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Abstract: The main goal of this paper is to analyze an economy throgglyihmetric input-output table by using Graph Theory. After
providing a definition of the characteristic digraph for gmnomy, the authors give some properties and algorithmbamacterize
and compute the fundamental products and, later, the autoum® sets of the studied economy. Six of these algorithmexgiained

in detail and formulated; the best choices are also impléadewith the computational package Mathematica, compareerins of
efficiency, and applied to real input-output matrices frone€ze.
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1 Introduction (©1988-2013, trademark of Wolfram Research, Inc.).
Then, as an example, we apply the algorithms to analyze

Graphical representations have helped scientists torbettehe last, Greek input-output matrices. Finally, some ideas

understand reality and its possible connection with thefor future research are presented.

corresponding models. In Economics, Graph Theory is

mostly used to complement Input-Output Analysis and

Structural Analysis (se€l[8], for instance). Specifically, 2 Preliminaries

the technical coefficients matrix of an economy can be

translated into the adjacency matrix of a digraph, whichFOr a oeneral overview on Graph Theorv and
can therefore be univocally associated with the economy. 9 . P y
Input-Output Analysis, the reader can consult the

In this paper, we collect some preliminary ideas about . ) .
fundamental products and autonomous sets sketched in %{assmal works J and [6,7], respectively. We wil

previous contribution]. In that extended abstract, by restric}_oulr attelntion to the concepts more closely related

using topological graphs, two characterizations and thre(—{‘0 ourtinalgoa.

computational approaches were suggested (but not

developed or applied). Here we give some additional

results (with their correspondent proofs) as well as2.1 Graph concepts

significant improvements in the algorithms and explicit

implementations for the most efficient ones. A digraph D= (V, E) consists of a non-empty finite sét
The paper is structured in five sections in addition to of elements and a finite s& of ordered pairs of these

this short introduction. First, we recall some preliminary elements. The se¥ is called vertex-setof D and its

definitions and results which will be used later. In the nextelements are the vertices Bf Besides, the séi is called

section, theoretical results and characterizations ofarc-setof D and its elements are the arcsfIf v andw

fundamental products and autonomous sets in terms odire two vertices oD, the arc(v,w) is said to be tharc

Graph Theory are introduced and proved. Rightfromvtow

afterwards, some algorithms are explained, implementing In a digraphD, a directed walk(of lengthn) from v;

four of them in the computation system Mathematicato vy, 1 is a sequence of aragvo,Vova, ..., VpWny1 in D.
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Moreover, a directed walk is called-prder)directed path Starting from the autonomous sets of the technical
fromvy to v 1 whenvy; # vj fori # j; and adirected cycle  coefficients matrixA, the fundamental products can be
starts and ends in the same vertex (“directed path” wher@btained in two steps. First, the autonomous sets are
V1 = Vpi1). computed and the elements of the minimal autonomous
A directed-in-tree rooted in the vertexis a tree in  set are the candidates to be the fundamental products.
which there exists a (unique) directed path in the treeThen, one of these elements is individually studied to
from the vertexv to any other vertex. Alirected-out-tree  determine whether it is a fundamental product. If that is
rooted in the vertex Vs a tree in which there exits a the case, the fundamental products are all the ones in the
(unique) directed path in the tree from any vertex to theminimal autonomous set. In the opposite, there is no
vertex v. In both cases, the vertexis called theroot  fundamental product.
vertex A rooted directed tree is said to Bpanningwvhen
it includes every vertex of the digrajih

3 Connection between graphs and economies

2.2 Input-output analysis The fundamental products in an economy are usually
determined by using the autonomous sets of the economy.
In [3], we suggested another approach to this concept by
considering topological properties which can be

not allowing for secondary production), these sectors carSS0¢iated with the technical coefficients matrix. In fact,
simultaneously act as both producers and consumerdV€ can determine the fundamental products, directly from
because an arbitrary seciagells its product (outputs gf 1€ technical coefficients matrik of the economys” (or

ion flow table), by using Graph Theory. First,
to other sectors and buys the products of other sectorgw.trans""‘Ctlon . ; :
(inputs ofi) to generate its own product. In this way, the a digraph can be defined as follows: the vertexvsistthe

technical coefficient ip shows the value of the input prqperl\?etNN andhtr;]e ?TC'SSEH'S formre]:d by the pairs
purchased by sectof to sectori per monetary unit of (»1) € N> Nsuch thagy; 7 0. Hence, there exists an arc
output in sectorj (i,j € N = {1 n}). If we arrange from sectori to sectorj if and only if sectori sells its
these coefficients in a squane< n matrix, we obtain the ErOdUCt to sedcto_[.hT?]e dlgraprD(@?h: gViIE) is said tcl)
so-calledstructural matrixor technical coefficients matrix € associated with the econord. The following result

of the economy’. From now on, this matrix is denoted (ranslates the condition of fundamental product into a
by A = (a;) and provides a quantitatively determined PrOPerty in the digraphD(&) associated with the
outlook of the internal structure of the econondy. eCO”O.”?y@@* what wil prov[de both a new viewpoint and
Indeed, these matrices allow to compare two economie&" efficient way of computing.

between themselves, or even the same economy in tw
different time periods, because tiferow of the technical
coefficients matrix indicates the distribution of the total
sales of sectoi between the remaining sectors i
Analogously, thej™ column represents the purchases
done by sectorj to each sector in order to produce its Proof. If i is a productive sector, then it takes part directly
good. or indirectly in the production of each sectprin the first

In Economics, it is often useful to know which caseajj # 0; i.e., there exists the af¢, j) in the digraph
products or sectors take part in the production of aD(&). In the other case, the sectiosells its product to a
selected set or all the products in the studied economyector iy (so aj, # 0), i1 sells to another sector,
[10,9]. This can be studied through the technical (a,;, # 0) and so on, reaching a sectir such that
coefficients matrix (or, analogously, the intersectoriala;,; # 0; this finite sequence of nonzero values is
flow table), by considering the concepts of fundamentalequivalent to the existence of the directed path
product and autonomous set. We now recall thesgi,iy),(iy,i2),..., (ik_1,ik),(ik,j) in D(&). O
concepts.

Let N = {1,...,n} be the index-set formed by all the
sectors (or, equivalently, goods) in the econo#yThe
producti € N is afundamental produathen it (directly or
indirectly) takes part in the production of all the products

autonomousf a;;=0, Vi € B, Vj € N\ B. The economical  productj € N is fundamental if and only if there exists a
interpretation of an autonomous $eis that no sector out  girected path fronj toi in D(&).

of B sells its product to any sector B. Here we mean
that a sector sellsits product to another sectpwhenthe  Proof. If j is a fundamental product, Proposition 3.1
technical coefficiend;j is nonzero. implies the existence of a directed path frgnto i. The

Given an economy? with n productive sectors in the
hypothesis of §] (each sector produces only one good,

Proposition 3.1.Leti be a productive sector (and its good)
of the economy?’. Theni is a fundamental product if and
only if there exists a directed pathn&’) fromi to j, for

all j eN.

As an immediate consequence of Proposition 3.1,
other fundamental products can be obtained starting from
a fundamental product found in the digrai{&’), in
virtue of the following:
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converse is also true, because such a directed path refledoof. As there is a non-fundamental prodscin &, there
that sectolj takes part in the production of secipwhich ~ does not exist a directed path from sec$prto another
in turn takes part in the production of all the sectors sectors,. Now we consider a maximal directed-out-tree
(including j). O rooted insy, whose vertex-setis denotedWy. The setN\
. . Vr is non-empty because it contaisis Besides, for every
B B G a1 JEMEX NV, thre dos ol xis an rc o 0 any
j. Next 'another characterization is given for fundamenta)lill.ertex InVir (o'therW|se, suchavertex WOUld belongAg).
’ ! . . . . ) herefore\y is an autonomous set different frdxh O
products, by using spanning directed-in-trees:
The following characterizations allow us to improve

Proposition 3.3. Let i € N be a sector (and its good). the algorithms introduced ir8[, as we will see later.
Theni is a fundamental product if and only if there exists ) ] )
a spanning directed-in-tree rooted iand a directed cycle Theorem 3.7.The following statements are equivalent in
containing the vertek the economy’”

) . . 1. The technical coefficients matrix is decomposable.
Proof. If i € N is a fundamental product, then the digraph 2 The index-set can be split into two disjoint, non-empty
D(¢) is connected and contains a spanning  sets such that there are not any arcs from the first set to

directed-in-tree rooted in Firstly, let us check that it is the second.
connected: given two sectors; and iz, due to 3. There exist, at least, two strongly connected
Proposition 3.1, we can design a walk betwégandiy, components iD(&).

by joining the path betweenandi; and that between

andip; if this walk is not a path, we can obtain a path proof. \We prove the following chain of conditions:
betweeni andi, by removing all the cycles inside the .5 .3 .1

walk. Secondly, let us find a spanning directed-in-tree in ) )

D(&) by using a depth-first search, starting from the 1= 2:Itis obvious due to Lemma 3.4. _
fundamental producti, which will be its root. 2= 3 We can find a non-empty subset. N with no arc

Additionally, a directed cycle containing the vertexs from N\ Sto S Every digraph has, at least, one
found due to Proposition 3.1. strongly connected component; byeductio ad

absurdumlet us suppose that it is unique. Then there
exists a directed path from a given veriex N\ Sto
any other vertexj € S This directed path must
contain an arc from a vertex iN \ Sto another inS,
which contradicts our hypothesis.

3=1 Let S be the vertex-set of a strongly connected
The interest of the previous results is that there exist  component oD(&). The remaining vertices d (&)

well-known algorithms which search for paths, cycles, have to belong to other components different frém

directed-in-trees, etc. On the other hand, this viewpoint  So, there are no arcs frol\ Sto S. In virtue of

allows the appearance of useful results connecting Graph Lemma 3.4,S¢ N is autonomous and, henca, is

Theory and input-output models. Moreover, we are about  decomposablé.]

to give some examples of how the intuitiveness of graphs

eases the the appearance of results involving autonomougheorem 3.8.The following statements are equivalent in

sets and decomposable matrices (which have at least onfie economy?’:

autonomous set different from the index set).

Conversely, the spanning directed-in-tree rooted in
implies the existence of a directed path franto any
j € N with j #i. Besides, the directed cycle containing
the vertexi is a directed path fron to i. Hence,i is a
fundamental product due to Proposition 311

1. The technical coefficients matrix is totally

Lemma 3.4.The setS¢ N is autonomous if and only if decomposable. o L
there are not any arcs from a vertexMf, Sto a vertex 2. 1he index-set can be split into disjoint, non-empty
ofS. subsets such that there are not arcs between vertices

belonging to different subsets.
Proof. It is a direct consequence of the definition of 3. There exist, at least, two connected components in
autonomous set D(&).

Corollary 3.5. The union of autonomous sets is an Proof. We prove the following chain of implications:
autonomous sef] 1=2=3=1.

Lemma 3.4 s also useful joint with Proposition 3.6 and 1= 2: The matrix is totally decomposable if and only if
the concept of decomposable economy (i.e., decomposable there exist two non-empty, autonomous s&isS, C

technical coefficients matrix). N, suchtha US =N, §NS = @, andajj = aji =
O foralli € S and for allj € S,. This last condition
Proposition 3.6. If there exists a non-fundamental means that the digrapb(£’) does not contain either
product, thenf is decomposable. the arc(i, j) or (j,i) foralli € § and for allj € S,.
(@© 2015 NSP
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2= 3: We can find a non-empty subs8{z N such that

there does not exist any arc betwegandN \ S. If we
supposereductio ad absurduirthe existence of only
one connected component{ &), then there exists a
path between two given verticés Sandj € N\ S
This path must contain an arc between a verte$in
and another one il \ S. But this is impossible under
our hypothesis.

3= 1: Let Sbe the vertex-set of a connected componen

of D(&'). Then N\ S consists of the union of the
connected components different frog Therefore,
there are not arcs betweed \ S and S. Due to
Lemma 3.4, bothS and N\ S are autonomous sets
and, hence, the technical coefficients matAxis
totally decomposablél

Proposition 3.9. Let C be a connected component of the
digraph D(&). The vertices belonging t&€ form an
autonomous set ef.

Proof. Let\ be the vertex-set @2. If j belongs taN\ V¢
andi to V¢, then there are not directed paths fromo j.
Particularly, there are not arcs franto j; that is,a; = 0.
Therefore)c is an autonomous seil

t:gnplementationsz

Stepk (k= 1,...,n). Fixed another sectgrin &, check if
there exists a directed path frojo i in the digraptD(&).

j is a fundamental product if there exists such a path, in
virtue of Corollary 3.2.

Next, we show the implementation of algorithm
ALG1 in Mathematica code (at least, it works from
version 5 to version 9). To run the following
over Mathematica 5.2,

iscreteMath Combinatorica’ package has to
be activated; later versions of the program also admit the
commandk<Combinatorica® , instead.

(*"a" is the technical coefficients matrix
numVert:=Dimensions[a][[1]]
b=Table[0,{i,numVert},{jnumVert}];
For[i=1,i<=numVert,i++,
For[j=1,j<=numVert,j++,
If[alfi,j]}!=0,b[[i.j]}=1,b[[i.jl]=0]]]
<<Combinatorica’;
fundpro:={}
g:=FromAdjacencyMatrix[b, Type->"Directed"]
cycleList=DeleteDuplicates[Flatten[ExtractCycles[g] 1
For[i=1,i<=numVert,i++, dijkstra=Dijkstra[g,i];
IffNorm[dijkstra[[2]], 1]<Infinity,
IffMemberQ[cycleList,i]l==True, AppendTo[fundpro,i];
Printfi,” is a fundamental product."]]];
Ifffundpro!={},Break]]]]
Ifffundpro=={},

*)

Note that there may exist autonomous sets which are Print["There is no fundamental product.”],

neither connected components nor the union of connected,

in=fundpro[[1]];
or[i=min+1,i<=numVert,i++,

components. This fact is due to the possible existence of a ifibimensions[ShortestPath[g,i,min]J[[1]]>1,

chain of inclusions for some autonomous sets.

Proposition 3.10.1f the digraphD(¢&) is disconnected,
then there is not any fundamental producgin

Proof. SinceD(&) is disconnected, there exist, at least,

two connected componen@, andC,, inD(&). Leti € C;
andj € C, be two sectors ir&’. Then, there do not exist
any paths betweeinand j, andi cannot be a fundamental
product of&’. This reasoning is valid for every seciof]

4 Specific algorithms

4.1 Computing the fundamental products

In this subsection, we indicate two different algorithms to power AX = (a

obtain the fundamental products of a given econafhy

AppendTol[fundpro,il;
Print[i," is a fundamental product."]]]]
(*fundpro contains all the fundamental products

*)

Although this first algorithm is directly based on
Graph Theory and potentially more intuitive and
insightful than others, the direct implementation of
notions about graphs is wusually harder than the
implementation of essentially equivalent algorithms
which use Matrix Algebra. In this sense, a simplification
can be achieved by taking into consideration that the
technical coefficients matriA of the economys’ with n
productive sectors works as the adjacency matrix of the
digraphD(&’) associated with this economy. Hence, the
second algorithm proposed here is based on the
well-known fact that each nonzero tEIElin in the matrix

i) indicates the existence ok-order
directed walks %rom' to j, where 1< k < n. As each

(without knowing its autonomous sets). Both algorithms fyngamental product of the econom§ has been

need as input data the technical coefficients matrix’ of

(or its intersectorial flow table), and the output data ake al

the fundamental products .
The first algorithm (ALG1) consists of detecting one
fundamental product from the digrapgb(&£’), and the

characterized with the existence of directed paths from its
corresponding vertex in the digragh(&’), in virtue of
Proposition 3.1(and the fact that each walk between two
vertices contains a path between them), the rows of
nonzero terms in the matrix sud = y¢_; A% are in

remaining fundamental products are obtained startingyne-to-one correspondence with the fundamental

from the fundamental product already known:

Step 0. Obtain a fundamental product by using an
algorithm  which  obtains a rooted spanning
directed-in-tree; the roatis a fundamental product &f

products of &. Hence, the algorithm (ALG2) can be
described as follows:

Step 1. ComputeA? and add it toA.

when there also exists a directed cycle containing theStepk—1 (k= 3,...,n). Fixedk, computeA* and add it

root, in virtue of Proposition 3.3.

to the sum obtained in the previous step.

(@© 2015 NSP
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Stepn. Let M be the matrix defined dd = EﬂzlAk, and Now we show how to implement (in Mathematica)
the fundamental products of are determined by the the alternative algorithm which has just been commented
subscripts of rows whose terms are all nonzero. (ALG3’). The source code shown in the previous section

has to be previously run to compute all the fundamental

Size of computations. In such a case, the nonzero terms [00HCES: Note that this algorithm also works properly
P . ' when the set of fundamental product is empty.

each matrix are replaced by “1” in each step, and the
algorithm (ALG2') may stop when two consecutive <<Combinatorica'

power matrices are equa| (Sea [f more details about é;l:nkatg:*r;ewest versions, one can call the Combinatorica
this process are needed). dimfundpro:=Part[Dimensions[fundpro],1]
. . (*dimfundpro is the number of fundamental products *)
To conclude this section, we show our easy autset={fundpro}

imp|ementation of a|gorithm ALG2’ in Mathematica (*The set constituted by all the fundamental products
d L Il th he i d . b h is an autonomous set: *)
code. Let us recall that the input data are given by thepingundpro is an autonomous set”]

technical coefficients matrix. totalset:=Tableli {i,n}]

(*totalset is the index set *)
techma:]tﬂll';;!(r?%ut["lnsert the technical coefficients FEL[;:S(qu:fzD?(;:]r_(;;l,k<:*n|,(ll<;+,I:KSubsets[totaIset,k];
rank:=Dimensions[techmatrix] (1 will be each candidate set *)

For[j=1,j<=numsub,j++,

n:=rank[[1]] ( *n is the number of sectors *) If[Table[MemberQ[Part[l,j],Part[fundpro,i]] {i

b:T[ab'e[O'{"”}'{j'”}] ( *b is the binary matrix  «) Ejimfun[dpro}]::%bm[[ﬁjgfe (i d[imfuﬁdp'r]g'}%'

For[i=1,i<=n,i++, ! ] b \aprogl,

Forfj=1,j<=n,j++ Ifftechmatrix[[i {}'=0,b[fi j]}=1 m Mifusset=Complemeniiotaiset [l

(*We start step 1; ¢, d, and e are auxiliary matrices *) Forfvzl v<=n-k v++

c:=b WV<=N-K, ,

T N R ) For[u=1,u<=k,u++,

d:=Table[0,{i.n}.{i.n}] ( We will add all the power If[techmatrix][minusset][v]], PartI[[T],u]]]!=0,
matrices in d = *) z=2+1]]];

e:=Table[0,{i,n},{j,n}]
For[k=1,k<=n,k++,e=c;c=c.b;
For[i=1,i<=n,i++,
Forfj=1j<=n,j++,If[c[[i,]]'=0,c[[i.]1=1]T};

Ifz==0,AppendTo[autset,I[[j]]];
Print[I[[j]," is an autonomous set."]]]]]

Ifle==c,d=e;Break{] d=e+c]] A If the number of sectors is too large, some
oo pacniat Products sre obtaned from ¢ ") improvements in the efficiency of the algorithm may be
Forfj=1,j<=n,j++,If[d[[i,jl|==0,r=r+1]]; welcome, although the reading will turn slightly more
Ifr==0, AppendTo[fundpro,il; ; .

Print[i," is a fundamental product of the Compllcated (ALGB )

economy."]]]

Print[fundpro,” is the set formed by all the Ifffundpro=={},
fundamental products.”] For[k=dimfundpro+1,k<=n,k++,I=KSubsets[totalset,k];

Print["Subsets of size "Kk,":";numsub=n!/((n-k)! *kl);
For[j=1,j<=numsub,j++,
If[Table[MemberQ[Part]l,j],Part[fundpro,i]],
) {i,dimfundpro}]==Table[True,{i,dimfundpro}],
4.2 Comput”’]g the autonomous sets minusset=Complement[totalset,I[[j]]];z=0;
For[i=1,i<=dimPosition,i++,
If[{MemberQ[I[[j]]_,anosition[[L21]], .
In this subsection we suggest some algorithms to obtain ff{’}"ﬁif%z‘g}“usset'“Zp°s"'°“[["1]]]}
the autonomous sets in a given econofhwyith n sectors. z=z+1;Goto[escape]]]];
In these algorithms, the input data are given by the Labellescapel; .
K _ . 1f[z==0,AppendTol[autset,I[[j]]];
technical coefficients matrif, and the outputs are all the Printl[JJ." is an autonomous set.]]]]

autonomous sets in the economy. The first algorithm addindices:=Complementftotalset,fundpro];
(ALG3) is based on the definition of autonomous set gt ee=prierscrladdindioesllil)
itself. This algorithm directly computes all the  I=KkSubsets[addindices,k];

autonomous sets in an economy. We sum up the steps of ?fgﬁggigim:[%iﬁﬁ!/((dimT;nces.k); *Kl);
this coarse algomhm fora given economy: Print["'Subsets of size "k+dimfundpro,":"];

. . For[j=1,j<= b,j++,
Stepk. Fixedk € N = {1,...,n}, consider the subsets of gLrJ[iCaEii;al\JtreTE;oiAFf:ndpro,I[[i]]];

N with cardinal k and determine which of them are  minusset=Complement[totalset,autCandidate]:z=0;
For[i=1,i<=dimPosition,i++,

autonomous by using the definition. If{MemberQ[autCandidate nZpositionfi,2]]],
. Memb i .nZ iti i,1]]]}==
However, the total number of candidate sets"ist@o {T?S;Teﬂ? nussetnzpositoni(, I}
high in most cases. An alternative of the previous z=z+1;Goto[escape]]];

algorithm can be considered if the fundamental products | Zes a0/ et autCandidatel:

in the economy have been computed before (and there PrintfautCandidate,” is an autonomous set."]]]]]

exists at least one). As every fundamental product must

belong to all the autonomous sets, then we can skip some This algorithm works fine and quickly when there
subsets oN if we know the fundamental products (and exist fundamental products in the econorly but the
they are inputs for this algorithm). computing time increase meaningfully when there are not
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fundamental products in the economy (the worst caseorfi=1,i<=nList-1,i++,

possible and quite rare). In such a case, other algorithms F?gg;i:ég;:;ﬁtﬁj&’uct[cFC[[i]] Ol

(even graphical) can be given by using the digraph reso=intersection[resi,edges]; ’

associated with the economy and previous results (fromF [!f[;e§2!=E},eidlgesAux=Join[edgesAux,{{{i,i}}}]]]]:
. or{I=1,I<=nList-1,1++,

Lemma 3.4 to Proposition 3.9). Forfjmi+Lj<=nListj++,

Let us try to summarize two new algorithms supported  res1=CartesianProduct[cFC[[ill,cFCII];
by Graph Theory. In both cases, the first step consists of lrﬁfj;'{‘:‘?}rzzgg’snA[Liiljgi?:j]ges AL
computing all the strongly connected components in thegaux=Graphjedgesaux,posVertCFC EdgeDirection->True]
digraph associated with the economy. As a consequence @fitSet=WeaklyConnectedComponents[gAux];
Lemma 3.4, if one vertex lies in an autonomous set, therfgaug e oo ettt
all the vertices in its same strongly connected componentor(i=1,i<=nConComp,i++, .
belong to such an autonomous set. After this preIiminarywtili’[*cucx;ﬁgﬂ?}“dTO[CCA”X’{a“tse‘[[']]'gA“X}H?
step (renaming the sectors which collapse into a vertex), vobego=g;
the strategies are different. Nevertheless, both algosth ~ vDeg0={ _
have two more aspects in common: they are based on the .%ﬁfuff,i’iﬁf[.[slﬂ}ﬁ[f”
search of root vertices, and their last step is computing all  IffOutDegree[gAux,listVertCFC[]]]==0,

: : H H AppendTo[vODeg0,listVertCFCI[j]1];
the possible unions of sets obtained through the algorithms ifinDegree[gAux listvertcFCIj==0,

(according to Corollary 3.5). AppendTo[vDeg0,{listVertCFC[[II}II;

On the one hand, ALG4 pays special attention to the xggzggjgmepgiiﬂ;ﬁg[t\[l\goDZe%(])[,[Fll]e]{nen[VDegoll:
vertices (or stron_gly connected components) such that For[k:gl,ﬁcno.;ego,kﬂ, ¢ '
there does not exist an arc from any other vertex to them; vec=Complement| A
each of these vertices is usually called saurce N ey ndrectediaAuvoDegolld)
Obviously, the sources are autonomous sets themselves. n=pimensionsvec][[1]];
Moreover, when incorporating (in all the different ways gﬁf[ﬁ:lgrifn s
possible) the vertices adjacent to (or successor of_) the  gauxo=DeleteEdges[gAux2 {{vec((h]]vODegO[KIN;
sources, more autonomous sets can be obtained. Finally, c=ComplementweaklyConnectedComponents[gAux2],
the algorithm would compute the unions of any number &8 O0GAdIVDea0k
of autonomous sets already detected. This algorithm is  nc=bimensions[c][[1]];

. . " . P H For[r=1,r<=nc,r++,
quite mtumve,.vx'/hat is a pedagogical adva.ntage, but it AppendToloeAt{Cl GAWILL:
presents the difficulty caused by the excessive number of ¢caux=complement/cCAUX {cCAUXLII]:
different ways to expand the autonomous sets from th@FAtJ[tSft=Din/lerggiﬂns[autsmllllll:
.. or{I=1,I<=nAutSet,I++,
initial sources. _ For[j=i+1 j<=nAutSet j++,

On the other hand, there are usually vertices (or int=IntersectionfautSet[[il],autSet[[]];

Iflint'=autSet[[i]], If[int!=autSet[[j]],

strongly connected components) such that there are not atxeUnionfautset]ll]. autset[]l
arcs from them (to other vertices). These vertices are the  |fmemberQ[autSet,auxj==False,
so-calledsinksand they provide us a recurrent and more el Aptr;er:/dlot[)?u[tsféiazx]]][]]]F:C[[.m it 0

.. . autset=autset/. Table(l- atten|ci 1{]],4,1,nLis )
efficient way of computing the autonomous sets (ALG5). yymautset=pimensionsfautSet[1]]
Firstly, the total set is autonomous. Secondly, eachrorfi=1,i<=numAutSet,i++,
connected component is an autonomous set (seg’i“tse”Rep'aC?Pa“[a“‘set'F'a“e“[a“‘set[[‘m"”

.. . . . *autSet contains all the autonomous sets *)

Proposition 3.9). Thirdly, when removing the sink .
vertices (or strongly connected components), some new Let us propose the last algorithm (ALG6) to
connected components may arise, and they alséletermine the autonomous sets. This one uses the
Correspond to autonomous sets in the economy. Fina”y,EXlStenCE of at least one permutation matrix (permutatlons

the union of autonomous sets is autonomous, too. ArPf rows and columns of the identity matrixj such that

implementation of ALG5 would be as follows: U =m'-A-mis a block upper-triangular matrix, where
_ . N . . A'is the technical coefficients matrix &f. So, as we are
gz;f\"/e'ft:g‘ifn éig‘gﬁ%ﬁi’]ﬁ]{ﬁ'c'ems matrix, again *) about to see, the autonomous sets (and even the
b=Table[0,{i,numVert}.{,numVert]; fundamental products) are obtained by considering the
Fgr[ial,li#numvsrt,ritﬂ, sectors associated with the nonzero blocks in these block
or[j=1,j<=numVert,j++, . .
Il A upper-triangular matrices. Id], the authors proposed a
If[afi,j11=0,b[[i,jTI=1,b[i,l1=01]] e . .
<<Combinatorica’; similar method but searching for matrices of the type:
S-Removeseittoopalal T ot Y112} £ach matrix of this kind provides at least
cFC=StronegConnecte(’jComponents[g]; O Uz /)’ P
nList=Dimensions[cFCI[[1]]; one autonomous set. The main problem of that algorithm
I =Table[i {i,1,nList}]; ; X !
;Ztsv\féifgfcla el Lntisol was the number of permutation matrices which had to be
Table[{{1/2  «Cos[i *2PilnList],1/2 *Sinfi  *2PiMList}}, checked !, whatever the case). This new proposal avoids
Bl the exhaustive searching, since one matrix found can
edgesAux=(}; solve the problem completely.

(@© 2015 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.9, No. 1, 9-18 (2015) www.naturalspublishing.com/Journals.asp NS P 15

Let us suppose that (the matrix obtained in the first To conclude this subsection, we want to indicate that
part of this algorithm) is block upper-triangular, with the all these algorithms (in any of their implementations) are
maximal numbert( of square blocks in the main diagonal: obviously useful to determine whether the economy is

decomposable. Moreover, according to Proposition 3.6,

U11|Uso|- - Uyt only the case witm fundamental products (and, hence, 1
U O |Ugp|--- |Ux autonomous set) is not decomposable.
| tlel
O] 10U 5 Example: Greek input-output matrices

Note thatU;j can be non-squareiit# j, and note also  In this section we apply the presented algorithms to
that the new indexes (id, with respect to the ones i) analyze a real economy. Specifically, we deal with the
are affected by the “variable change” giventnyBearing  input-output matrices of Greece from 1998 (because this

this in mind, the algorithm ALG®6 finishes as follows: technique was partially proposed for the first time in the
International Conference of Computational Methods in
—If t =1, then the only autonomous setNs Sciences and Engineering hold in Greece in 2086 [
—f Ujj = ©, Vi < j, then the indexes corresponding to although these algorithms had neither been implemented
Uj;j constitute an autonomous set. _ nor applied to real-world examples). From an economic
—Foreachi = 1,....t, the indexes corresponding to the yiewpoint, this example is particularly relevant since it
firsti™ blocks constitute an autonomous set. reflects the situation of an economy through a crisis. The

—Finally, each union of two of the determined technical coefficients matrices were computed from the
autonomous sets is also an autonomous set (accordingimmetric input-output tables published in the Eurostat
to Corollary 3.5). European databasg|[

The main difficulty in carrying out the construction is
that, for all the technical coefficients matrices, almost
everya;; # 0, in spite that some of the coefficients are too
close to zero to be considered signs ioEplaceable
goods So, firstly, for 1998 and 57 sectors, we will make
the following assumption: all the coefficients smaller than
©.01% of the maximum technical coefficient (in this case,
< 0.00006639) will be treated as zero. Obviously, that
condition can be weakened and the study can be repeated
—Fist, for j = 1, we are looking for a column iA (the ~ considering other frontier percentages In fact, a

i)y with at most one nonzero elemerd;. These challenging task would be the analysis of the different
columns (if they exist) have to be placed in the first Simplified matrices (later, we will display the
positions (with the convenient permutation matrix). Computations for only three different frontiers) as well as
Each column of this kind correspond to an the determination of the most characteristic threshold.
autonomous set (constituted by one element, eachyNote that this frontier can also be considered on the
their combinations may give more autonomous setdntersectorial flow table, slightly changing the final
(according to Corollary 3.5). results. o _

—For anyj, we proceed as follows. The remaining rows We give the S|mpI|f|¢d matrix for the Greek economy
and columns constitute a submatrix. From such aCf 1998 in Tablel; the figures may be too small to study

Therefore, this algorithm ALG6 can be reduced to the
achievement of the permutation matrices from the
technical coefficients matriA. In order to find such a
matrix (or the corresponding matrly), some steps can
be followed, obtaining the permutation matrix as the
product of a sequence of matrices. We schematize th
process depending on the numbgryith 0 < j < n) of
nonzero elements in each specific column:

submatrix, we are looking fof columns {i,...,ij) them, but they allow the understanding the size of the
with n— j zeros and, at most, nonzero elements in theProblem to be faced (the productive sectors are labelled
rows iy,...,ij. In this case, we use the appropriate according to Tabl@; there are two non-productive sectors

permutation matrix to place thesecolumns in the that were re.moved for our analyglﬂanium and thorium
first positions of the submatrix. Each of thejsaples, ~ Ores and private households with employed perspns
provides us an autonomous sets; their combinationdloreover, the drawing of the corresponding digraph is
are also autonomous (Corollary 3.5). In the worst case!sually a good idea (sed][to consult some examples),

possible,j could ben, obtaining only one autonomous but this present case involves to many sectors to allow a
set (). reasonable picture.

Removing two non-productive sectors and from the
Although this last algorithm (ALGB6) is more efficient corresponding algorithms, we obtain the only two
than the one suggested if][ nowadays it still does not non-fundamental productsobacco products (sector 9)
allow an implementation that competes with the previousand public administration and defense services;
algorithms using Graph Theory (like ALG5), since the compulsory social security services (sector.54f also
number of permutation matrices can be high in the worstget the four existing autonomous sets: the proper set
case possible. N=1{1,2,...,57}, N\ {9}, N\ {51}, andN\ {9,51}.
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Table 1: Simplified Greek technical coefficients matrix for 1998, mded to the ten-thousandths place (for sector description,

seeTable).
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Table 2: Official sector description, according to Eurost@t [

SECTORS/GOODS

1. Products of agriculture, hunting and related services . F@fniture; other manufactured goods n.e.c.

2. Products of forestry, logging and related services 30oS@ary raw materials

3. Fish and other fishing products; services incidental bfrfs 31. Electrical energy, gas, steam and hot water

4. Coal and lignite; peat 32. Collected and purified water, distribution services afev

5. Crude petroleum and natural gas; services incidentafttaaion 33. Construction work

6. Metal ores vehicles; retail sale of automotive fuel 34dEr and repair services of motor

7. Other mining and quarrying products 35. Wholesale trade and commission trade services (no mekicles)
8. Food products and beverages 36. Retail trade services (no motor vehicles); repair ses/{household...)
9. Tobacco products 37. Hotel and restaurant services

10. Textiles 38. Land transport; transport via pipeline services

11. Wearing apparel; furs 39. Water transport services

12. Leather and leather products 40. Air transport services

13. Wood and products of wood and cork (no furniture); strad plaiting... 41. Supporting and auxiliary transport $eg58; travel agency services
14. Pulp, paper and paper products 42. Post and telecommunication services

15. Printed matter and recorded media 43. Financial intermediation services (no insurance amgipe...)

16. Coke, refined petroleum products and nuclear fuels 4drémce and pension funding services (no compulsory ss)yvic
17. Chemicals, chemical products and man-made fibres 4Bic8siauxiliary to financial intermediation

18. Rubber and plastic products 46. Real estate services

19. Other non-metallic mineral products 47. Renting services of machinery and equipment withoutaipe..

20. Basic metals 48. Computer and related services

21. Fabricated metal products, except machinery and eguipm 49. Research and development services

22. Machinery and equipment n.e.c. 50. Other business services

23. Office machinery and computers 51. Public administration and defence...; compulsoryal@gcurity services
24, Electrical machinery and apparatus n.e.c. 52. Edutagovices

25. Radio, television and communication equipment and rapps. 53. Health and social work services

26. Medical, precision and optical instruments, watchescocks 54. Sewage and refuse disposal services, sanitatibsimilar services
27. Motor vehicles, trailers and semi-trailers 55. Membgrerganisation services n.e.c.

28. Other transport equipment 56. Recreational, cultural and sporting services

57. Other services

Table 3: Computing time when applying different algorithms to siifiptl Greek technical coefficients matrices for 1998, 200, a
2005, depending on the threshold considered.

Year & threshold ALG1 ALG2' ALG3Z ALG5
Greece 1998 (0.01%) 17.253 sec. 0.998 sec. 1.698 sec. 257 se
Greece 1998 (0.05%) 11.449 sec. 1.061 sec. >1 hour 2.013 sec.
Greece 1998 (0.1%) 11.981 sec. 1.202 sec. >1 hour 1.965 sec.
Greece 2000 (0.01%) 23.821 sec. 1.17sec. <0.001 sec. 2.621 sec.
Greece 2000 (0.05%) 21.903 sec. 1.185 sec. 2.075 sec. 2484 s
Greece 2000 (0.1%) 18.783 sec. 1.232 sec. >1 hour 2.433 sec.
Greece 2005 (0.01%) 28.174 sec. 1.248 sec. 1.155 sec. 2825s
Greece 2005 (0.05%) 19.452 sec. 1.388 sec. 1.498 sec. 2075s
Greece 2005 (0.1%) 17.831 sec. 1.186 sec. 1.248 sec. 2.885 se

When repeating the computations for years 2000 and This example can be useful to make a simple
2005 (the only two with an official data set after 1998), the comparison between the different algorithms described
results are very similar. In 2005 the fundamental productsalong the paper. After applying the best algorithms to the
and autonomous sets remain the same, while in 2000 wdata set, the differences between them became evident in
gain the fundamental product from sector 51 and we losderms of computing time (see TabR). The computer
two autonomous sets: only = {1,2,...,57} andN\ {9}  used for these calculations was an IfiteiCoré™) i3,
are left. 2.13GHz RAM 4Gb.

With respect to the complexity order, we can indicate

We can also change the threshold and consider that aBome superficial characteristics. In general, they show a
the coefficients smaller than 0.1% of the maximum polynomial complexity, being more evident in the case of
technical coefficient (for instance, for 2000) are zeronthe fundamental products. For ALG2’, the orderri$, being
there is no fundamental product in the economy. Finally,robust since it can be applied to any binary matrix
when considering a threshold of 0.05% for 2005, theencoding the information about the transactional flows in
results are the same than in 2000 with 0.01%: all thean economy. In the case of ALG1, the complexity is
products are fundamental except for number 9, and thereonditioned by Dijkstra algorithm (whose complexity
are only two autonomous sets. The interested researcherder isn?), which involves a total complexity order®
can economically interpret these results; however, thifor our implementation. In this sense, the theoretical
task exceeds the scope of this paper. complexity is equivalent for ALG1 and ALG2'. With
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respect to the robustness, ALGL1 is also robust for binary4] E.M. Fedriani, A.F. Tenorio, Econ. ModeR9, 1931-1937
matrices. Finally, in relation to ALG6 (regarding the  (2012).
autonomous sets), the algorithm has complexity order [5] F. Harary, Graph Theory, Massachusetts, Addison-Wesle

and it is robust (same reason than in the first case 1969.
analyzed). [6] W.W. Leontief, Rev. Econ. Statistids8, 105—-125 (1936).

[7]1 W.W. Leontief, Input-Output Economics, New York, Oxébr
University Press, 1966.
[8] L. de Mesnard, J. Regional Sdi4, 125-141 (2004).

6 Conclusion [9] P. Michel, Cours de Mathématiques pour economistess Pa

Economica, 1989.

In this paper we explain some algorithms which allow 10 [10; p, sraffa, Production de marchandises par des marisend

determine the fundamental products and the autonomous prgjude & une critique de la Theorie Economique, Paris

sets of a given economy. These algorithms provide a puynod, (1970).
computational treatment of these concepts by using
common packages as Mathematica. Their most valuable

applications lie in both research on and teaching of
Economics, since it is possible to compute and visualize
the structure of real economies (see, for instandi, [
According to Table3, we propose the use of ALG2’

to compute the fundamental products of an economy,
using graphs via their matrix representation. However, we
think it is a better option to use ALG5 to obtain the list of
autonomous sets, through the computation of the strongly
connected components of the graph associated with the
economy. Combining both routines (which can be run |
independently), an efficient algorithm can be proposed to ‘
compute the fundamental products as well as the
autonomous sets.
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Looking towards the future, the algorithm ALG6 one hundred of scientific papers and books.

shows promising characteristics, but the search of
permutation matrices should be improved to guarantee
good performance in the worst cases possible. Wi
propose the use of LU decomposition to find a way of
simplifying the search of such matrices.

Here we can certainly provide other two ideas for
future research. On the one hand, the analyst can use tt
more significant changes in the obtained results from yea
to year in order to detect mistakes or even forged
information included in the data set. On the other hand
by changing the sensitivity for the input data set
(something quite accessible from the implementation of
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our algorithms), it would be possible to estimate the contributions are related to Lie Theory, Computer
dependence of an economy on its exports. Of courseAlgebra, Graph Theory, Applications to Economics,
these two tasks complement others, classically performedlistory, Popularization and Didactics of Mathematics,
like the comparison of different economies or the analysiswith more than one hundred papers about these topics.

of the evolution of a fixed economy.
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