(t) is the output vector of observed variables, andin designing and tuning the controllers needed in
parameterd\, B, C, andE are constant matrices of sizes industrial environments.
Ny X Ny, Ny X Ny, Ny X Ny andny x ny, respectively. Typically,
the observed variables are a subset of the state variables or
a linear combination of themlp] and thusk is the null 2 Problem formulation
matrix.
System §) may accommodate linear first order ODEs Once process data with sufficient information content is
directly and higher order equations after a pre-treatmentollected, the model parameters are determined such that
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the model response reproduces the observed response of ‘ 1.10

the actual process. Yoo | Lo
The most frequently used curve fitting criterion is the Vi - |

least squares criterion which minimizes the standard "— 1100 s

deviation of the model predictions from the dataset.
Another common criterion is the sum of the absolute I ]
deviation. However, the latter is not continuous and that 11 i & 0.90

poses additional challenges in the optimization problem.

The Chebyshev approximation criterion minimizes the > I ]
largest absolute deviation over the entire set. However, 0.9 L, I 1 h
this criterion is often difficult to apply in practice since -
the resulting optimization problem may require advanced 0-80 12 0 69 8% 100
mathematical proceduresd]. t, min
The nonlinear constrained optimization problem is
defined as Fig. 1: SISO system identification using an FO model.
minimize J(y,u,p) (9a)
P . ‘ 1.10
subjectto y = f(y,u,p) (9b) Yexp —
Yinit - -+ 1.
yL<y<yu (9¢) -
u. <u<uy (9d) 1002
pL<p<pu (9e) 1.2 0.95
g(p) <0, (9f) 11} 1 0.0
whereJ denotes the objective functiop,is the model o 10k \ i ]
parameters vector to be estimatedndu are the vectors , [”“
of state and input variables (respectively), and the 0.9 s s
subscripts | and y stand for lower and upper 08
(respectively). The set of equatior@bf defines a set of 0 12 50 69 86 100
constraints arising from the model dynamics. Inequalities t, min
(9f) may enforce additional identification criteria.
Given a modey = f(y,u,p) € R and a set o x ny Fig. 2: SISO system identification using an SO model.

data pointst(,yexpi), the objective functiord is written,
according to the minimum least squares criterion, as

m a sequence of input steps and the profiles of the input and

J= =i’ =i 10
- i; [Vexpi = ¥i]* Q [Yexpi =il (10) the output variables were registered. The obtained dataset
_ contains 1200 points covering an interval of 100 minutes
with a sampling period of 5 seconds. For confidentiality
feasons the data was later normalized.

Both the stimuli,u, and the system responsgup,
obtained during the process activation stage may be seen
in Figurel (as well as in Figur@). The success of system
identification strongly depends on the quality of the data
and, therefore, on its signal to noise ratio (SNR). The

belong to a linearized model and the number of the ; . ; .
decision variables is low, the Sequential Quadratic(icl)”g(:ted industrial dataset is characterized by an SNR of

Programming (SQP) exhibited satisfactory performance: T .
Furt%er solgtignQ r?afinement may be yaghieved via The optimization procedure described above was used
to identify the system. The implementation was made in

multistarting. i ; .
9 GNU Octave 3.6.3 wusing its general nonlinear
minimization via sqgp()  successive quadratic

whereQ is a diagonal matrix containing the weights
given to each observed variable. In this work, equal weigh
was given to all output variables and thQss theny x ny
identity matrix.

It should be noted that generall®)(may become
nonconvex causing numerical difficulties and local
minima. However, since in this work the parameters

3 Results and discussion programming solver. Based on the shape of the
experimental response curve, both FO and SO models
3.1 SISO systems identification were tested (seell and @)). The set of optimization

related conditions and the obtained model parameters as
An industrial heat exchanger installed in a process planwell as some fitting quality indicators are presented in
may be regarded as a SISO system. It was stimulated witffablel.
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Table 1: Identification results for the SISO system using both FO ‘ 50
and SO models. - _
Yexp T
p Initial LB UB Fit Indicators i "
FO model O 20
Kp 0.100 0.0001 5 2154 . —
T 100.000 1 1000 88.868 J=0.286 20 € 10
X 0.800 —10 10 1.004 R?2=0.9727 15
a 0100 10 10  1.005 LT s
> W
SO model sy M/N\‘“ \ S
Kp 0.100 0.0001 5 2133 o
w 0.010 0 1 0.022 J=0.263 0 90 180 270 520 610 770 860 1000
3 1.000 0.0001 10  0.919 R2=0.9749 t, min
X 0.800 —-10 10 1.002
u 0.100 -10 10 1.004 Fig. 3: MIMO system identification using an FO model.

Data set has SNR=11.0

with a sampling interval of 1 min. This data set exhibits
SNR of 8.6 and 3.8 fofexp andCa exp, respectively.

The optimization tolerance was 1®in both cases (FO The input used to stimulate the system and the
and SO). The dynamic responses of the mentioned modelgenerated experimental results are plotted in Figure
are drawn in Figure% and2 (dashed line) for comparison The interaction among the variables is clear: for
with the real system response (thin solid line). instance, a disturbance in input varialilg results in a

It is noteworthy that the SNR of the data is relatively dynamic response not only df but also of the second
significant and that the initial guess for the parameters isoutput variable,Cs. Similarly, by activating the input
poor (as it is shown by the dotted line representing thevariableCa ; both output variables are affected.
model prediction with the first iteration parameters). .

Although these two factors make the identification First order model:

process more difficult, both FO and SO resulting models . )

are able to capture well the process dynamics, as proven Using an FO model whose state variables vector
by the high correlation factors?. coincide with the output variables vector

Both models present a comparable performance, X(t)=y(t)=[T CA]T. all A, B, andC matrices have
attested by similar values of the objective function and  dimension 2< 2 and matrixC is the identity matrix.

also by similar values d®? (see Tablel). By comparison Also, from an a priori physical/chemical analysis of
of Figuresl and 2, it is possible to conclude that the Fhe system, it is possub.le to conclude that.the first
predictions of both models are, in this case, quite similar.  input variable Tc) has a direct effect o while it has

Therefore, and in this specific situation, we select the ~an indirect effect onCa through the variableT.

FO model since it is able to achieve the same performance Moreover, it is possible to perceive that the effect of
as the SO model but with a simpler structure. The lower  the second input variableCf ;) is direct onCa but
number of parameters of the FO model also reduces the indirect onT. These facts can be used to reduce to 10
computational effort required in the fitting. the number of parameters to be estimated through

optimization for the FO model, sind&, = B»; = 0.

The parameter values of this system determined by the
3.2 MIMO systems identification 25}]'1“;{;?2";2 }ﬁCThanl;ﬁ;e under a tolerance of 1@re

In spite of the high level of noise, especially in the
A continuous stirred tank reactor (CSTR) equipped witha  second variable (SNR= [8.6 3.8]), the obtained
heating coil is a good example of a MIMO system correlation factor was even higher than in the case of
commonly used in industry. This system has two input  the SISO system, revealing an excellent fit quality.

variables (the inlet flow concentration of reactantGj,;, The model response with the optimized parameters is
and the temperature of the heating fluid in the c@i), drawn (dashed line) in Figur8 together with the

and two output variables (the concentration of reactantin  experimental response of the system (thin solid line)
the reactorCa, and the temperature in the reacfby, for easy comparison. The model is able to capture the

In order to collect data for the identification of a peculiarities of the system, namely the strong
CSTR subjected to external heating, a plant simulation interactions among its variables.
was carried out using the first principles ODE model Second order model:
(Appendix A). The timespan of the data is 1000 minutes
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Data set has SNR8.6 3.8]

In the present article, the identification of the MIMO
system is also carried out via an SO approach. The
state  variables _vector was defined as
Xt) = [TC T CA]T and thus the observed
(measured) variables coincide with a subset of the
state variablesT andCa. In such situation: (i) the
dimensions of matrice&, B andC (see b)) are 4x 4,

4 x 2 and 2x 4, respectively; (ii)C is constituted
exclusively by 0 and 1 elements: thé part of C
(see B)) is the 2x 2 identity matrix; (i) the two first
rows of A as well as the two first rows of B are 0
except the elemen®s;3 andAy4 which are 1. For the
reasons also invoked when applying the FO model to
this system, elemenBz; andB4, were set to 0. The
initial steady-state value for the state variableand

Ca was equally set to zero since bothandCx are
constant at steady-state. Therefore, the number of
parameters needed to be estimated for the SO model
applied to the MIMO system is 14.

According to @), simultaneous accounting of both
output curves of the MIMO system was considered
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Table 2: Identification results for the MIMO system using FO ‘ 50
and SO models. - Yoxp —
N - 40
p  Intal LB UB Fit Indicators ¢
o 30 >
FO model Al
Ay -1102 -1 1 -0.28010°2 — 20
A, -110°% -1 1 -0.982103 20 |-t 10
Ayy -1103% -1 1 -1.07410°3 -
2 2 15 f P
Az —1.10 -1 1 -018610 hod | et NI S Cogy VRN
10 Mgzl /
By 1103 -1 1 1709103  J=99.215 N p2N N )
Boo 1103 -1 1 0341103 R2=0.9971 S e e g
-_— O ! )
)il 15 0 45 13.247 0 90 180 270 520 610 770 860 1000
X2 1 0 45 5.353 ¢ min
U1 20 1 100 14.714
uz 25 1 100 28.416 Fig. 4: Difficulties in identifying the MIMO system via an SO
model.
SO model
Az; -510° -1 1 -5.24810°
Az -210°% -1 1 -184710°°8
Azzs -2102 -1 1 -204110°2 ‘ 50
Azs -210% —1 1 -203410°3 ] Yoo "7 1 a0
Ay —210°% -1 1 -195110°° U— | s
Asp -110°% -1 1 -3.36910° Cai
Agz —210°% -1 1 -168310°% J=110.579 - 20
Ag —2102 -1 1 -1958102% R2=0.9968 20 [T 10
Bys; -9106 -1 1 31.6010°° 5L i
Bs, —9106 -1 1 6.12510°6 0 P e sansn N Dy
> i
X3 15 0 45 13.314 o b N M N
X4 1 0 45 5.416 [ Ca Mo L
_ 0
up 20 1 100 14.857 0 90 180 270 520 610 770 860 1000
U 25 1 100 28.961 t, min

Fig. 5: MIMO system identification using an SO model.

during the optimization process (ie, the objective
function was the sum of Z 1000 square errors
between original and predicted values), both when
using the FO model (see above) or the SO model.

In the first attempt, the optimization algorithm
encountered more difficulties in finding the
parameters of this model. Even when the tolerance
was decreased to 1&°, the resulting model presented
bad prediction performance (Figured) with

R? = 0.9323 andJ = 2430979, which is frankly
worse than that achieved with the FO model
(R>=0.9971 andJ = 99.215).

This unacceptable fit quality was caused by poor
conditioning of the data. Since the tolerance values
were already relatively close to the machine precision,
the parameters were equally scaled up by &f6tor,
with the necessary changes in the model. This
approach proved effective as the resulting fit is as
good as that obtained for the FO model. These
parameters are listed in Taleand the corresponding
model response can be observed in Fidura
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The SO model is now able to reproduce the system
response in a comparable way to the FO model
(compare Figure$ and3 and values of] andR? in
Table?2).

Since the performance of FO and SO models are

comparable, the FO model is preferable as it represents

the best trade-off between performance and simplicity.

4 Conclusions

A system identification tool for SISO and MIMO models
was developed wusing the Sequential Quadratic
Programming algorithm. The performance of the

approach was tested using datasets from both a real

industrial process (SISO system) and from a simulated
process unit (MIMO system). The resulting models
reproduce well the experimental data and, thus, may be
used for process simulation and/or control system design.
For the SISO systems, it was possible to obtain FO and

SO models of comparable performance. Therefore, the FO
model was adopted for both systems as it has a simpler

structure and requires less parameters.

For the MIMO system, the FO model parametrized
via optimization reproduced quite well the experimental
data. The optimizer showed some difficulties to
parametrize an SO model for this system. However, such
solution existed and was found by scaling up the
parameters to be optimized in order to increase the
sensitivity of the optimizer to them. The optimization
solution corresponding to the MIMO system revealed to
be sensitive to the initial estimate. Thus, the FO model
was considered to be the most adequate for the MIMO
system.

Table 3: CSTR model parameters.

Parameter Value Unit
At 9.7980 nf

Co 1033.78 Jkglec!
Ea/R 1.083810* °C

ko 4.0108 s1

q 0.0013 nist

T 50 °C

U 500 Wnr2°c?
\Y 3.7854 3

AH 5.010° Jmol?

o 832.96 kgm?3

—-the CSTR is perfectly mixed;

-the reaction rate can be defined through Arrhenius
equation: k = ko exp(—%), where ko is the
frequency factork, is the activation energy ard is
the gas constant;

—the mass densitiep, and the specific heat capacity,
of the feed and product streams are equal and constant;

—the liquid volume), in the reactor is kept constant;

—the thermal capacitances of the heating fluid and of
the coil wall are negligible compared to the thermal
capacitance of the liquid in the tank;

—all the heating fluid is at a uniform temperatufg,

—the rate of heat transfer from the heating fluid to the
reacting mixture is given bYA(T. — T) whereU is
the overall heat transfer coefficient aAdis the heat
transfer area.

Material and energy balance equations may be

rearranged into
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The model parameters were adapted from

A Appendix A — CSTR model

Consider a simple liquid phase reactor where an

exercise 4.14 of13] and are listed in Tabl8.

The set of differential equations defined k1) was

irreversible first order chemical reaction takes placeimplemented in GNU Octavelp] and integrated using

converting reactant A to product B. The inlet stream LSODE solver Q] for a series of different steps in the
consists of pure component A with molar concentrationinput variables profiles and with a finite-differences
Cai- A heating coil is used to maintain the reaction approximation of the derivative information. More details
mixture at the desired operating temperature by addingbout it can be found in2[l]. The outputs of the model,
heat needed for the endothermic reaction to take place. corrupted with a random noise, constitute the

A deterministic mathematical model can be built basedexperimental data set for the identification of the MIMO
on the following assumptions: system.
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y* deviation observed variables|y]
Nomenclature _ vector
y initial  steady-state observed[y]
A state-space model constans™! variables vector
matrix AH  heat of reaction J mok
A:  heattransfer area m 3 damping factor dimensionless
B  state-space model constanfx][u] ls ! 0 mass density of the liquid kg ni
matrix T time constant S
cp  specific heat capacity at pressurd kg~ ° C1 w  undamped natural frequency s
constant of the liquid Subscripts
C statg-space model  constanfy] [x] 1 A relative to reactant A
matrix exp experimental
Ca concentration of the reactant Amol m—3 w  fitting
in the reactor L' lower bound
Cai inlet flow concentration of the mol m~3 u  upper bound
reactant A ' Acronyms
E, activation energy Jmo .
J objective function dimensionless Eg I_F(;;\Slte?é%irng()del
ko frequency facFor ?1 MIMO  Multiple-Input Multiple-Output system
K pre-expoqentlal factor of s ODE Ordinary Differential Equation
Arrhenius’s Law . PID Proportional-Integral-Derivative controller
Kp  static gain L K [u] . SISO Single-Input Single-Output system
m  number of sampling times dimensionless SNR  Signal to Noise Ratio
Ny  number of state variables dimensionless NR Signal to Noise Ratio
ny  number of observed variables dimensionless ¢4 5acond Order model
ny  number of input variables dimensionless SQP  Sequential Quadratic Programming
p model parameters vector pll UB  Upper Bound
q flow through the tank rs!
Q matrix of weights in the [y] 2
optimization
R  ideal gas constant JmdicCc1 References
:::i :gmgg:iﬂ:g”(])fmtﬁée%ﬁte?[rliquid 08 [1] A. Maria, Proceedings of thg IEE!E Computer Society
flow Conference_ on Winter Simulation, 7-13 (1997),
. - http://dx.doi.org/10.1145/268437.268440
Te _tempera?ure of the heating fluid® C [2] V. Klein, and E. Morelli, Aircraft system identification
In the CO'_' theory and practice, AIAA Education Series, American
v input variable , 0] Institute of Aeronautics and Astronautics, 2006.
u*  deviationinputvariable 4l [3]Q. Pan, System identification of constructed
u  initial steady-state input variable u[ civil  engineering  structures and  uncertainty,
u input variables vector Ph.D. thesis, Drexel University, 2007,
u*  deviation input variables vector - u[ http://Awww.di3.drexel.edu/w2/files/Qifthesis. pdf
u initial  steady-state input [u] [4]M. Eren-Oruklu, A. Cinar, D. K. Rollins, and
variables vector L. Quinn, Automatica 48,  1892-1897 (2012),
U overall heat transfer coefficient wTthe c1 http://www.sciencedirect.com/science/article/pil8510981200249X
\V/ volume of the liquid in the tank 8] [5] S. Yamamoto, and I. Hashimoto, Proceedings of the 4th
X state variable Al International Conference on Chemical Process Control,
x*  deviation state variable M| vol. TX, 1-28 (1991).
X initial steady-state state variable X[ [61K.  Astrom, and  T.  Hagglund,  Journal
X state variables vector X[ of Process Control 14, 635-650 (2004),
x* deviation state variables vector X] [ http://ww.sciencedirect.com/scienf:e/article/pi95915.2404000034
X initial steady-state state variablegx] [71L. Eriksson, _and H. Kowq, Proceedings of _the
e o <55 3 o)
ntelligence in Robotics and Automation, 359— ,
y %b;ae;xsg d)(?);gagfgled output orfy] http://ieegxplore.ieee.org/xpls/alaﬂ.jsp?arnumber=1554303
S . [8] K. Astrom, H. Panagopoulos, and
y"  deviation observed variable il T. Hagglund, Automatica 34, 585-601 (1998).
y Imtl_al Steady_State Observed[y] http://www.sciencedirect.com/science/article/pii?85109898000119
variable . [9]G. Malwatkar, P. Bhosale, S. Nikam, and
y  observed variables vector yll L. Waghmare, Proceedings of the International
(© 2015 NSP

Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp
http://dx.doi.org/10.1145/268437.268440
http://www.di3.drexel.edu/w2/files/Qin_Thesis.pdf
http://www.sciencedirect.com/science/article/pii/S000510981200249X
http://www.sciencedirect.com/science/article/pii/S0959152404000034
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1554303
http://www.sciencedirect.com/science/article/pii/S0005109898000119

26 NS 2 A. Brasio et. al. : Using Sequential Quadratic Programnidang.

Conference on Advances in Computing, Control,
Telecommunication  Technologies, 624-628 (2009),
http://ieeexplore.ieee.org/xpls/abl.jsp?arnumber=5376444

[10] K. Astrom, and T. Hagglund, Advanced PID control, ISA-
The Instrumentation, Systems, and Automation Society,
2006.

[12] T. Liu, and F. Gao, Industrial process identification
and control design: step-test and relay-experiment-based
methods, Advances in Industrial Control, Springer, 2011.

[12] A. S. R. Brasio, A. Romanenko, and N. C. P. Fernandes,
Proceedings of the AIP Conferentd79 822-825 (2012),
http://link.aip.org/link/?APC/1479/822/1

[13] D. Seborg, T. Edgar, D. Mellichamp, and I. Francis J. Boy
Process dynamics and control, John Wiley & Sons, 2010.

[14] J. Guillet, B. Mourllion, A. Birouche, and M. Basset,
International  Journal of Applied Mathematics
and Computer Science 21, 509-519 (2011),
http://dx.doi.org/10.2478/v10006-011-0039-5

[15] B. Salimbahrami, and B. Lohmann, Linear
Algebra and its Applications415 385-405 (2006),
http://www.sciencedirect.com/science/article/pid88379504005385

[16] S. Sung, J. Lee, and I. Lee, Process identification aimd PI
control, John Wiley & Sons, 2009.

[17]L. Ljung, System identification: theory for the user,
Prentice-Hall Information and System Sciences Series,

h
presently centered on the development of industrial
processes monitoring methodologies.

Ana S. R. Brasio
obtained her diploma
in Chemical Engineering
in 2008 and her MSc Degree
in 2010, from the University
of Coimbra. She is currently
a PhD student under the
supervision of Dr. Natércia
Fernandes and Dr. Andrey
Romanenko. Her research is

Andrey Romanenko
holds a PhD degree in
Chemical Engineering in
the area of process simulation
and control and has been
with  Ciengis, SA since
2006 leading technology
development and innovation.
His current research interests
include nonlinar MPC as
well as process and controller

Prentice-Hall, 1999. performance monitoring and optimization.

[18] D. D. Leon, Model  fitting,  Tech. rep.,
California State University, Fresno (2012),
http://zimmer.csufresno.edwloreendl/232.12s/handouts/modelfitting pdf
consulted in June 2012.

[19] J. W. Eaton, Gnu Octave manual, Network Theory Limited
(2002).

[20] A. C. Hindmarsh, IMACS Transactions on Scientific
Computationl, 55-64 (1983).

[21] K. Radhakrishnan, and A. C. Hindmarsh, Description
and Use of LSODE, the Livermore Solver for
Ordinary Differential Equations, Tech. rep. (1993),
http://computation.linl.gov/casc/nsde/pubs/ul113g86.

N. C. P. Fernandes
is  Auxiliary  Researcher
at the University
of Coimbra. She holds
a PhD degree in Chemical
Engineering, specialty
of Chemical Processes, from
the University of Coimbra.
Her current research interests
focus on the modeling,
simulation, optimization,

control, and monitoring of chemical processes.

(@© 2015 NSP
Natural Sciences Publishing Cor.


http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5376444
http://link.aip.org/link/?APC/1479/822/1
http://dx.doi.org/10.2478/v10006-011-0039-5
http://www.sciencedirect.com/science/article/pii/S0024379504005385
http://zimmer.csufresno.edu/~doreendl/232.12s/handouts/modelfitting.pdf
http://computation.llnl.gov/casc/nsde/pubs/u113855.pdf

	Introduction
	Problem formulation
	Results and discussion
	Conclusions
	Appendix A – CSTR model

