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Abstract: System identification plays an important role in the development of process simulators and controllers. The ability to
determine correctly the model parameters directly affectsthe model quality and, therefore, the model based controller performance.
This work details the development of a system identificationapproach and its computational implementation based on sequential
quadratic programming (SQP) in which first and second order linear systems, represented in state-space, are identified from simulated
and from real industrial process data. Both single-input single-output and multivariable processes are considered. The resulting
optimization problem may become not trivial to solve as one of the examples illustrates. It is shown how a rescaling of thedecision
variables or the use of a priori process knowledge may be usedin order to overcome the difficulties and to improve the quality of the
results.
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1 Introduction

A mathematical model is a representation of a real system
that allows to predict its behavior in different scenarios.It
should result in a compromise between realism and
simplicity, i.e., it should incorporate most of the real
system significant features yet it should not be so
complex and difficult or even impossible to understand or
experiment with [1]. Besides, an overly large number of
parameters may be simply impossible to identify with the
existing measurements.

System identification deals with the construction of
mathematical models based on the experimental
observation of the system response to some stimuli. Its
use is widespread across all engineering fields (from
aerospace, to civil or health industries [2,3,4]). It is also
used for control purposes in the manufacturing and
process industries. The operation of production lines has
to be kept under control for economical and/or legal
regulation reasons. The Proportional Integral
Derivative (PID) controller is unquestionably the most
common algorithm used in industry. In fact, more than
95% of the controllers used in industrial processes are the
PID algorithm or its advanced versions [5,6,7]. In order

to function properly, these controllers need to be tuned
according to a specific performance criterion. A
suboptimal tuning may result not only in undermined
control performance but may also cause process
instability [8,9].

The tuning of PID controllers requires a mathematical
model of the process [10] of a sufficiently good quality.
This notwithstanding, it is desirable to use the simplest
possible model form as long as it is capable of capturing
the most important steady-state and dynamic
characteristics of the process [11].

Dynamic models derived from physical principles
typically consist of one or more ordinary differential
equations (ODE). Therefore, this kind of equations are
also good candidate models for system identification
purposes. The first order (FO), first order with time delay,
and second order (SO) models are very useful to design
and implement process controllers.

This article builds up on a previous work [12] for FO
models, extends it to SO models, and exemplifies its
applicability in both scenarios depending on the
characteristics of the datasets.
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The FO model is defined as

τ ẏ∗(t)+ y∗(t) = Kp u∗(t) , (1)

wherey∗ andu∗ are the output observed variable and
the input variable, respectively, both expressed via
deviation variables,Kp is the static gain andτ is the time
constant. The deviation variablesy∗ andu∗ are related to
the original variablesy andu through a simple translation
of the initial steady-state ¯y andū, respectively, that is,

y∗ = y− ȳ (2)

and

u∗ = u− ū. (3)

The static gain,Kp, represents how much the process
output changes, from a steady-state to another, for a
unitary variation of the process input while the time
constant,τ, represents how fast the process responds to a
change in the process input.

The SO model is mathematically described by

ÿ∗(t)+2ξ ω ẏ∗(t)+ω2 y∗ = Kp ω2u∗(t) , (4)

where ξ is the damping factor that determines the
oscillatory behavior of the system,ω is the undamped
natural frequency, andKp is the gain of the system.

In simple processes, each output variable depends
essentially on a single input variable. These may be
modelled as the so calledsingle-input single-output
(SISO) systems. However, a large class of processes
exhibits interaction among variables, i.e., each output
variable is dependent on a subset of the input variables.
These latter processes are regarded asmultiple-input
multiple-output(MIMO) systems. The common industrial
practice is to assume that there is no interaction or to
design controllers in a way that weakens the interaction.
However, such approaches may result in suboptimal plant
performance. Therefore, multivariable controller tuning,
and thus, the multivariable system identification which is
the subject of this work, have a big practical importance.

State-space models provide a compact and useful
representation of a set of linear ODEs and can be
generally written as

ẋ(t) = Ax(t)+Bu(t)
y(t) = Cx(t)+Eu(t)

, (5)

wherex(t) is the state vector,u(t) is the input variables
vector,y(t) is the output vector of observed variables, and
parametersA, B, C, andE are constant matrices of sizes
nx×nx, nx×nu, ny×nx andny×nu, respectively. Typically,
the observed variables are a subset of the state variables or
a linear combination of them [13] and thusE is the null
matrix.

System (5) may accommodate linear first order ODEs
directly and higher order equations after a pre-treatment

step in which higher order dynamics is represented by a
set of first order equations [14,15]. In the particular case
of a second order MIMO system, given in the form

M z̈(t)+Dż(t)+Kz(t) = Fu(t)
y(t) = Hz(t)

, (6)

wherez∈ R
nz andM , D, K (∈ R

nz×nz), F (∈ R
nz×nu),

H (∈ R
ny×nz) are constant matrices, it is possible to write

equivalently that

[
I 0
0 M

] [
ż(t)
z̈(t)

]

=

[
0 I

−K −D

] [
z(t)
ż(t)

]

+

[
0
F

]

u(t)

y(t) =
[
H 0

]
[
z(t)
ż(t)

] , (7)

whereI and0 represent the identity matrix and the zero
matrix of appropriate sizes, respectively. Therefore,

[
ż(t)
z̈(t)

]

︸ ︷︷ ︸

ẋ(t)

=

[
0 I

−M−1K −M−1D

]

︸ ︷︷ ︸

A

[
z(t)
ż(t)

]

︸ ︷︷ ︸

x(t)

+

[
0

M−1F

]

︸ ︷︷ ︸

B

u(t)

y(t) =
[
H 0

]

︸ ︷︷ ︸

C

[
z(t)
ż(t)

]

︸ ︷︷ ︸

x(t)

.

(8)
The first step of system identification consists of the

so-calledprocess activation. During this procedure the
process is subjected to a set of disturbances whose
magnitude should be carefully chosen. Indeed, if the
process is activated too aggressively, the product quality
may not be acceptable or the process safety may not be
guaranteed. On the other hand, if the activation is not
enough, an accurate process model cannot be obtained
because the information included in the activated data is
limited and the uncertainties (due for example to
measurement noise and disturbances) may become
dominant [16,17].

In the present work, a methodology for identification
of systems in the process industry is presented. The
procedure consists on minimizing the mismatch between
the candidate model prediction and the actual response of
the system, obtained after an adequate stimulation of the
system. The process activation is performed through the
use of a series of stepwise input signals in open loop
scenarios. The optimization is performed via SQP
technique. The developed tool can play an important role
in designing and tuning the controllers needed in
industrial environments.

2 Problem formulation

Once process data with sufficient information content is
collected, the model parameters are determined such that
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the model response reproduces the observed response of
the actual process.

The most frequently used curve fitting criterion is the
least squares criterion which minimizes the standard
deviation of the model predictions from the dataset.
Another common criterion is the sum of the absolute
deviation. However, the latter is not continuous and that
poses additional challenges in the optimization problem.
The Chebyshev approximation criterion minimizes the
largest absolute deviation over the entire set. However,
this criterion is often difficult to apply in practice since
the resulting optimization problem may require advanced
mathematical procedures [18].

The nonlinear constrained optimization problem is
defined as

minimize
p

J(y,u,p) (9a)

subject to ẏ = f (y,u,p) (9b)

yL ≤ y ≤ yU (9c)

uL ≤ u ≤ uU (9d)

pL ≤ p ≤ pU (9e)

g(p)≤ 0, (9f)

whereJ denotes the objective function,p is the model
parameters vector to be estimated,x andu are the vectors
of state and input variables (respectively), and the
subscripts L and U stand for lower and upper
(respectively). The set of equations (9b) defines a set of
constraints arising from the model dynamics. Inequalities
(9f) may enforce additional identification criteria.

Given a modely = f (y,u,p) ∈R
ny and a set ofm×ny

data points (ti ,yexp,i), the objective functionJ is written,
according to the minimum least squares criterion, as

J =
m

∑
i=1

[
yexp,i − yi

]⊤Q
[
yexp,i − yi

]
, (10)

whereQ is a diagonal matrix containing the weights
given to each observed variable. In this work, equal weight
was given to all output variables and thusQ is theny×ny
identity matrix.

It should be noted that generally (9) may become
nonconvex causing numerical difficulties and local
minima. However, since in this work the parameters
belong to a linearized model and the number of the
decision variables is low, the Sequential Quadratic
Programming (SQP) exhibited satisfactory performance.
Further solution refinement may be achieved via
multistarting.

3 Results and discussion

3.1 SISO systems identification

An industrial heat exchanger installed in a process plant
may be regarded as a SISO system. It was stimulated with
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Fig. 1: SISO system identification using an FO model.
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Fig. 2: SISO system identification using an SO model.

a sequence of input steps and the profiles of the input and
the output variables were registered. The obtained dataset
contains 1200 points covering an interval of 100 minutes
with a sampling period of 5 seconds. For confidentiality
reasons the data was later normalized.

Both the stimuli,u, and the system response,yexp,
obtained during the process activation stage may be seen
in Figure1 (as well as in Figure2). The success of system
identification strongly depends on the quality of the data
and, therefore, on its signal to noise ratio (SNR). The
collected industrial dataset is characterized by an SNR of
11.0.

The optimization procedure described above was used
to identify the system. The implementation was made in
GNU Octave 3.6.3 using its general nonlinear
minimization via sqp() successive quadratic
programming solver. Based on the shape of the
experimental response curve, both FO and SO models
were tested (see (1) and (4)). The set of optimization
related conditions and the obtained model parameters as
well as some fitting quality indicators are presented in
Table1.
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Table 1: Identification results for the SISO system using both FO
and SO models.

p Initial LB UB Fit Indicators

FO model
Kp 0.100 0.0001 5 2.154
τ 100.000 1 1000 88.868 J = 0.286
x̄ 0.800 −10 10 1.004 R2 = 0.9727
ū 0.100 −10 10 1.005

SO model
Kp 0.100 0.0001 5 2.133
ω 0.010 0 1 0.022 J = 0.263
ξ 1.000 0.0001 10 0.919 R2 = 0.9749
x̄ 0.800 −10 10 1.002
ū 0.100 −10 10 1.004

Data set has SNR=11.0

The optimization tolerance was 10−6 in both cases (FO
and SO). The dynamic responses of the mentioned models
are drawn in Figures1 and2 (dashed line) for comparison
with the real system response (thin solid line).

It is noteworthy that the SNR of the data is relatively
significant and that the initial guess for the parameters is
poor (as it is shown by the dotted line representing the
model prediction with the first iteration parameters).
Although these two factors make the identification
process more difficult, both FO and SO resulting models
are able to capture well the process dynamics, as proven
by the high correlation factors,R2.

Both models present a comparable performance,
attested by similar values of the objective function and
also by similar values ofR2 (see Table1). By comparison
of Figures1 and 2, it is possible to conclude that the
predictions of both models are, in this case, quite similar.

Therefore, and in this specific situation, we select the
FO model since it is able to achieve the same performance
as the SO model but with a simpler structure. The lower
number of parameters of the FO model also reduces the
computational effort required in the fitting.

3.2 MIMO systems identification

A continuous stirred tank reactor (CSTR) equipped with a
heating coil is a good example of a MIMO system
commonly used in industry. This system has two input
variables (the inlet flow concentration of reactant A,CA,i ,
and the temperature of the heating fluid in the coil,Tc)
and two output variables (the concentration of reactant in
the reactor,CA , and the temperature in the reactor,T).

In order to collect data for the identification of a
CSTR subjected to external heating, a plant simulation
was carried out using the first principles ODE model
(Appendix A). The timespan of the data is 1000 minutes
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Fig. 3: MIMO system identification using an FO model.

with a sampling interval of 1 min. This data set exhibits
SNR of 8.6 and 3.8 forTexp andCA,exp, respectively.

The input used to stimulate the system and the
generated experimental results are plotted in Figure3.

The interaction among the variables is clear: for
instance, a disturbance in input variableTc results in a
dynamic response not only ofT but also of the second
output variable,CA . Similarly, by activating the input
variableCA,i both output variables are affected.

First order model:

Using an FO model whose state variables vector
coincide with the output variables vector

x(t) = y(t) =
[
T CA

]⊤
, all A, B, andC matrices have

dimension 2× 2 and matrixC is the identity matrix.
Also, from an a priori physical/chemical analysis of
the system, it is possible to conclude that the first
input variable (Tc) has a direct effect onT while it has
an indirect effect onCA through the variableT.
Moreover, it is possible to perceive that the effect of
the second input variable (CA,i) is direct onCA but
indirect onT. These facts can be used to reduce to 10
the number of parameters to be estimated through
optimization for the FO model, sinceB12 = B21 = 0.
The parameter values of this system determined by the
optimization technique under a tolerance of 10−6 are
summarized in Table2.
In spite of the high level of noise, especially in the
second variable (SNR=

[
8.6 3.8

]
), the obtained

correlation factor was even higher than in the case of
the SISO system, revealing an excellent fit quality.
The model response with the optimized parameters is
drawn (dashed line) in Figure3 together with the
experimental response of the system (thin solid line)
for easy comparison. The model is able to capture the
peculiarities of the system, namely the strong
interactions among its variables.

Second order model:

c© 2015 NSP
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Table 2: Identification results for the MIMO system using FO
and SO models.

p Initial LB UB Fit Indicators

FO model
A11 −1·10−2 −1 1 −0.280·10−2

A12 −1·10−3 −1 1 −0.982·10−3

A21 −1·10−3 −1 1 −1.074·10−3

A22 −1·10−2 −1 1 −0.186·10−2

B11 1·10−3 −1 1 1.709·10−3 J = 99.215
B22 1·10−3 −1 1 0.341·10−3 R2 = 0.9971

x̄1 15 0 45 13.247
x̄2 1 0 45 5.353

ū1 20 1 100 14.714
ū2 25 1 100 28.416

SO model
A31 −5·10−5 −1 1 −5.248·10−5

A32 −2·10−6 −1 1 −18.47·10−6

A33 −2·10−2 −1 1 −2.041·10−2

A34 −2·10−3 −1 1 −2.034·10−3

A41 −2·10−6 −1 1 −19.51·10−6

A42 −1·10−5 −1 1 −3.369·10−5

A43 −2·10−3 −1 1 −1.683·10−3 J = 110.579
A44 −2·10−2 −1 1 −1.958·10−2 R2 = 0.9968

B31 −9·10−6 −1 1 31.60·10−6

B42 −9·10−6 −1 1 6.125·10−6

x̄3 15 0 45 13.314
x̄4 1 0 45 5.416

ū1 20 1 100 14.857
ū2 25 1 100 28.961

Data set has SNR=
[
8.6 3.8

]

In the present article, the identification of the MIMO
system is also carried out via an SO approach. The
state variables vector was defined as
x(t) =

[
T CA Ṫ ĊA

]⊤
and thus the observed

(measured) variables coincide with a subset of the
state variables,T and CA . In such situation: (i) the
dimensions of matricesA, B andC (see (5)) are 4×4,
4× 2 and 2× 4, respectively; (ii)C is constituted
exclusively by 0 and 1 elements: theH part of C
(see (8)) is the 2×2 identity matrix; (iii) the two first
rows of A as well as the two first rows of B are 0
except the elementsA13 andA24 which are 1. For the
reasons also invoked when applying the FO model to
this system, elementsB31 andB42 were set to 0. The
initial steady-state value for the state variablesṪ and
ĊA was equally set to zero since bothT andCA are
constant at steady-state. Therefore, the number of
parameters needed to be estimated for the SO model
applied to the MIMO system is 14.
According to (9), simultaneous accounting of both
output curves of the MIMO system was considered
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Fig. 4: Difficulties in identifying the MIMO system via an SO
model.
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Fig. 5: MIMO system identification using an SO model.

during the optimization process (ie, the objective
function was the sum of 2× 1000 square errors
between original and predicted values), both when
using the FO model (see above) or the SO model.
In the first attempt, the optimization algorithm
encountered more difficulties in finding the
parameters of this model. Even when the tolerance
was decreased to 10−10, the resulting model presented
bad prediction performance (Figure4) with
R2 = 0.9323 andJ = 2430.979, which is frankly
worse than that achieved with the FO model
(R2 = 0.9971 andJ = 99.215).
This unacceptable fit quality was caused by poor
conditioning of the data. Since the tolerance values
were already relatively close to the machine precision,
the parameters were equally scaled up by a 108 factor,
with the necessary changes in the model. This
approach proved effective as the resulting fit is as
good as that obtained for the FO model. These
parameters are listed in Table2 and the corresponding
model response can be observed in Figura5.
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The SO model is now able to reproduce the system
response in a comparable way to the FO model
(compare Figures5 and3 and values ofJ andR2 in
Table2).

Since the performance of FO and SO models are
comparable, the FO model is preferable as it represents
the best trade-off between performance and simplicity.

4 Conclusions

A system identification tool for SISO and MIMO models
was developed using the Sequential Quadratic
Programming algorithm. The performance of the
approach was tested using datasets from both a real
industrial process (SISO system) and from a simulated
process unit (MIMO system). The resulting models
reproduce well the experimental data and, thus, may be
used for process simulation and/or control system design.

For the SISO systems, it was possible to obtain FO and
SO models of comparable performance. Therefore, the FO
model was adopted for both systems as it has a simpler
structure and requires less parameters.

For the MIMO system, the FO model parametrized
via optimization reproduced quite well the experimental
data. The optimizer showed some difficulties to
parametrize an SO model for this system. However, such
solution existed and was found by scaling up the
parameters to be optimized in order to increase the
sensitivity of the optimizer to them. The optimization
solution corresponding to the MIMO system revealed to
be sensitive to the initial estimate. Thus, the FO model
was considered to be the most adequate for the MIMO
system.
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A Appendix A – CSTR model

Consider a simple liquid phase reactor where an
irreversible first order chemical reaction takes place
converting reactant A to product B. The inlet stream
consists of pure component A with molar concentration
CAi . A heating coil is used to maintain the reaction
mixture at the desired operating temperature by adding
heat needed for the endothermic reaction to take place.

A deterministic mathematical model can be built based
on the following assumptions:

Table 3: CSTR model parameters.

Parameter Value Unit

At 9.7980 m2

cp 1033.78 J kg−1 ◦ C−1

Ea/R 1.0838·104 ◦ C
k0 4.0·1013 s−1

q 0.0013 m3 s−1

Ti 50 ◦ C
U 500 W m−2 ◦ C−1

V 3.7854 m3

∆H 5.0·105 J mol−1

ρ 832.96 kg m−3

–the CSTR is perfectly mixed;
–the reaction rate can be defined through Arrhenius
equation: k = k0 exp(− Ea

R T), where k0 is the
frequency factor,Ea is the activation energy andR is
the gas constant;

–the mass densities,ρ , and the specific heat capacity,cp,
of the feed and product streams are equal and constant;

–the liquid volume,V, in the reactor is kept constant;
–the thermal capacitances of the heating fluid and of
the coil wall are negligible compared to the thermal
capacitance of the liquid in the tank;

–all the heating fluid is at a uniform temperature,Tc;
–the rate of heat transfer from the heating fluid to the
reacting mixture is given byUAt(Tc−T) whereU is
the overall heat transfer coefficient andAt is the heat
transfer area.

Material and energy balance equations may be
rearranged into

V
dCA

dt
= q(CAi −CA)−VkCA , (11a)

Vρcp
dT
dt

= qρcp(Ti −T)+ (−∆H)VkCA +UAt(Tc−T) .

(11b)

The model parameters were adapted from
exercise 4.14 of [13] and are listed in Table3.

The set of differential equations defined by (11) was
implemented in GNU Octave [19] and integrated using
LSODE solver [20] for a series of different steps in the
input variables profiles and with a finite-differences
approximation of the derivative information. More details
about it can be found in [21]. The outputs of the model,
corrupted with a random noise, constitute the
experimental data set for the identification of the MIMO
system.
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Nomenclature

A state-space model constant
matrix

s−1

At heat transfer area m2

B state-space model constant
matrix

[x] [u]−1 s−1

cp specific heat capacity at pressure
constant of the liquid

J kg−1 ◦ C−1

C state-space model constant
matrix

[y] [x]−1

CA concentration of the reactant A
in the reactor

mol m−3

CAi inlet flow concentration of the
reactant A

mol m−3

Ea activation energy J mol−1

J objective function dimensionless
k0 frequency factor s−1

k pre-exponential factor of
Arrhenius’s Law

s−1

Kp static gain [x] [u]−1

m number of sampling times dimensionless
nx number of state variables dimensionless
ny number of observed variables dimensionless
nu number of input variables dimensionless
p model parameters vector [p]
q flow through the tank m3 s−1

Q matrix of weights in the
optimization

[y]−2

R ideal gas constant J mol−1 ◦ C−1

T temperature in the reactor ◦ C
Ti temperature of the inlet liquid

flow

◦ C

Tc temperature of the heating fluid
in the coil

◦ C

u input variable [u]
u∗ deviation input variable [u]
ū initial steady-state input variable [u]
u input variables vector [u]
u∗ deviation input variables vector [u]
ū initial steady-state input

variables vector
[u]

U overall heat transfer coefficient W m−2 ◦ C−1

V volume of the liquid in the tank m3

x state variable [x]
x∗ deviation state variable [x]
x̄ initial steady-state state variable [x]
x state variables vector [x]
x∗ deviation state variables vector [x]
x̄ initial steady-state state variables

vector
[x]

y observed (also called output or
measured) variable

[y]

y∗ deviation observed variable [y]
ȳ initial steady-state observed

variable
[y]

y observed variables vector [y]

y∗ deviation observed variables
vector

[y]

ȳ initial steady-state observed
variables vector

[y]

∆H heat of reaction J mol−1

ξ damping factor dimensionless
ρ mass density of the liquid kg m−3

τ time constant s
ω undamped natural frequency s−1

Subscripts

A relative to reactant A
exp experimental
fit fitting
L lower bound
U upper bound
Acronyms
FO First Order model
LB Lower Bound
MIMO Multiple-Input Multiple-Output system
ODE Ordinary Differential Equation
PID Proportional-Integral-Derivative controller
SISO Single-Input Single-Output system
SNR Signal to Noise Ratio
NR Signal to Noise Ratio
SO Second Order model
SQP Sequential Quadratic Programming
UB Upper Bound
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[10] K. Åström, and T. Hägglund, Advanced PID control, ISA-
The Instrumentation, Systems, and Automation Society,
2006.

[11] T. Liu, and F. Gao, Industrial process identification
and control design: step-test and relay-experiment-based
methods, Advances in Industrial Control, Springer, 2011.

[12] A. S. R. Brasio, A. Romanenko, and N. C. P. Fernandes,
Proceedings of the AIP Conference1479, 822–825 (2012),
http://link.aip.org/link/?APC/1479/822/1.

[13] D. Seborg, T. Edgar, D. Mellichamp, and I. Francis J. Doyle,
Process dynamics and control, John Wiley & Sons, 2010.

[14] J. Guillet, B. Mourllion, A. Birouche, and M. Basset,
International Journal of Applied Mathematics
and Computer Science 21, 509–519 (2011),
http://dx.doi.org/10.2478/v10006-011-0039-5.

[15] B. Salimbahrami, and B. Lohmann, Linear
Algebra and its Applications415, 385–405 (2006),
http://www.sciencedirect.com/science/article/pii/S0024379504005385.

[16] S. Sung, J. Lee, and I. Lee, Process identification and PID
control, John Wiley & Sons, 2009.

[17] L. Ljung, System identification: theory for the user,
Prentice-Hall Information and System Sciences Series,
Prentice-Hall, 1999.

[18] D. D. Leon, Model fitting, Tech. rep.,
California State University, Fresno (2012),
http://zimmer.csufresno.edu/∼doreendl/232.12s/handouts/modelfitting.pdf,
consulted in June 2012.

[19] J. W. Eaton, Gnu Octave manual, Network Theory Limited
(2002).

[20] A. C. Hindmarsh, IMACS Transactions on Scientific
Computation1, 55–64 (1983).

[21] K. Radhakrishnan, and A. C. Hindmarsh, Description
and Use of LSODE, the Livermore Solver for
Ordinary Differential Equations, Tech. rep. (1993),
http://computation.llnl.gov/casc/nsde/pubs/u113855.pdf.

Ana S. R. Brásio
obtained her diploma
in Chemical Engineering
in 2008 and her MSc Degree
in 2010, from the University
of Coimbra. She is currently
a PhD student under the
supervision of Dr. Natércia
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