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1 Introduction

Graphical representations have helped scientists to better
understand reality and its possible connection with the
corresponding models. In Economics, Graph Theory is
mostly used to complement Input-Output Analysis and
Structural Analysis (see [1,8], for instance). Specifically,
the technical coefficients matrix of an economy can be
translated into the adjacency matrix of a digraph, which
can therefore be univocally associated with the economy.

In this paper, we collect some preliminary ideas about
fundamental products and autonomous sets sketched in a
previous contribution [3]. In that extended abstract, by
using topological graphs, two characterizations and three
computational approaches were suggested (but not
developed or applied). Here we give some additional
results (with their correspondent proofs) as well as
significant improvements in the algorithms and explicit
implementations for the most efficient ones.

The paper is structured in five sections in addition to
this short introduction. First, we recall some preliminary
definitions and results which will be used later. In the next
section, theoretical results and characterizations of
fundamental products and autonomous sets in terms of
Graph Theory are introduced and proved. Right
afterwards, some algorithms are explained, implementing
four of them in the computation system Mathematica

( c©1988–2013, trademark of Wolfram Research, Inc.).
Then, as an example, we apply the algorithms to analyze
the last, Greek input-output matrices. Finally, some ideas
for future research are presented.

2 Preliminaries

For a general overview on Graph Theory and
Input-Output Analysis, the reader can consult the
classical works [5] and [6,7], respectively. We will
restrict our attention to the concepts more closely related
to our final goal.

2.1 Graph concepts

A digraph D= (V,E) consists of a non-empty finite setV
of elements and a finite setE of ordered pairs of these
elements. The setV is called vertex-setof D and its
elements are the vertices ofD. Besides, the setE is called
arc-setof D and its elements are the arcs ofD. If v andw
are two vertices ofD, the arc(v,w) is said to be thearc
from v to w.

In a digraphD, a directed walk(of lengthn) from v1
to vn+1 is a sequence of arcsv1v2,v2v3, . . . ,vnvn+1 in D.
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Moreover, a directed walk is called (n-order)directed path
from v1 to vn+1 whenvi 6= v j for i 6= j; and adirected cycle
starts and ends in the same vertex (“directed path” where
v1 = vn+1).

A directed-in-tree rooted in the vertex vis a tree in
which there exists a (unique) directed path in the tree
from the vertexv to any other vertex. Adirected-out-tree
rooted in the vertex vis a tree in which there exits a
(unique) directed path in the tree from any vertex to the
vertex v. In both cases, the vertexv is called theroot
vertex. A rooted directed tree is said to bespanningwhen
it includes every vertex of the digraphD.

2.2 Input-output analysis

Given an economyE with n productive sectors in the
hypothesis of [6] (each sector produces only one good,
not allowing for secondary production), these sectors can
simultaneously act as both producers and consumers,
because an arbitrary sectori sells its product (outputs ofi)
to other sectors and buys the products of other sectors
(inputs of i) to generate its own product. In this way, the
technical coefficient ai j shows the value of the input
purchased by sectorj to sectori per monetary unit of
output in sectorj (i, j ∈ N = {1, . . . ,n}). If we arrange
these coefficients in a squaren× n matrix, we obtain the
so-calledstructural matrixor technical coefficients matrix
of the economyE . From now on, this matrix is denoted
by A = (ai j ) and provides a quantitatively determined
outlook of the internal structure of the economyE .
Indeed, these matrices allow to compare two economies
between themselves, or even the same economy in two
different time periods, because theith row of the technical
coefficients matrix indicates the distribution of the total
sales of sectori between the remaining sectors inE .
Analogously, the j th column represents the purchases
done by sectorj to each sector in order to produce its
good.

In Economics, it is often useful to know which
products or sectors take part in the production of a
selected set or all the products in the studied economy
[10,9]. This can be studied through the technical
coefficients matrix (or, analogously, the intersectorial
flow table), by considering the concepts of fundamental
product and autonomous set. We now recall these
concepts.

Let N = {1, . . . ,n} be the index-set formed by all the
sectors (or, equivalently, goods) in the economyE . The
producti ∈ N is afundamental productwhen it (directly or
indirectly) takes part in the production of all the products
(including itself). Mathematically, a setB⊆ N is said to be
autonomousif a ji=0, ∀i ∈ B, ∀ j ∈ N\B. The economical
interpretation of an autonomous setB is that no sector out
of B sells its product to any sector inB. Here we mean
that a sectori sells its product to another sectorj when the
technical coefficientai j is nonzero.

Starting from the autonomous sets of the technical
coefficients matrixA, the fundamental products can be
obtained in two steps. First, the autonomous sets are
computed and the elements of the minimal autonomous
set are the candidates to be the fundamental products.
Then, one of these elements is individually studied to
determine whether it is a fundamental product. If that is
the case, the fundamental products are all the ones in the
minimal autonomous set. In the opposite, there is no
fundamental product.

3 Connection between graphs and economies

The fundamental products in an economy are usually
determined by using the autonomous sets of the economy.
In [3], we suggested another approach to this concept by
considering topological properties which can be
associated with the technical coefficients matrix. In fact,
we can determine the fundamental products, directly from
the technical coefficients matrixA of the economyE (or
the transaction flow table), by using Graph Theory. First,
a digraph can be defined as follows: the vertex-setV is the
proper setN and the arc-setE is formed by the pairs
(i, j) ∈ N×N such thatai j 6= 0. Hence, there exists an arc
from sectori to sector j if and only if sectori sells its
product to sectorj. The digraphD(E ) = (V,E) is said to
be associated with the economyE . The following result
translates the condition of fundamental product into a
property in the digraphD(E ) associated with the
economyE , what will provide both a new viewpoint and
an efficient way of computing.

Proposition 3.1.Let i be a productive sector (and its good)
of the economyE . Theni is a fundamental product if and
only if there exists a directed path inD(E ) from i to j, for
all j ∈ N.

Proof. If i is a productive sector, then it takes part directly
or indirectly in the production of each sectorj. In the first
case,ai j 6= 0; i.e., there exists the arc(i, j) in the digraph
D(E ). In the other case, the sectori sells its product to a
sector i1 (so aii1 6= 0), i1 sells to another sectori2
(ai1i2 6= 0) and so on, reaching a sectorik such that
aik j 6= 0; this finite sequence of nonzero values is
equivalent to the existence of the directed path
(i, i1),(i1, i2), . . . ,(ik−1, ik),(ik, j) in D(E ). �

As an immediate consequence of Proposition 3.1,
other fundamental products can be obtained starting from
a fundamental product found in the digraphD(E ), in
virtue of the following:

Corollary 3.2. If i ∈ N is a fundamental product ofE , the
product j ∈ N is fundamental if and only if there exists a
directed path fromj to i in D(E ).

Proof. If j is a fundamental product, Proposition 3.1
implies the existence of a directed path fromj to i. The
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converse is also true, because such a directed path reflects
that sectorj takes part in the production of sectori, which
in turn takes part in the production of all the sectors
(including j). �

Note that, in Corollary 3.2, sincei is a fundamental
product, there is always a directed cycle containing vertex
j. Next, another characterization is given for fundamental
products, by using spanning directed-in-trees:

Proposition 3.3. Let i ∈ N be a sector (and its good).
Theni is a fundamental product if and only if there exists
a spanning directed-in-tree rooted ini and a directed cycle
containing the vertexi.

Proof. If i ∈ N is a fundamental product, then the digraph
D(E ) is connected and contains a spanning
directed-in-tree rooted ini. Firstly, let us check that it is
connected: given two sectorsi1 and i2, due to
Proposition 3.1, we can design a walk betweeni1 and i2,
by joining the path betweeni and i1 and that betweeni
and i2; if this walk is not a path, we can obtain a path
betweeni and i2 by removing all the cycles inside the
walk. Secondly, let us find a spanning directed-in-tree in
D(E ) by using a depth-first search, starting from the
fundamental product i, which will be its root.
Additionally, a directed cycle containing the vertexi is
found due to Proposition 3.1.

Conversely, the spanning directed-in-tree rooted ini
implies the existence of a directed path fromi to any
j ∈ N with j 6= i. Besides, the directed cycle containing
the vertexi is a directed path fromi to i. Hence,i is a
fundamental product due to Proposition 3.1.�

The interest of the previous results is that there exist
well-known algorithms which search for paths, cycles,
directed-in-trees, etc. On the other hand, this viewpoint
allows the appearance of useful results connecting Graph
Theory and input-output models. Moreover, we are about
to give some examples of how the intuitiveness of graphs
eases the the appearance of results involving autonomous
sets and decomposable matrices (which have at least one
autonomous set different from the index set).

Lemma 3.4.The setS N is autonomous if and only if
there are not any arcs from a vertex ofN \S to a vertex
of S.

Proof. It is a direct consequence of the definition of
autonomous set.�

Corollary 3.5. The union of autonomous sets is an
autonomous set.�

Lemma 3.4 is also useful joint with Proposition 3.6 and
the concept of decomposable economy (i.e., decomposable
technical coefficients matrix).

Proposition 3.6. If there exists a non-fundamental
product, thenE is decomposable.

Proof.As there is a non-fundamental products1 in E , there
does not exist a directed path from sectors1 to another
sectors2. Now we consider a maximal directed-out-tree
rooted ins2, whose vertex-set is denoted byVT . The setN\
VT is non-empty because it containss1. Besides, for every
vertex inN\VT , there does not exist an arc from it to any
vertex inVT (otherwise, such a vertex would belong toVT).
Therefore,VT is an autonomous set different fromN. �

The following characterizations allow us to improve
the algorithms introduced in [3], as we will see later.

Theorem 3.7.The following statements are equivalent in
the economyE :

1. The technical coefficients matrix is decomposable.
2. The index-set can be split into two disjoint, non-empty

sets such that there are not any arcs from the first set to
the second.

3. There exist, at least, two strongly connected
components inD(E ).

Proof. We prove the following chain of conditions:
1⇒2⇒3⇒1.

1⇒ 2: It is obvious due to Lemma 3.4.
2⇒ 3: We can find a non-empty subsetS N with no arc

from N \ S to S. Every digraph has, at least, one
strongly connected component; byreductio ad
absurdum, let us suppose that it is unique. Then there
exists a directed path from a given vertexi ∈ N \S to
any other vertex j ∈ S. This directed path must
contain an arc from a vertex inN \S to another inS,
which contradicts our hypothesis.

3⇒ 1: Let S be the vertex-set of a strongly connected
component ofD(E ). The remaining vertices ofD(E )
have to belong to other components different fromS.
So, there are no arcs fromN \ S to S. In virtue of
Lemma 3.4,S N is autonomous and, hence,A is
decomposable.�

Theorem 3.8.The following statements are equivalent in
the economyE :

1. The technical coefficients matrix is totally
decomposable.

2. The index-set can be split into disjoint, non-empty
subsets such that there are not arcs between vertices
belonging to different subsets.

3. There exist, at least, two connected components in
D(E ).

Proof. We prove the following chain of implications:
1⇒2⇒3⇒1.

1⇒ 2: The matrix is totally decomposable if and only if
there exist two non-empty, autonomous sets,S1,S2 ⊂
N, such thatS1∪S2 = N, S1∩S2 =∅, andai j = a ji =
0 for all i ∈ S1 and for all j ∈ S2. This last condition
means that the digraphD(E ) does not contain either
the arc(i, j) or ( j, i) for all i ∈ S1 and for all j ∈ S2.
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2⇒ 3: We can find a non-empty subsetS N such that
there does not exist any arc betweenSandN\S. If we
suppose (reductio ad absurdum) the existence of only
one connected component inD(E ), then there exists a
path between two given verticesi ∈ S and j ∈ N \S.
This path must contain an arc between a vertex inS
and another one inN \S. But this is impossible under
our hypothesis.

3⇒ 1: Let S be the vertex-set of a connected component
of D(E ). Then N \ S consists of the union of the
connected components different fromS. Therefore,
there are not arcs betweenN \ S and S. Due to
Lemma 3.4, bothS and N \ S are autonomous sets
and, hence, the technical coefficients matrixA is
totally decomposable.�

Proposition 3.9. Let C be a connected component of the
digraph D(E ). The vertices belonging toC form an
autonomous set ofE .

Proof. LetVC be the vertex-set ofC. If j belongs toN\VC
and i to VC, then there are not directed paths fromi to j.
Particularly, there are not arcs fromi to j; that is,a ji = 0.
Therefore,VC is an autonomous set.�

Note that there may exist autonomous sets which are
neither connected components nor the union of connected
components. This fact is due to the possible existence of a
chain of inclusions for some autonomous sets.

Proposition 3.10. If the digraphD(E ) is disconnected,
then there is not any fundamental product inE .

Proof. SinceD(E ) is disconnected, there exist, at least,
two connected components,C1 andC2, in D(E ). Let i ∈C1
and j ∈ C2 be two sectors inE . Then, there do not exist
any paths betweeni and j, andi cannot be a fundamental
product ofE . This reasoning is valid for every sectori. �

4 Specific algorithms

4.1 Computing the fundamental products

In this subsection, we indicate two different algorithms to
obtain the fundamental products of a given economyE

(without knowing its autonomous sets). Both algorithms
need as input data the technical coefficients matrix ofE

(or its intersectorial flow table), and the output data are all
the fundamental products inE .

The first algorithm (ALG1) consists of detecting one
fundamental product from the digraphD(E ), and the
remaining fundamental products are obtained starting
from the fundamental product already known:

Step 0. Obtain a fundamental product by using an
algorithm which obtains a rooted spanning
directed-in-tree; the rooti is a fundamental product ofE
when there also exists a directed cycle containing the
root, in virtue of Proposition 3.3.

Stepk (k= 1, . . . ,n). Fixed another sectorj in E , check if
there exists a directed path fromj to i in the digraphD(E ).
j is a fundamental product if there exists such a path, in
virtue of Corollary 3.2.

Next, we show the implementation of algorithm
ALG1 in Mathematica code (at least, it works from
version 5 to version 9). To run the following
implementations over Mathematica 5.2,
DiscreteMath`Combinatorica` package has to
be activated; later versions of the program also admit the
command<<Combinatorica` , instead.

( * "a" is the technical coefficients matrix * )
numVert:=Dimensions[a][[1]]
b=Table[0,{i,numVert},{j,numVert}];
For[i=1,i<=numVert,i++,

For[j=1,j<=numVert,j++,
If[a[[i,j]]!=0,b[[i,j]]=1,b[[i,j]]=0]]]

<<Combinatorica‘;
fundpro:={}
g:=FromAdjacencyMatrix[b,Type->"Directed"]
cycleList=DeleteDuplicates[Flatten[ExtractCycles[g] ]];
For[i=1,i<=numVert,i++, dijkstra=Dijkstra[g,i];

If[Norm[dijkstra[[2]],1]<Infinity,
If[MemberQ[cycleList,i]==True, AppendTo[fundpro,i];

Print[i," is a fundamental product."]]];
If[fundpro!={},Break[]]]

If[fundpro=={},
Print["There is no fundamental product."],
min=fundpro[[1]];
For[i=min+1,i<=numVert,i++,

If[Dimensions[ShortestPath[g,i,min]][[1]]>1,
AppendTo[fundpro,i];
Print[i," is a fundamental product."]]]]

( * fundpro contains all the fundamental products * )

Although this first algorithm is directly based on
Graph Theory and potentially more intuitive and
insightful than others, the direct implementation of
notions about graphs is usually harder than the
implementation of essentially equivalent algorithms
which use Matrix Algebra. In this sense, a simplification
can be achieved by taking into consideration that the
technical coefficients matrixA of the economyE with n
productive sectors works as the adjacency matrix of the
digraphD(E ) associated with this economy. Hence, the
second algorithm proposed here is based on the
well-known fact that each nonzero terma′i j in the matrix

power Ak = (a′i j ) indicates the existence ofk-order
directed walks fromi to j, where 1≤ k ≤ n. As each
fundamental product of the economyE has been
characterized with the existence of directed paths from its
corresponding vertex in the digraphD(E ), in virtue of
Proposition 3.1(and the fact that each walk between two
vertices contains a path between them), the rows of
nonzero terms in the matrix sumM = ∑n

k=1Ak are in
one-to-one correspondence with the fundamental
products of E . Hence, the algorithm (ALG2) can be
described as follows:

Step1. ComputeA2 and add it toA.

Stepk−1 (k = 3, . . . ,n). Fixedk, computeAk and add it
to the sum obtained in the previous step.
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Stepn. Let M be the matrix defined asM = ∑n
k=1 Ak, and

the fundamental products ofE are determined by the
subscripts of rows whose terms are all nonzero.

This algorithm can be binarized in order to reduce the
size of computations. In such a case, the nonzero terms in
each matrix are replaced by “1” in each step, and the
algorithm (ALG2’) may stop when two consecutive
power matrices are equal (see [3] if more details about
this process are needed).

To conclude this section, we show our easy
implementation of algorithm ALG2’ in Mathematica
code. Let us recall that the input data are given by the
technical coefficients matrix.

techmatrix=Input["Insert the technical coefficients
matrix:"]

rank:=Dimensions[techmatrix]
n:=rank[[1]] ( * n is the number of sectors * )
b=Table[0,{i,n},{j,n}] ( * b is the binary matrix * )
For[i=1,i<=n,i++,

For[j=1,j<=n,j++,If[techmatrix[[i,j]]!=0,b[[i,j]]=1 ]]]
( * We start step 1; c, d, and e are auxiliary matrices * )
c:=b
d:=Table[0,{i,n},{j,n}] ( * We will add all the power

matrices in d * )
e:=Table[0,{i,n},{j,n}]
For[k=1,k<=n,k++,e=c;c=c.b;

For[i=1,i<=n,i++,
For[j=1,j<=n,j++,If[c[[i,j]]!=0,c[[i,j]]=1]]];

If[e==c,d=e;Break[],d=e+c]]
( * The fundamental products are obtained from d: * )
fundpro:={} For[i=1,i<=n,i++,r:=0;

For[j=1,j<=n,j++,If[d[[i,j]]==0,r=r+1]];
If[r==0, AppendTo[fundpro,i];

Print[i," is a fundamental product of the
economy."]]]

Print[fundpro," is the set formed by all the
fundamental products."]

4.2 Computing the autonomous sets

In this subsection we suggest some algorithms to obtain
the autonomous sets in a given economyE with n sectors.
In these algorithms, the input data are given by the
technical coefficients matrixA, and the outputs are all the
autonomous sets in the economy. The first algorithm
(ALG3) is based on the definition of autonomous set
itself. This algorithm directly computes all the
autonomous sets in an economy. We sum up the steps of
this coarse algorithm for a given economy:

Stepkkk. Fixed k ∈ N = {1, . . . ,n}, consider the subsets of
N with cardinal k and determine which of them are
autonomous by using the definition.

However, the total number of candidate sets is 2n, too
high in most cases. An alternative of the previous
algorithm can be considered if the fundamental products
in the economy have been computed before (and there
exists at least one). As every fundamental product must
belong to all the autonomous sets, then we can skip some
subsets ofN if we know the fundamental products (and
they are inputs for this algorithm).

Now we show how to implement (in Mathematica)
the alternative algorithm which has just been commented
(ALG3’). The source code shown in the previous section
has to be previously run to compute all the fundamental
products. Note that this algorithm also works properly
when the set of fundamental product is empty.

<<Combinatorica‘
( * In the newest versions, one can call the Combinatorica
Package * )
dimfundpro:=Part[Dimensions[fundpro],1]
( * dimfundpro is the number of fundamental products * )
autset:={fundpro}
( * The set constituted by all the fundamental products
is an autonomous set: * )
Print[fundpro," is an autonomous set."]
totalset:=Table[i,{i,n}]
( * totalset is the index set * )
For[k=dimfundpro+1,k<=n,k++,l=KSubsets[totalset,k];

numsub=n!/((n-k)! * k!);
( * l will be each candidate set * )
For[j=1,j<=numsub,j++,

If[Table[MemberQ[Part[l,j],Part[fundpro,i]],{i,
dimfundpro}]==Table[True,{i,dimfundpro}],

minusset=Complement[totalset,l[[j]]];
z=0;
For[v=1,v<=n-k,v++,

For[u=1,u<=k,u++,
If[techmatrix[[minusset[[v]],Part[l[[j]],u]]]!=0,

z=z+1]]];
If[z==0,AppendTo[autset,l[[j]]];

Print[l[[j]]," is an autonomous set."]]]]]

If the number of sectors is too large, some
improvements in the efficiency of the algorithm may be
welcome, although the reading will turn slightly more
complicated (ALG3”):

If[fundpro=={},
For[k=dimfundpro+1,k<=n,k++,l=KSubsets[totalset,k];

Print["Subsets of size ",k,":"];numsub=n!/((n-k)! * k!);
For[j=1,j<=numsub,j++,

If[Table[MemberQ[Part[l,j],Part[fundpro,i]],
{i,dimfundpro}]==Table[True,{i,dimfundpro}],

minusset=Complement[totalset,l[[j]]];z=0;
For[i=1,i<=dimPosition,i++,

If[{MemberQ[l[[j]],nZposition[[i,2]]],
MemberQ[minusset,nZposition[[i,1]]]}
=={True,True},

z=z+1;Goto[escape]]]];
Label[escape];
If[z==0,AppendTo[autset,l[[j]]];

Print[l[[j]]," is an autonomous set."]]]],
addIndices:=Complement[totalset,fundpro];
dimIndices:=Dimensions[addIndices][[1]];
For[k=1,k<=dimIndices,k++,

l=KSubsets[addIndices,k];
numsub=dimIndices!/((dimIndices-k)! * k!);
( * Dimensions[l][[1]] * )
Print["Subsets of size ",k+dimfundpro,":"];
For[j=1,j<=numsub,j++,

autCandidate=Join[fundpro,l[[j]]];
minusset=Complement[totalset,autCandidate];z=0;
For[i=1,i<=dimPosition,i++,

If[{MemberQ[autCandidate,nZposition[[i,2]]],
MemberQ[minusset,nZposition[[i,1]]]}==
{True,True},

z=z+1;Goto[escape]]];
Label[escape];
If[z==0,AppendTo[autset,autCandidate];

Print[autCandidate," is an autonomous set."]]]]]

This algorithm works fine and quickly when there
exist fundamental products in the economyE , but the
computing time increase meaningfully when there are not
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fundamental products in the economy (the worst case
possible and quite rare). In such a case, other algorithms
(even graphical) can be given by using the digraph
associated with the economy and previous results (from
Lemma 3.4 to Proposition 3.9).

Let us try to summarize two new algorithms supported
by Graph Theory. In both cases, the first step consists of
computing all the strongly connected components in the
digraph associated with the economy. As a consequence of
Lemma 3.4, if one vertex lies in an autonomous set, then
all the vertices in its same strongly connected component
belong to such an autonomous set. After this preliminary
step (renaming the sectors which collapse into a vertex),
the strategies are different. Nevertheless, both algorithms
have two more aspects in common: they are based on the
search of root vertices, and their last step is computing all
the possible unions of sets obtained through the algorithms
(according to Corollary 3.5).

On the one hand, ALG4 pays special attention to the
vertices (or strongly connected components) such that
there does not exist an arc from any other vertex to them;
each of these vertices is usually called asource.
Obviously, the sources are autonomous sets themselves.
Moreover, when incorporating (in all the different ways
possible) the vertices adjacent to (or successor of) the
sources, more autonomous sets can be obtained. Finally,
the algorithm would compute the unions of any number
of autonomous sets already detected. This algorithm is
quite intuitive, what is a pedagogical advantage, but it
presents the difficulty caused by the excessive number of
different ways to expand the autonomous sets from the
initial sources.

On the other hand, there are usually vertices (or
strongly connected components) such that there are not
arcs from them (to other vertices). These vertices are the
so-calledsinksand they provide us a recurrent and more
efficient way of computing the autonomous sets (ALG5).
Firstly, the total set is autonomous. Secondly, each
connected component is an autonomous set (see
Proposition 3.9). Thirdly, when removing the sink
vertices (or strongly connected components), some new
connected components may arise, and they also
correspond to autonomous sets in the economy. Finally,
the union of autonomous sets is autonomous, too. An
implementation of ALG5 would be as follows:

( * "a" is the technical coefficients matrix, again * )
numVert=Dimensions[a][[1]];
b=Table[0,{i,numVert},{j,numVert}];
For[i=1,i<=numVert,i++,

For[j=1,j<=numVert,j++,
If[a[[i,j]]!=0,b[[i,j]]=1,b[[i,j]]=0]]]

<<Combinatorica‘;
g=FromAdjacencyMatrix[b,Type->"Directed"];
g=RemoveSelfLoops[g];
cFC=StronglyConnectedComponents[g];
nList=Dimensions[cFC][[1]];
listVertCFC=Table[i,{i,1,nList}];
posVertCFC=

Table[{{1/2 * Cos[i * 2Pi/nList],1/2 * Sin[i * 2Pi/nList]}},
{i,1,nList}];

edges=Edges[g];
edgesAux={};

For[i=1,i<=nList-1,i++,
For[j=i+1,j<=nList,j++,

res1=CartesianProduct[cFC[[i]],cFC[[j]]];
res2=Intersection[res1,edges];
If[res2!={},edgesAux=Join[edgesAux,{{{i,j}}}]]]];

For[i=1,i<=nList-1,i++,
For[j=i+1,j<=nList,j++,

res1=CartesianProduct[cFC[[j]],cFC[[i]]];
res2=Intersection[res1,edges];
If[res2!={},edgesAux=Join[edgesAux,{{{j,i}}}]]]];

gAux=Graph[edgesAux,posVertCFC,EdgeDirection->True] ;
autSet=WeaklyConnectedComponents[gAux];
nConComp=Dimensions[autSet][[1]];
cCAux={};
For[i=1,i<=nConComp,i++,

cCAux=AppendTo[cCAux,{autSet[[i]],gAux}]];
While[cCAux!={},

vODeg0={};
vDeg0={};
gAux=cCAux[[1]][[2]];
For[j=1,j<=nList,j++,

If[OutDegree[gAux,listVertCFC[[j]]]==0,
AppendTo[vODeg0,listVertCFC[[j]]];
If[InDegree[gAux,listVertCFC[[j]]]==0,

AppendTo[vDeg0,{listVertCFC[[j]]}]]]];
vODeg0=Complement[vODeg0,Flatten[vDeg0]];
nODeg0=Dimensions[vODeg0][[1]];
For[k=1,k<=nODeg0,k++,

vec=Complement[
Neighborhood[MakeUndirected[gAux],vODeg0[[k]],

1],{vODeg0[[k]]}];
n=Dimensions[vec][[1]];
gAux2=gAux;
For[h=1,h<=n,h++,

gAux2=DeleteEdges[gAux2,{{vec[[h]],vODeg0[[k]]}}]];
c=Complement[WeaklyConnectedComponents[gAux2],

autSet,{{vODeg0[[k]]}},vDeg0];
autSet=Join[autSet,c];
nc=Dimensions[c][[1]];
For[r=1,r<=nc,r++,

AppendTo[cCAux,{c[[r]],gAux2}]];];
cCAux=Complement[cCAux,{cCAux[[1]]}]];

nAutSet=Dimensions[autSet][[1]];
For[i=1,i<=nAutSet,i++,

For[j=i+1,j<=nAutSet,j++,
int=Intersection[autSet[[i]],autSet[[j]]];
If[int!=autSet[[i]],If[int!=autSet[[j]],

aux=Union[autSet[[i]],autSet[[j]]];
If[MemberQ[autSet,aux]==False,

AppendTo[autSet,aux]]]]]];
autSet=autSet/.Table[i->Flatten[cFC[[i]]],{i,1,nLis t}];
numAutSet=Dimensions[autSet][[1]];
For[i=1,i<=numAutSet,i++,

autSet=ReplacePart[autSet,Flatten[autSet[[i]]],i]]
( * autSet contains all the autonomous sets * )

Let us propose the last algorithm (ALG6) to
determine the autonomous sets. This one uses the
existence of at least one permutation matrix (permutations
of rows and columns of the identity matrix)π such that
U = π−1 ·A · π is a block upper-triangular matrix, where
A is the technical coefficients matrix ofE . So, as we are
about to see, the autonomous sets (and even the
fundamental products) are obtained by considering the
sectors associated with the nonzero blocks in these block
upper-triangular matrices. In [4], the authors proposed a
similar method but searching for matrices of the type:
(

U11 U12
Θ U22

)

. Each matrix of this kind provides at least

one autonomous set. The main problem of that algorithm
was the number of permutation matrices which had to be
checked (n!, whatever the case). This new proposal avoids
the exhaustive searching, since one matrix found can
solve the problem completely.
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Let us suppose thatU (the matrix obtained in the first
part of this algorithm) is block upper-triangular, with the
maximal number (t) of square blocks in the main diagonal:

U =











U11 U12 · · · U1t
Θ U22 · · · U2t
... Θ

. . .
...

Θ · · · Θ Utt











Note thatUi j can be non-square ifi 6= j, and note also
that the new indexes (inU , with respect to the ones inA)
are affected by the “variable change” given byπ . Bearing
this in mind, the algorithm ALG6 finishes as follows:

–If t = 1, then the only autonomous set isN.
–If Ui j = Θ , ∀i < j, then the indexes corresponding to
U j j constitute an autonomous set.

–For eachi = 1, . . . , t, the indexes corresponding to the
first ith blocks constitute an autonomous set.

–Finally, each union of two of the determined
autonomous sets is also an autonomous set (according
to Corollary 3.5).

Therefore, this algorithm ALG6 can be reduced to the
achievement of the permutation matrices from the
technical coefficients matrixA. In order to find such a
matrix (or the corresponding matrixU), some steps can
be followed, obtaining the permutation matrix as the
product of a sequence of matrices. We schematize the
process depending on the number (j, with 0≤ j ≤ n) of
nonzero elements in each specific column:

–Fist, for j = 1, we are looking for a column inA (the
ith) with at most one nonzero element:aii . These
columns (if they exist) have to be placed in the first
positions (with the convenient permutation matrix).
Each column of this kind correspond to an
autonomous set (constituted by one element, each);
their combinations may give more autonomous sets
(according to Corollary 3.5).

–For any j, we proceed as follows. The remaining rows
and columns constitute a submatrix. From such a
submatrix, we are looking forj columns (i1, . . . , i j )
with n− j zeros and, at most, nonzero elements in the
rows i1, . . . , i j . In this case, we use the appropriate
permutation matrix to place thesej columns in the
first positions of the submatrix. Each of thesej-uples,
provides us an autonomous sets; their combinations
are also autonomous (Corollary 3.5). In the worst case
possible,j could ben, obtaining only one autonomous
set (N).

Although this last algorithm (ALG6) is more efficient
than the one suggested in [4], nowadays it still does not
allow an implementation that competes with the previous
algorithms using Graph Theory (like ALG5), since the
number of permutation matrices can be high in the worst
case possible.

To conclude this subsection, we want to indicate that
all these algorithms (in any of their implementations) are
obviously useful to determine whether the economy is
decomposable. Moreover, according to Proposition 3.6,
only the case withn fundamental products (and, hence, 1
autonomous set) is not decomposable.

5 Example: Greek input-output matrices

In this section we apply the presented algorithms to
analyze a real economy. Specifically, we deal with the
input-output matrices of Greece from 1998 (because this
technique was partially proposed for the first time in the
International Conference of Computational Methods in
Sciences and Engineering hold in Greece in 2006 [3],
although these algorithms had neither been implemented
nor applied to real-world examples). From an economic
viewpoint, this example is particularly relevant since it
reflects the situation of an economy through a crisis. The
technical coefficients matrices were computed from the
symmetric input-output tables published in the Eurostat
European database [2].

The main difficulty in carrying out the construction is
that, for all the technical coefficients matrices, almost
everyai j 6= 0, in spite that some of the coefficients are too
close to zero to be considered signs ofirreplaceable
goods. So, firstly, for 1998 and 57 sectors, we will make
the following assumption: all the coefficients smaller than
0.01% of the maximum technical coefficient (in this case,
< 0.00006639) will be treated as zero. Obviously, that
condition can be weakened and the study can be repeated
considering other frontier percentages. In fact, a
challenging task would be the analysis of the different
simplified matrices (later, we will display the
computations for only three different frontiers) as well as
the determination of the most characteristic threshold.
Note that this frontier can also be considered on the
intersectorial flow table, slightly changing the final
results.

We give the simplified matrix for the Greek economy
of 1998 in Table1; the figures may be too small to study
them, but they allow the understanding the size of the
problem to be faced (the productive sectors are labelled
according to Table2; there are two non-productive sectors
that were removed for our analysis:uranium and thorium
ores and private households with employed persons).
Moreover, the drawing of the corresponding digraph is
usually a good idea (see [4] to consult some examples),
but this present case involves to many sectors to allow a
reasonable picture.

Removing two non-productive sectors and from the
corresponding algorithms, we obtain the only two
non-fundamental products:tobacco products (sector 9)
and public administration and defense services;
compulsory social security services (sector 51). We also
get the four existing autonomous sets: the proper set
N = {1,2, . . . ,57}, N\ {9}, N\ {51}, andN\ {9,51}.
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Table 1: Simplified Greek technical coefficients matrix for 1998, rounded to the ten-thousandths place (for sector description,
seeTable2).
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Table 2: Official sector description, according to Eurostat [2].
SECTORS / GOODS
1. Products of agriculture, hunting and related services 29. Furniture; other manufactured goods n.e.c.
2. Products of forestry, logging and related services 30. Secondary raw materials
3. Fish and other fishing products; services incidental of fishing 31. Electrical energy, gas, steam and hot water
4. Coal and lignite; peat 32. Collected and purified water, distribution services of water
5. Crude petroleum and natural gas; services incidental to extraction 33. Construction work
6. Metal ores vehicles; retail sale of automotive fuel 34. Trade and repair services of motor
7. Other mining and quarrying products 35. Wholesale trade and commission trade services (no motorvehicles)
8. Food products and beverages 36. Retail trade services (no motor vehicles); repair services (household...)
9. Tobacco products 37. Hotel and restaurant services
10. Textiles 38. Land transport; transport via pipeline services
11. Wearing apparel; furs 39. Water transport services
12. Leather and leather products 40. Air transport services
13. Wood and products of wood and cork (no furniture); straw and plaiting... 41. Supporting and auxiliary transport services; travel agency services
14. Pulp, paper and paper products 42. Post and telecommunication services
15. Printed matter and recorded media 43. Financial intermediation services (no insurance and pension...)
16. Coke, refined petroleum products and nuclear fuels 44. Insurance and pension funding services (no compulsory services)
17. Chemicals, chemical products and man-made fibres 45. Services auxiliary to financial intermediation
18. Rubber and plastic products 46. Real estate services
19. Other non-metallic mineral products 47. Renting services of machinery and equipment without operator...
20. Basic metals 48. Computer and related services
21. Fabricated metal products, except machinery and equipment 49. Research and development services
22. Machinery and equipment n.e.c. 50. Other business services
23. Office machinery and computers 51. Public administration and defence...; compulsory social security services
24. Electrical machinery and apparatus n.e.c. 52. Education services
25. Radio, television and communication equipment and apparatus 53. Health and social work services
26. Medical, precision and optical instruments, watches and clocks 54. Sewage and refuse disposal services, sanitation and similar services
27. Motor vehicles, trailers and semi-trailers 55. Membership organisation services n.e.c.
28. Other transport equipment 56. Recreational, cultural and sporting services

57. Other services

Table 3: Computing time when applying different algorithms to simplified Greek technical coefficients matrices for 1998, 2000, and
2005, depending on the threshold considered.

Year & threshold ALG1 ALG2’ ALG3’ ALG5

Greece 1998 (0.01%) 17.253 sec. 0.998 sec. 1.698 sec. 2.57 sec.

Greece 1998 (0.05%) 11.449 sec. 1.061 sec. >1 hour 2.013 sec.

Greece 1998 (0.1%) 11.981 sec. 1.202 sec. >1 hour 1.965 sec.

Greece 2000 (0.01%) 23.821 sec. 1.17 sec. <0.001 sec. 2.621 sec.

Greece 2000 (0.05%) 21.903 sec. 1.185 sec. 2.075 sec. 2.184 sec.

Greece 2000 (0.1%) 18.783 sec. 1.232 sec. >1 hour 2.433 sec.

Greece 2005 (0.01%) 28.174 sec. 1.248 sec. 1.155 sec. 2.325 sec.

Greece 2005 (0.05%) 19.452 sec. 1.388 sec. 1.498 sec. 2.075 sec.

Greece 2005 (0.1%) 17.831 sec. 1.186 sec. 1.248 sec. 2.385 sec.

When repeating the computations for years 2000 and
2005 (the only two with an official data set after 1998), the
results are very similar. In 2005 the fundamental products
and autonomous sets remain the same, while in 2000 we
gain the fundamental product from sector 51 and we lose
two autonomous sets: onlyN = {1,2, . . . ,57} andN\ {9}
are left.

We can also change the threshold and consider that all
the coefficients smaller than 0.1% of the maximum
technical coefficient (for instance, for 2000) are zero, then
there is no fundamental product in the economy. Finally,
when considering a threshold of 0.05% for 2005, the
results are the same than in 2000 with 0.01%: all the
products are fundamental except for number 9, and there
are only two autonomous sets. The interested researcher
can economically interpret these results; however, this
task exceeds the scope of this paper.

This example can be useful to make a simple
comparison between the different algorithms described
along the paper. After applying the best algorithms to the
data set, the differences between them became evident in
terms of computing time (see Table3). The computer
used for these calculations was an Intel(R) Core(TM) i3,
2.13GHz RAM 4Gb.

With respect to the complexity order, we can indicate
some superficial characteristics. In general, they show a
polynomial complexity, being more evident in the case of
fundamental products. For ALG2’, the order isn3, being
robust since it can be applied to any binary matrix
encoding the information about the transactional flows in
an economy. In the case of ALG1, the complexity is
conditioned by Dijkstra algorithm (whose complexity
order isn2), which involves a total complexity ordern3

for our implementation. In this sense, the theoretical
complexity is equivalent for ALG1 and ALG2’. With
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respect to the robustness, ALG1 is also robust for binary
matrices. Finally, in relation to ALG6 (regarding the
autonomous sets), the algorithm has complexity ordern3

and it is robust (same reason than in the first case
analyzed).

6 Conclusion

In this paper we explain some algorithms which allow to
determine the fundamental products and the autonomous
sets of a given economy. These algorithms provide a
computational treatment of these concepts by using
common packages as Mathematica. Their most valuable
applications lie in both research on and teaching of
Economics, since it is possible to compute and visualize
the structure of real economies (see, for instance, [4]).

According to Table3, we propose the use of ALG2’
to compute the fundamental products of an economy,
using graphs via their matrix representation. However, we
think it is a better option to use ALG5 to obtain the list of
autonomous sets, through the computation of the strongly
connected components of the graph associated with the
economy. Combining both routines (which can be run
independently), an efficient algorithm can be proposed to
compute the fundamental products as well as the
autonomous sets.

Looking towards the future, the algorithm ALG6
shows promising characteristics, but the search of
permutation matrices should be improved to guarantee a
good performance in the worst cases possible. We
propose the use of LU decomposition to find a way of
simplifying the search of such matrices.

Here we can certainly provide other two ideas for
future research. On the one hand, the analyst can use the
more significant changes in the obtained results from year
to year in order to detect mistakes or even forged
information included in the data set. On the other hand,
by changing the sensitivity for the input data set
(something quite accessible from the implementation of
our algorithms), it would be possible to estimate the
dependence of an economy on its exports. Of course,
these two tasks complement others, classically performed,
like the comparison of different economies or the analysis
of the evolution of a fixed economy.

References

[1] R. Bott, J.P. Mayberry, Matrices and trees, In: Morgenstern,
O. (Ed.), Economic Activity Analysis. New York, Wiley, pp.
391–400, 1954.

[2] Eurostat, ESA 95 Supply Use and Input-
Output tables (Symmetric Input-Output Tables),
http://epp.eurostat.ec.europa.eu.Accessed 13 September
2012.

[3] E.M. Fedriani, A.F. Tenorio, Lect. Ser. Computer Computat.
Sci.7, 145–148 (2006).

[4] E.M. Fedriani, A.F. Tenorio, Econ. Model.29, 1931–1937
(2012).

[5] F. Harary, Graph Theory, Massachusetts, Addison-Wesley,
1969.

[6] W.W. Leontief, Rev. Econ. Statistics18, 105–125 (1936).
[7] W.W. Leontief, Input-Output Economics, New York, Oxford

University Press, 1966.
[8] L. de Mesnard, J. Regional Sci.44, 125–141 (2004).
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