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1. Introduction

Schwarz method has been invented by Herman Amandus
Schwarz in 1890. This method has been used to solve the
stationary or evolutionary boundary value problems on do-
mains which consists of two or more overlapping sub-domains
(see [1, 3, 15, 19, 20, 23, 24]). The solution is approx-
imated by an infinite sequence of functions which results
from solving a sequence of stationary or evolutionary bound-
ary value problems in each of the sub-domain. In this work
we provide a maximum norm analysis of an overlapping
Schwarz method on non-matching grids for parabolic quasi-
variational inequalities related to impulse control problem
with respect to the mixed boundary conditions.

We consider the following evolutionary inequality: find
u ∈ L2

(
0, T ;H1

0 (Ω)
)

solution of

∂u

∂t
−∆u− f ≤ 0, in Σ

u−Mu ≤ 0 Mu ≥ 0,(
∂u

∂t
−∆u− f

)
(u−Mu) = 0 in Ω,

∂u

∂η
= φ in Γ0 and u = 0 in Γ/Γ0,

u (x, 0) = u0 in Ω

,

where Σ is a set in R×R2 defined as Σ = Ω × [0, T ]
with T̈ < +∞ , where Ω is a smooth bounded domain of
R2 with boundary Γ and f is a regular function.

The symbol (., .) stands for the inner product in L2.
f is a regular functions satisfying
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f ∈ L2 (0, T, L∞ (Ω))∩C1
(
0, T,H−1 (Ω)

)
and f ≥ 0.

(1)
We specify the following notations.

∥.∥L2(Ω) = ∥.∥2 , ∥.∥1 = ∥.∥H1
0 (Ω) , ∥.∥L∞(Ω∪Γ ) = ∥.∥∞ ,

M is an operator given by

Mu = k + inf
ξ≥0,x+ξ∈Ω̄

u (x+ ξ)

where k > 0 and ξ ≥ 0 means that ξ = (ξ1, ξ2) with
ξ1, ξ2 ≥ 0,and Γ0 is the part of the boundary defined by:

Γ0 =
{
x ∈ ∂Ω = Γ such that ∀ξ > 0, x+ ξ /∈ Ω̄

}
.

Finally,
∂u

∂η
= ∇u.−→η , such that −→η is the normal vector.

The symbol (., .)Ω stands for the inner product in L2(Ω),
(., .)Γ0

stands for the inner product in L2(Γ0).
A great deal of work has been done since now three

decades on questions of existence and uniqueness for the
discrete solution of parabolic and elliptic variational in-
equalities and quasi-variational. However, very much re-
mains to be done on the numerical analysis side, espe-
cially the error estimates for them in uniform norm (cf.,
e.g.[6,7], [9-16]) and the asymptotic behavior in uniform
norm for parabolic variational inequalities (cf., e.g.[4,5]).
The existence and uniqueness and regularity of both the
continuous and the discrete solution have been intensively
studied and had already been dealt with in the past years,
(cf., e.g.[13,14] [20]) for details.

In a recent work (see [3]), exploiting the above argu-
ments, we analyzed the finite element approximation for
the coercive problem and derived the following error esti-
mate for elliptic quasi-variational inequalities

∥u− uh∥L∞(Ω) ≤ Ch2 |log h|3 , (2)

with C a constant independent of both h and k.
In the previous our work [4,5] , we established firstly

the existence and uniqueness of weak solutions of parabolic
variational inequalities. Then we transformed the parabolic
quasi-variational inequalities related to impulse control prob-
lem into a coercive elliptic quasi-variational inequalities,
and we proposed a new iterative discrete algorithm to
show the existence and uniqueness of the discrete solu-
tion, and we gave a simple proof to asymptotic behavior
in L∞-norm using the theta time scheme combined with a
finite element spatial approximation.

Also, we analyzed the theta-scheme with respect to the
t-variable combined with a finite element spatial approx-
imation for the evolutionary variational inequalities and
quasi-variational inequalities with an obstacle defined as

an impulse control problem [4,5] and we derived the fol-

lowing asymptotic behavior, for θ ≥ 1

2∥∥∥uθ,p
h − u∞

∥∥∥
∞

≤ C
[
h2 |log h|2 +

(
1

1+βθ∆t

)p]
, (3)

and for the second case 0 ≤ θ <
1

2∥∥∥uθ,p
h − u∞

∥∥∥
∞

≤ C
[
h2 |log h|2 +

(
2h2

2h2+βθ(1−2θ)

)p]
,

(4)
where ρ (A) is the spectral radios of the elliptic op-

erator A and uθ,p
h , the discrete solution calculated at the

moment-end T = p∆t for an index of the time discretiza-
tion k = 1, ..., p, and u∞, the asymptotic continuous solu-
tion.

and it can be seen in the previous our estimates in (1.3),

(1.4)
(

1

1 + βθ∆t

)p

,

(
2

2 + βθ (1− 2θ) ρ (A)

)p

tend to

0 when p approach to infinity. Therefore, we get the previ-
ous estimates for elliptic case defined in (1.2).

Our main concern in the present paper is to extend the
above result for the parabolic quasi-variational which in
turn can be transformed into system of coercive elliptic
quasi variational according the step of the time discretiza-
tion . Therefore the all results which introduced in this pa-
per remain true, where we have introduced a new approach
for the theta time scheme combined with a finite element
spatial approximation of an overlapping Schwarz method
on non-matching grids for the parabolic quasi-variational
inequalities related to impulse control problem. We con-
sider a domain which the union of two overlapping sub-
domains, where each sub-domain has its own generated
triangulation. The grid points on the sub-domain bound-
aries need not much the grid points from the other sub-
domain. Under a discrete maximum principle [cf. 9], we
show that the discretization on each sub-domain converges
quasi-optimally in the L∞-norm . For that purpose, fur-
ther to the above arguments, our main tool is a discrete
L∞-stability property with respect the obstacle defined as
an impulse control problem, the right-hand side and the
mixed boundary conditions.

The outline of the paper is as follows. In Section 2, we
lay down some notations and assumptions needed through
out the paper and state both the continuous and discrete
parabolic quasi variational inequalities. In section 3, we
state the continuous alternating Schwarz sequence for parabolic
quasi-variational inequalities and define their respective
the theta scheme combined with a finite element counter-
parts in the context of overlapping grids. Then, we prove
the L∞-stability analysis of the θ-scheme for P.V.I. Finally
in Section 4, we associate with the discrete P.V.I problem
a fixed point mapping and we use that in proving the ex-
istence of a unique discrete solution, In section 5 the ge-
ometrical convergence is established using the new iter-
ative discrete algorithm stands in theta scheme. Than an
L∞-asymptotic behavior estimate for each sub-domain is
derived in uniform norm.
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2. The Schwarz method for the parabolic
Quasi-variational inequalities.

We begin by down some definitions and classical results
related to Quasi-variational inequalities.

2.1. Parabolic Quasi-variational inequalities.

Let Ω be a convex domain in R2 with sufficiently smooth
boundary ∂Ω. We consider the following obstacle problem



∂u

∂t
−∆u− f ≤ 0, in Σ,

u−Mu ≤ 0 Mu ≥ 0,(
∂u

∂t
−∆u− f

)
(u−Mu) = 0 in Ω,

∂u

∂η
= φ in Γ0 and u = 0 in Γ/Γ0,

u (x, 0) = u0 in Ω

, (5)

M is an operator given by

Mu = k + inf
ξ≥0,x+ξ∈Ω̄

u (x+ ξ) . (6)

with M a regular operator given by

Mu = k + inf
ξ≥0,x+ξ∈Ω̄

u (x+ ξ)

where k is a positive number and ξ ≥ 0 means that ξ =
(ξ1, ξ2) with ξ1, ξ2 ≥ 0 and satisfying

Mu ∈ L2
(
0, T,W 2,∞ (Ω)

)
, (7)

and we know by [21] M is satisfying some proprieties
as

M is concave; i.e., ∀u, v ∈ C (Ω) , ∃δ > 0 :

M (δu+ (1− δ) v) ≥ δM (u) + (1− δ)M (v) , (8)

and also it is satisfying

∀η ∈ R,M (u+ η) = M (u) + η, (9)

f (.) is a regular function which satisfy

f ∈ L2 (0, T, L∞ (Ω)) ∩ C1
(
0, T,H−1 (Ω)

)
, (10)

and φ is a regular function in Γ0

Theorem 1.[cf. 22] The problem (5) has an unique solu-
tion u ∈ L2

(
0, T ;H1 (Ω)

)
. Moreover we have

u ∈ L2
(
0, T ;H1 (Ω)

)
,

∂u

∂t
∈ L2

(
0, T ;H−1 (Ω)

) . (11)

After applying the Green formula, the (5) can be trans-
formed to the following parabolic quasi-variational inequal-
ities



(
∂u

∂t
, v − u

)
Ω

+ a (u, v − u)− (f, v − u)Ω −

− (φ, v − u)Γ0
≥ 0, on Ω, v ∈ H1 (Ω)

u−Mu ≤ 0 Mu ≥ 0,

Mu = k + inf
ξ≥0,x+ξ∈Ω̄

u (x+ ξ) ,

∂u

∂η
= φ in Γ0 and u = 0 in Γ/Γ0,

u (x, 0) = u0 in Ω

.

(12)
Thus, it can be easily deduced that

a (u, v) =

∫
Ω

∇u.∇vdx = (∇u,∇v)Ω ,

(f, v)Ω =

∫
Ω

f.vdx

and
(φ, v)Γ0

=

∫
Γ0

φ.vdσ.

Lemma 1.[cf. 22]Under the previous hypotheses we have
the following inequality

∥Mu−Mũ∥L∞(Ω) ≤ ∥u− ũ∥L∞(Ω) (13)

Let (Mξ,φ) ,
(
M ξ̃, φ̃

)
be a pair of data, and ξ =

σ (Mξ,φ) , ξ̃ = σ
(
M ξ̃, φ̃

)
be the corresponding solu-

tions to the following parabolic quasi-variational inequali-
ties (PQVI):

b (ξ, v − ξ) ≥ (f, v − ξ)Ω +

+(φ, (v − ξ))Γ0
, ∀v ∈ L2

(
0, T ;H1

0 (Ω)
)

and

b
(
ξ̃, v − ξ̃

)
≥
(
f, v − ξ̃

)
Ω
+

+(φ̃, (v − ξ))Γ0
,∀v ∈ L2

(
0, T ;H1

0 (Ω)
)
,
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where(
∂ξ

∂t
, (v − ξ)

)
Ω

+ a (ξ, v − ξ) = b (ξ, v − ξ)

Then, the following comparison result holds.

Lemma 2.Under the previous hypotheses and the nota-
tion..

If φ ≥ φ̃. Then σ (Mξ,φ) ≥ σ
(
Mξ̃, φ̃

)
.

Proof.Let v = min
(
0, ξ − ξ̃

)
. In the region where v is

negative (v < 0), we have

ξ ≤ ξ̃ ≤ Mξ̃ ≤ Mξ,

which means that the obstacle is not active for u. So,
for that v, we have

b (ξ, v) = (f, v)Ω + (φ, v)Γ0
, (14)

ξ̃ + v ≤ Mξ̃ (15)

so

b
(
ξ̃, v
)
≥ (f, v)Ω + (φ, v)Γ0

. (16)

Subtracting (14) and (16) from each other, we obtain

b
(
ξ − ξ̃, v

)
≥ 0. (17)

But

b (v, v) = b
(
ξ − ξ̃, v

)
= −b

(
ξ̃ − ξ, v

)
≤ 0 (18)

so

v = 0

and consequently,

ξ ≥ ξ̃

which completes the proof.

Proposition 1.[cf. 3]Under the previous hypotheses, we
have the following inequality

∥u− ũ∥L∞(Ωi)
≤ ∥Mu−Mũ∥L∞(Ωi)

+

+ ∥φ− φ̃∥L∞(∂Ωi∩Ωj)
, such that i ̸= j, i, j = 1, 2.

3. The discrete parabolic quasi-variational
inequalities

3.1. The space discretization

Let Ω be decomposed into triangles and τh denote the
set of all those elements h > 0 is the mesh size. We
assume that the family τh is regular and quasi-uniform.
We consider the usual basis of affine functions φi i =
{1, ...,m (h)} defined by φi (Mj) = δij where Mj is a
summit of the considered triangulation. We introduce the
following discrete spaces V h of finite element

Vh =



vh ∈ L2
(
0, T,H1

0 (Ω)
)
∩ C

(
0, T,H1

0

(
Ω̄
))

,

such that vh |K∈ P1, K ∈ τh,

vh ≤ rhM (vh) , vh (., 0) = vh0 in Ω,

∂vh
∂η

= φ in Γ0 and vh = 0 in Γ/Γ0

(19)
We consider rh be the usual interpolation operator de-

fined by

vh ∈ L2
(
0, T,H1

0 (Ω)
)
∩ C

(
0, T,H1

0

(
Ω̄
))

,

rhv =
m(h)∑
i=1

v (Mi)φi (x) .

(20)

The discrete maximum principle assumption (dmp)[cf.
9]: We assume the matrix whose coefficients a (φi, φj) are
M−matrix. For convenience in all the sequels, C will be
a generic constant independent on h.

We discretize in space, i.e., that we approach the space
H1

0 by a space discretization of finite dimensional V h ⊂
H1

0 . In a second step, we discretize the problem with re-
spect to time using the θ-scheme. Therefore, we search a
sequence of elements un

h ∈ V h which approaches un (tn) , tn
= n∆t, with initial data u0

h = u0h. Now we apply the θ-
Scheme on the following to the semi-discrete approxima-
tion for vh ∈ V h


(
∂uh

∂t , vh − uh

)
Ω
+ a (uh, vh − uh) ≥

≥ (f, vh − uh)Ω + (φ, (vh − uh))Γ0
.

(21)

3.2. The time discretization

Now, we discretize the problem (21) with respect to time
by using the theta-scheme. Therefore, we search a sequence
of elements uk

h ∈ Vh which approaches ui
h (tk) , tk =

k∆t, with initial data u0
h = u0h.

Thus we have, for any θ ∈ [0, 1] and k = 1, ..., p

c⃝ 2013 NSP
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(
uk
h − uk−1

h , vh − uθ,k
h

)
Ω
+ (∆t) a

(
uθ,k
h , vh − uθ,k

h

)
≥

≥ (∆t)

[(
f θ,k, vh − uθ,k

h

)
Ω
+
(
φθ,k,

(
vh − uθ,k

h

))
Γ0

]
,

(22)
where

uθ,k
h = θuk

h + (1− θ)uk−1
h

and
f θ,k = θfk + (1− θ) fk−1. (23)

φ θ,k = θφk + (1− θ)φk−1. (24)

By multiplying and dividing by θ and by adding(
uk−1
h

θ∆t
, vh − uθ,k

h

)

to both parties of the inequalities (22), we get for vh ∈ Vh



(
uθ,k
h

θ∆t
, vh − uθ,k

h

)
Ω

+ a
(
uθ,k
h , vh − uθ,k

h

)
≥

≥

(
f θ,k +

uk−1
h

θ∆t
, vh − uθ,k

h

)
Ω

+

+
(
φθ,k, vh − uθ,k

h

)
Γ0

.

(25)

We have

uθ,k
h = θuk

h + (1− θ)uk−1
h

≤ θrhMuk
h + (1− θ) rhMuk−1

h ,

using the concavity of rhM we get

uθ,k
h ≤ θrhMuk

h + (1− θ) rhMuk−1
h

≤ rhM(θuk
h + (1− θ)uk−1

h )

≤ rhMuθ,k
h ,

thus uθ,k
h ∈ Vh, then, the problem (25) can be reformu-

lated into the following coercive discrete system of elliptic
quasi-variational inequalities

b
(
uθ,k
h , vh − uθ,k

h

)
≥
(
f θ,k + µuk−1

h , vh − uθ,k
h

)
Ω

+
(
φθ,k, vh − uθ,k

h

)
Γ0

, vh, u
θ,k
h ∈ Vh

(26)
such that



b
(
uθ,k
h , v − uθ,k

h

)
= µ

(
uθ,k
h , vh − uθ,k

h

)
Ω

+a
(
uθ,k
h , vh − uθ,k

h

)
, vh, u

θ,k
h ∈ Vh,

µ =
1

θ∆t
=

T

θn

. (27)

3.3. Stability analysis for the discrete PQVI

It is possible to analyze stability taking advantage of the
structure of eigenvalues of the bilinear form a (., .), and
we recall that W is compactly embedded in L2 (Ω) since
Ω is bounded. Thus, there is a non decreasing sequence
of eigenvalues δ ≤ λ1 ≤ λ2 ≤ .....for the bilinear form
a (., .), i.e.,ωj ∈ L2, ωj ̸= 0 :

a (ωj , vh) = λj (ωj , vh)Ω , ∀vh ∈ V h.

The corresponding eigenfunctions {ωj} form a complete
orthonormal basis in L2 (Ω) . In analogous way, when con-
sidering the finite dimensional problem in Wh, we find a
sequence of eigenvalues δ ≤ λ1h ≤ λ2h ≤ ... ≤ λm(h)

and L2-orthonormal basis of eigenvectorss ωih ∈ Wh, i =
1, 2, ...,m (h) . Any function vh in V h can thus be ex-
panded with respect to the system ωih as

vh = m(h)

i=1
(vh, ωih)Ω ωih,

in particular, we have

uk
h = m(h)

i=1
uk
i ωih and uk

i =
(
uk
h, ωih

)
Ω
.

Moreover, let f k
h be the L2-orthogonal projection of θf k+

(1− θ) f k−1 into Wh i.e., f k
h ∈ Wh and

(
f θ,k
h , vh

)
Ω
=
(
θf k + (1− θ) f k−1, vh

)
Ω(

φ θ,k
h , vh

)
Γ0

=
(
θφ k + (1− θ)φ k−1, vh

)
Γ0

,

(28)
and set

f k
h = m(h)

i=1
f k
i ωih ; f k

i =
(
f k
h , ωih

)
,

φ k
h = m(h)

i=1
f k
i ωih ; φ k

i =
(
φ k
h , ωih

)
Γ0

.

We are now in a position to prove the stability for θ ∈[
0,

1

2

[
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Choosing in (22) vh = 0 and by using the trace theo-
rem, thus we have for uθ,k

h ∈ V h

1

∆t

(
uk
h − uk−1

h , uθ,k
h

)
+ a

(
uθ,k
h , uθ,k

h

)
≤
(
f θ,k
h , uθ,k

h

)
Ω
+
(
φ θ,k
h , uθ,k

h

)
Γ0

≤
(
f θ,k
h , uθ,k

h

)
Ω
+ ε

(
φ θ,k
h , uθ,k

h

)
Ω
, ε ≥ 0 .

Thus the inequality (22) is equivalent to
1

∆t

(
uk
i − uk−1

i

)
+ λih

(
uθ,k
i , uθ,k

i

)
≤

≤ f k
i + εφ k

i , ε ≥ 0.

(29)

Since ωih are the eigenfunctions means
a (ωih, ωih) = λih (ωih, ωih)

= λih.δii = λih,

for each k = 1, ..., p, we can rewrite (29) as
uk
i ≤ 1− (1− θ) .∆t.λih

1 + θ∆t.λih
uk−1
i +

+
∆t

1 + θ∆t.λih
(f k

i + εφ k
i ),

(30)

the inequality (30) stable if and only if∣∣∣∣1− (1− θ) .∆t.λih

1 + θ∆t.λih

∣∣∣∣ < 1,

that is to say

2θ − 1 > − 2

λih.∆t
,

means
∆t <

2

(1− 2θ)λih
.

So that this relation satisfied for all the eigenvalues
λih of bilinear form a (., .) , we have to choose their high-
est value, we take it for λmh = ρ (A) (spectral radius of
A).

We deduce that if θ ≥ 1

2
the θ-scheme way is stable

unconditionally (i.e., stable ∀∆t). However, if 0 ≤ θ <
1

2
the θ-scheme is stable unless

∆t <
2

(1− 2θ) ρ (A)
. (31)

Notice that this condition is always satisfied if 0 ≤ θ <
1

2
Hence, taking the absolute value of (30) we have

|um
i | <

∣∣u0
i

∣∣+ ∣∣∣∣ ∆t

1 + θ∆t.λih

∣∣∣∣m−1∑
i =1

(f k
i + εφ k

i ),

also we deduce that

∥um
i ∥∞ <

∥∥u0
i

∥∥
∞+

∥∥∥∥ ∆t

1 + θ∆t.λih

∥∥∥∥
∞

m−1∑
i =1

∥∥f k
i + εφ k

i

∥∥
∞ .

(32)

Proposition 2.We have for each k = 1, ..., p

∥up
h∥

2

2
+∆t

p∑
k=1

a
(
uθ,k
h , uθ,k

h

)
≤

≤ C (n)

(
∥u0h∥22 +

p∑
k=1

∆t
∥∥f θ,k + εφ θ,k

∥∥2
2

) (33)

Proof.We take vh = 0 in (22), for the left-hand side we
can easily show(

uk
h − uk−1

h , uθ,k
h

)
Ω
+∆t.a

(
uθ,k
h , uθ,k

h

)
=

=
1

2

(∥∥uk
h

∥∥2
2
−
∥∥uk−1

h

∥∥2
2

)
+

+

(
θ − 1

2

)∥∥uk
h − uk−1

h

∥∥
2
+∆t.a

(
uθ,k
h , uθ,k

h

)
,

then we get for θ ≥ 1

2(
uk
h − uk−1

h , uθ,k
h

)
Ω
+∆t.a

(
uθ,k
h , uθ,k

h

)
≥

≥ 1

2

(∥∥uk
h

∥∥2
2
−
∥∥uk−1

h

∥∥2
2

)
+∆t.a

(
uθ,k
h , uθ,k

h

)
≥ 1

2

(∥∥uk
h

∥∥2
2
−
∥∥uk−1

h

∥∥2
2

)
+ (∆t)

∥∥∥uθ,k
h

∥∥∥2
1
.

For the right-hand side we make use of the following
algebraic inequality

ab ≤ 1

2

(
a2 + b2

)
, ∀a, b ∈ R,

Also, by using the Trace theorem and the coerciveness as-
sumption of a (., .)

(∆t)

[(
f θ,k, uθ,k

h

)
Ω
+
(
φ θ,k, uθ,k

h

)
Γ0

]
≤

≤ ∆t

(
1
2

∥∥∥uθ,k
h

∥∥∥2
2
+ 1

2

∥∥f θ,k + εφ θ,k
∥∥2
2

)
≤ ∆t

(
1
2a
(
uθ,k
h , uθ,k

h

)
+ 1

2

∥∥f θ,k + εφ θ,k
∥∥2
2

)
,

thus
∥∥uk

h

∥∥2
2
−
∥∥uk−1

h

∥∥2
2
+∆t.a

(
uθ,k
h , uθ,k

h

)
≤

≤ ∆t
∥∥f θ,k + εφ θ,k

∥∥2
2
.
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We deduce that ∀k = 1, ..., p

p−1∑
k=1

∥∥uk
h

∥∥2
2
+∆t

p∑
k=1

a
(
uθ,k
h , uθ,k

h

)
≤

≤
p∑

k=1

∥∥uk−1
h

∥∥2
2
+∆t

p∑
k=1

∥∥f θ,k + εφ θ,k
∥∥2
2

The sum becomes

∥up
h∥

2

2
+∆t

p∑
k=1

a
(
uθ,k
h , uθ,k

h

)
≤

≤ C (p)

(
∥u0h∥22 +

p∑
k=1

∆t
∥∥f θ,k + εφ θ,k

∥∥2
2

)

where C (p) is a constant independent of h and ∆t,
thus we have proved that the scheme is unconditionally
stable for θ ≥ 1

2 .
On the other hand, since in a finite dimensional space

all norms are equivalent, we can infer that

∥up
h∥

2

2
+∆t

p∑
k=1

a
(
uθ,k
h , uθ,k

h

)
≤

≤ C (p)

(
∥u0h∥22 +

p∑
k=1

∆t
∥∥f θ,k + εφ θ,k

∥∥2
2

)

3.4. The discrete Schwarz sequences.

As we have defined before Ω be a bounded open domain
in R2 and we assume that Ω is a smooth and connected.

Then we decompose Ω in two sub-domains Ω1, Ω2

such that

Ω = Ω1 ∪Ω2 (34)

and u satisfies the local regularity condition

u |Ωi∈ L2(0, T,W 2,p (Ωi)) (35)

and we denote by Γ = ∂Ω, Γ1 = ∂Ω1, Γ2 = ∂Ω2, γ1 =
∂Ω1 ∩Ω2, γ2 = ∂Ω2 ∩Ω1, Ω1,2 = Ω1 ∩Ω2.

For i = 1, 2, let τhi be a standard regular and quasi-
uniform finite element triangulation in Ωi; hi (h1 = h2 = h) ,
being the meshsize. We assume that the two triangulations
are mutually independent on Ω1,2 in the sense that a tri-
angle belonging to one triangulation does not necessarily
belong to the other.

Let V hi be the space of continuous piecewise linear
functions on τhi which vanish on Ωi∩∂Ωj , i ̸= j, i, j =
1, 2. For w ∈ C

(
∂Ω̄i

)
we define

V hi
w =



vh ∈ V hi : vh = πhi (w) on Ωi ∩ ∂Ωj ;

vh (., 0) = vh0 in Ω,

∂vh
∂η

= φ in Γ0 ,

vh = 0 in Γ/Γ0; i ̸= j, i, j = 1, 2,
(36)

where πhi denotes the interpolation operator on ∂Ωi

and V hi defined in (19) .
We consider the model obstacle problem: Find uθ,k

h ∈
Vhsuch that

b
(
uθ,k
h , vh − uθ,k

h

)
≥
(
f θ,k + µuk−1

h , vh − uθ,k
h

)
Ω
+

+
(
φθ,k,

(
vh − uθ,k

h

))
Γ0

, vh, u
θ,k
h ∈ Vh

(37)
We define the discrete counterparts of the discrete Schwarz

sequences, respectively by uθ,k,2n+1
h , vh ∈ V h

(uθ,k,2n
h )

,

such that



b
(
uθ,k,2n+1
h , vh − u2n+1

h

)
−

−
(
f θ,k + µuθ,k−1,2n−1

h , vh − uθ,k,2n+1
h

)
Ω1

−

−
(
φθ,k, v − uθ,k,2n+1

h

)
Γ0

≥ 0,

uθ,k,2n+1
h = uθ,k,2n

h on ∂Ω1, vh = uθ,k,2n
h on ∂Ω1,

uθ,k,2n+1
h ≤ rhMuθ,k,2n−1

h
(38)

and uθ,k,2n
h , vh ∈ V h

(uθ,k,2n−1
h )

such that



b
(
uθ,k,2n
h , vh − u2n

h

)
−

−
(
f θ,k + µuθ,k−1,2n−2

h , vh − uθ,k,2n
h

)
Ω2

−

−
(
φθ,k, v − uθ,k,2n

h

)
Γ0

≥ 0,

uθ,k,2n
h = uθ,k,2n−1

h on ∂Ω2, vh = uθ,k,2n−1
h on ∂Ω2,

uθ,k,2n
h ≤ rhMuθ,k,2n−2

h .
(39)
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4. Existence and uniqueness for discrete
PQVI.

Next using the preceding assumptions, we shall prove the
existence of a unique solution for problem (3.20) by means
of the Banach’s fixed point theorem.

4.1. A fixed point mapping associated with
discrete problem

We consider the following mapping

Th : L∞
+ (Ω) −→ V h

w −→ Th (w) = ξh,
(40)

where ξh is the unique solution of the following PQVI:
find ξh ∈ V h

b (ξh, vh − ξh) ≥
(
f θ,k + µw, vh − ξh

)
Ω
+

+
(
φθ,k, (vh − ξh)

)
Γ0

, vh ∈ V h.

Proposition 3.Under the previous hypotheses and nota-

tions, if we set θ ≥ 1

2
, the mapping Th is a contraction

in L∞ (Ω ∪ Γ ) with a rate of contraction
(

1

1 + θ.∆t
/

)
.

Therefore, Th admits a unique fixed point which coincides
with the solution of PQVI (38).

Proof.For w, w̃ in L∞ (Ω ∪ Γ ), we consider

ξh = Th (w) = ∂
(
f θ,k + φθ,k + µw, rhMξh

)
and

ξ̃h = Th (w̃) = ∂
(
f θ,k + φθ,k + µ w̃, rhMξ̃h

)
solution to quasi-variational inequalities (38) with right-
hand side

F θ,k = f θ,k+φθ,k+µwh, F̃
θ,k = f θ,k+φθ,k+µ w̃h.

Now setting

ϕ =
1

1 + µ

∥∥∥F θ,k − F̃ θ,k
∥∥∥
∞

,

then for ξh + ϕ is solution of

b (ξh + ϕ, (vh + ϕ)− (ξh + ϕ)) ≥

≥
(
f θ,k + µw + ϕ, (vh + ϕ)− (ξh + ϕ)

)
Ω
+

+
(
φθ,k + ϕ, (vh + ϕ)− (ξh + ϕ)

)
Γ0

ξh + ϕ ≤ rhMξh + ϕ,

vh + ϕ ≤ rhMξh + ϕ ,∀vh ∈ V h.

We have

F θ,k ≤ F̃ θ,k +
∥∥∥F θ,k − F̃ θ,k

∥∥∥
∞

≤ F̃ θ,k +
1

β + µ

∥∥∥F θ,k − F̃ θ,k
∥∥∥
∞

≤ F̃ θ,k + ϕ,

so, due to lemma 2 and assumption (2.5), it follows that

∂h
(
f θ,k + φθ,k + µw, rhMξh

)
≤

≤ ∂h

(
f θ,k + φθ,k + µ w̃ + ϕ, rhM

(
ξ̃h + ϕ

))
≤

≤ ∂h

(
f θ,k + φθ,k + µ w̃, rhMξ̃h

)
+ ϕ,

hence
ξh ≤ ξ̃h + ϕ.

Similarly, interchanging the roles of w and w̃ we also get

ξ̃h ≤ ξh + ϕ.

It finally yields

∥∥∥∂h (F θ,k, rhMξh
)
− ∂h

(
F̃ θ,k, rhMξ̃h

)∥∥∥
∞

≤

≤ 1

1 + µ

∥∥∥F θ,k − F̃ θ,k
∥∥∥
∞

≤ 1

1 + µ

∥∥f θ,k + φθ,k + µw − f θ,k − φθ,k − µ w̃
∥∥
∞

≤ 1

1 + θ∆t
∥w − w̃∥∞ ,

which completes the proof.

Proposition 4.If we set 0 ≤ θ <
1

2
the mapping Th is

a contraction in L∞ (Ω ∪ Γ ) with the rate of contraction
2

2 + θ (1− 2θ) ρ (A)
, where ρ (A) spectral radius of the

operator A.

Proof.Under condition of stability we have shown the θ-

scheme is stable if and only if ∆t <
2

(1− 2θ) ρ (A)
,

thus it can easily shown∥∥∥∂h (F θ,k, rhMξh
)
− ∂h

(
F̃ θ,k, rhMξ̃h

)∥∥∥
∞

≤

≤ 1

1 + θ∆t
∥w − w̃∥∞ ≤

≤ 2

2 + θ (1− 2θ) ρ (A)
∥w − w̃∥∞
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thus the mapping Th is a contraction in L∞ (Ω ∪ Γ ) with

rate of contraction
2

2 + θ (1− 2θ) ρ (A)
. Therefore, Th ad-

mits a unique fixed point which coincides with the solution
of PQVI (37).

4.2. Iterative discrete algorithm

We choose u0
h as the solution of the following discrete

equation

b(u0
h, vh) =

(
g0, vh

)
, vh ∈ V h, (41)

where g0 is a regular function give.

Now we give our following discrete algorithm

uθ,k,2n+1
h = Thu

k−1,2n+1
h , k = 1, ..., p, uθ,k,2n+1

h ∈ V h

(uθ,k,2n
h )

(42)
or

uθ,k,2n
h = Thu

k−1,2n
h , k = 1, .., p, uθ,k,2n

h ∈ V h

(uθ,k,2n−1
h )

(43)
where uθ,k

h is the solution of the problem (37).

Remark.If we choose θ = 1 in (42) or (43) we get Ben-
soussan’s algorithm. The idea of this choice has been stud-
ied by [8].

Proposition 5.[cf .4] Under the previous hypotheses and
notations, we have the following estimate of convergence

if θ ≥ 1

2∥∥∥uθ,k,2n+1
h − u∞

h

∥∥∥
∞

≤
(

1
1+θ∆t

)k
∥u∞

h − uh0∥∞ ,

(44)

if 0 ≤ θ <
1

2
, we have

∥∥∥uθ,k,2n+1
h − u∞

h

∥∥∥
∞

≤
(

2
2+θ(1−2θ)ρ(A)

)k
∥u∞

h − uh0∥∞ .

(45)

5. L∞-Asymptotic Behavior

Theorem 2.[cf. 3] If A = (aij)i,j={1....N} is the M -matrix.
Then there exists two constants k1, k2

k1 = sup {wh (x) , x ∈ γ2} ∈ (0, 1)

and
k1 = sup {wh (x) , x ∈ γ1} ∈ (0, 1)

such that

sup
γ1

∣∣∣u∞
h − u∞,2n+1

h

∣∣∣ ≤ k1sup
γ1

∣∣∣u∞
h − u∞,2n

h

∣∣∣ (46)

and

sup
γ2

∣∣∣u∞
h − u∞,2n+1

h

∣∣∣ ≤ k2sup
γ2

∣∣∣u∞
h − u∞,2n

h

∣∣∣ . (47)

In [3 ] we proved the following main convergence re-
sult

Theorem 3.[cf. 3] The sequences
(
uθ,k,2n+1
h

)
;
(
uθ,k,2n
h

)
; n ≥

0 produced by the Schwarz alternating method converge
geometrically to the solution u of the obstacle problem
(5). More precisely, there exist k1, k2 ∈ (0, 1) which de-
pend only respectively of (Ω1, γ2) and (Ω2, γ1) such that
all n ≥ 0.

sup
Ω̄1

∣∣∣u∞
h − u∞,2n+1

h

∣∣∣ ≤ kn1 k
n
2 sup

γ1

∣∣u∞
h − u0

h

∣∣ (48)

and

sup
Ω̄2

∣∣∣u∞
h − u∞,2n

h

∣∣∣ ≤ kn1 k
n−1
2 sup

γ2

∣∣u∞
h − u0

h

∣∣ . (49)

Proof.The continuous case has been proved in [19, 20] and
for the discrete case has been proved in the previous work
[cf. 3]. This theorem remains true for the problem intro-
duces in this paper, because it is system of coercive ellip-
tic quasi-variational inequality according the step of time
discretization k.

Also in [3], we proved the following error estimate for
the elliptic Q.V.I related to impulse control problem:

Theorem 4.[3,17] Under the results of the theorem 2, and
the theorem 4. Then there exists a constant C independent
of both h and n such that∥∥∥u∞ − u∞,2n+1

h

∥∥∥
L∞(Ω̄1)

≤ Ch2 |log h|3 (50)

and ∥∥∥u∞ − u∞,2n
h

∥∥∥
L∞(Ω̄2)

≤ Ch2 |log h|3 . (51)

where u∞ is the continuous solution of elliptic quasi
variational inequality

5.1. Asymptotic behavior

This section is devoted to the proof of main result of the
present paper, where we prove the theorem of the asymp-
totic behavior in L∞-norm for parabolic variational in-
equalities, where we evaluate the variation in L∞ between
uθ
h (T, x) , the discrete solution calculated at the moment

T = p∆t and u∞,the asymptotic continuous solution
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Theorem 5.(The main result). Under the results of the propo-
sition 5 and the theorem 4, we have

for the first case θ ≥ 1

2∥∥∥uθ,p,2n+1
h − u∞

∥∥∥
∞

≤ C
[
h2 |log h|3 +

(
1

1+θ∆t

)p]
,

(52)
and

∥∥∥uθ,p,2n
h − u∞

∥∥∥
∞

≤ C
[
h2 |log h|3 +

(
1

1+θ∆t

)p]
,

(53)

and for the second case 0 ≤ θ <
1

2∥∥∥uθ,p,2n+1
h − u∞

∥∥∥
∞

≤ C
[
h2 |log h|3 +

(
2

2+θ(1−2θ)ρ(A)

)p]
,

(54)
and

∥∥∥uθ,p,2n
h − u∞

∥∥∥
∞

≤ C
[
h2 |log h|3 +

(
2

2+θ(1−2θ)ρ(A)

)p]
,

(55)
where C is a constant independent of h and k

Proof.We have∥∥∥uθ,p,2n+1
h − u∞

∥∥∥
∞

≤
∥∥∥uθ,p,2n+1

h − u∞
h

∥∥∥
∞
+∥u∞

h − u∞∥∞ .

Using the proposition 5 and the theorem 4, we have for

θ ≥ 1

2∥∥∥uθ,p,2n+1
h − u∞

∥∥∥
∞

≤ C
[
h2 |log h|3 +

(
1

1+θ∆t

)p]
,

and for 0 ≤ θ <
1

2
we have

∥∥∥uθ,p,2n+1
h − u∞

∥∥∥
∞

≤ C
[
h2 |log h|3 +

(
2

2+θ(1−2θ)ρ(A)

)p]
The proof for (54) and (55) case is similar.

Remark.It can be seen in the previous estimates (52, 53, 54,

55),
(

1

1 + βθ∆t

)p

,

(
2

2 + θ (1− 2θ) ρ (A)

)p

, tend to

0 when p approach to infinity. Therefore, (cf. [3]), the esti-
mation order for both the coercive and noncoercive prob-
lems is ∥∥∥u∞ − u∞,2n+1

h

∥∥∥
L∞(Ω̄1)

≤ Ch2 |log h|3

and ∥∥∥u∞ − u∞,2n
h

∥∥∥
L∞(Ω̄2)

≤ Ch2 |log h|3 .

6. Conclusion

In this paper, we have introduced a new approach for an
overlapping Schwarz method on non-matching grids for
parabolic quasi-variational inequalities related to impulse
control problem with respect to the mixed boundary condi-
tions, where we have established the asymptotic behavior
in uniform norm similar to that in the previous published
paper [3] regarding the overlapping Schwarz method for
the stationary free boundary problems,. The type of es-
timation, which we have obtained here, is important for
the calculus of quasi-stationary state for the simulation of
petroleum or gaseous deposit.
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