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Abstract: Data often arrive with hierarchical structure and multilevel regression modeling is the most popular approach to handle such
data. This paper demonstrates how multilevel model can be analyzed in Bayesian framework, with reference to a practicaldegradation
data problem. Assuming a varying-intercept, varying-slope model for the data, the exact as well as the approximate inference procedures
have been developed using R and JAGS and their performance have been compared. Further, the concept of Bayesian p-valueshave
been discussed to assess the adequacy of the proposed model.
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1 Introduction

Lifetime analysis has always been the cornerstone of reliability assessments. For products that are highly reliable,
assessment of reliability using lifetime data becomes quite cumbersome. Recently, degradation data has emerged to be a
superior alternative to highly censored lifetime data. Theanalyst neither have to wait for failures to occur nor have to
look for any accelerating relationship, (see e.g.[1]). Failures usually occur from a degradation mechanism working
continuously within the items for which there are several characteristics that degrade (or grow) over time. The
experimenter needs to choose one of the degrading characteristics that can be appropriately related to failure. Thus, with
the degradation data, we define the failure of item in terms ofobservable characteristics. The item is said to be failed
when the amount of degradation exceeds that some pre-specified threshold level of degradation. These kind of failures
are termed as soft failures.

Much literature is available on modeling of degradation (orsoft failures) data. There are two major approaches for
degradation data modeling. The first approach assumes degradation to be a random process in time. Many authors have
worked in this area. Few of them have been mentioned here. [2] used a Wiener process model to analyze degradation
data. [3] considered that the degradation process in the model is taken to be a Wiener diffusion process with a time scale
transformation. The alternative approach is to use generaldegradation path models. [4] developed statistical methods
using degradation measures to estimate a time-to-failure distribution for a broad class of degradation models. Nonlinear
mixed effects model was considered by them and point estimates and confidence intervals of percentiles of the failure time
distribution were obtained by a two-stage method. [1] presented a case study which used degradation data and a fractional
factorial design to improve the reliability of fluorescent lamps. After the construction of appropriate degradation path
model, parameters of it were estimated. [5] proposed an approximated maximum likelihood estimator ofthe parameters
of multivariate normal random effects. The functionsLMEandNLMEwere written in S-PLUS specifically for this purpose.
The approach so far in dealing with these kind of problems wasto estimate model parameters thereby using them to define
failure-time distribution.

Difficulties with the existing approach

The closed form of failure-time distribution can be obtained for simple path models but the complexity arises when the
functional form of actual degradation path is non-linear and the model has more than one random parameter. The
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specification of failure-time distribution in this situation becomes a challenge and one has to evaluate it numericallyby
using any of the several simulation techniques. Moreover, the methods used so far mostly relied on maximum likelihood
or least squares estimation of the model parameters which tend to work well when the sample size is moderate to large
but for small sample sizes, the procedure becomes biased. Thus, Bayesian methods are the only alternative that can work
efficiently even in small sample size situation. Although there is a vast literature available on the degradation analysis
with Bayesian approach, we have worked here differently. Inthis piece of work, an attempt has been made to
demonstrate the approximate as well as exact Bayesian analysis of degradation data. For the purpose of illustrations, a
real degradation data has been considered. The whole demonstration is made using the functionlmer available with the
lme4 package of R (see [6]), as one of the optimization tool and the functionjags present in R2jags package which
implements Gibbs sampling for the posterior analysis and serves as a simulation tool. Also, the performance of both the
tools have been juxtaposed. Conclusions are made directly on the basis of multilevel linear regression analysis of the
degradation data problem.

2 Practical motivating situation: Drug potency data

Potency of a drug is measured in terms of the amount of it required to produce an effect of specified intensity. Since,
it is a degrading quantity, the companies perform a stability study to determine survival time of a drug being produced.
[7] carried out a stability study on 24 batches of a drug over a 36-month period. The lifetime (shelf life) of a drug is the
length of time it takes for the drug’s potency to decrease to 90% of its original stated potency. Table1 presents observed
degradation at different time periods for each of 24 batches.

Table 1: Drug potency (in percent of original stated potency)
Time(months) Time(months)

Batch 0 12 24 36 Batch 0 12 24 36
1 99.9 98.9 95.9 92.9 13 99.8 98.8 93.8 89.8
2 101.1 97.1 94.1 91.1 14 100.1 99.1 93.1 90.1
3 100.3 98.3 95.3 92.3 15 100.7 98.7 93.7 91.7
4 100.8 96.8 94.8 90.8 16 100.3 98.3 96.3 93.3
5 100.0 98.0 96.0 92.0 17 100.2 98.2 97.2 94.2
6 100.1 98.1 98.1 95.1 18 99.8 97.8 95.8 90.8
7 99.6 98.6 96.6 92.6 19 100.8 98.8 95.8 94.8
8 100.4 99.4 96.4 95.4 20 100.0 98.0 96.0 92.0
9 100.9 98.9 96.9 96.9 21 99.6 99.6 92.6 88.6
10 100.5 99.5 94.5 93.5 22 100.2 98.2 97.2 94.2
11 101.1 98.1 93.1 91.1 23 99.8 97.8 95.8 90.8
12 100.9 97.9 95.9 93.9 24 100.0 99.0 95.0 92.0

Hamada et al. [8] analysed the same dataset considering a linear degradation path model for this data as

Di(t) = D(t,θi) = 100− (1/θi)t

They considered normal measurement errors for each degradation observations. The analysis was done in Hierarchical
Bayes’ framework with log-normal prior densities for eachθi . Failure-time distribution was evaluated for reliability
assessments.
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The graphic summary of the data can be obtained with Figure1. On the basis of this graphic summary, we propose a
different framework to analyze the same drug potency degradation data. We can detect a linear relationship between the
amount and time of degradation of drug amongst various batches. Moreover, it is evident that the intercepts and the slopes
are varying by batches. Keeping this in view, we propose a model discussed in Section 3.

Fig. 1: Trellis plot of degradation-time relationship in 24 drug batches

3 Bayesian Analysis of the data

We proceed with the Bayesian analysis for the above dataset.In the first section, exact Bayesian analysis using simulation
tool has been presented whereas in the next section, we employ the optimization tool for the analysis of the data.

3.1 Exact Bayesian Analysis using simulation technique

It can be seen that the data is structured hierarchically: units within batches. Four units from each of the batches were
observed for degradation for different time periods. Here,we have unit-level predictor as the time (in months). Our goal
in analyzing this data is to find the degradation trend withinthe batches and conclude which one of the 24 batches of drug
is the most suitable for releasing into the market. A separate regression model can be fit within each batch and thus we
have unit-level and batch-level as the two levels of multilevel regression. Since, the intercepts and the slopes are differing
amongst 24 batches, in this situation the resulting model will have three levels: datay, interceptsα and slopesβ , each
having a different variance componentsσy, σα andσβ respectively. Computation of explained variance for both the unit-
level and batch-level model is greatly affected by the uncertainty in α andβ parameters which motivated us to fit a single
fitted multilevel model for this dataset.
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The fitting of multilevel model brings a challenge of estimating the data level regression and group-level regression at
once. Thus, multilevel models are commonly evaluated in Bayesian framework where the data-level model is treated as the
likelihood function and the group-level model provides theprior information to estimate the individual-level coefficients.
So, a multilevel model has its own hierarchy, with the parameters of the data-level model at the bottom, controlled by the
hyperparameters of the group-level model. Therefore, a multilevel model is also referred to ashierarchical model(see
[9]). Using Bayes’ rule, we combine the prior information about the unknown parameters along with the likelihood to
compute the posterior density which represents an updated knowledge about the parameters.

We generally get stuck in analytically deriving the posteriors for more complicated models. With the great advances
in computing power, simulation has become the major attraction for Bayesian data analysts. Making use of the
simulations from the resulting posterior density, inferences for the vector of parameters are derived. Metropolis-Hastings
algorithms often provide effective methods for simulatingfrom intractable posterior densities. However, the success of
these methods depends on the choice of reasonable proposal densities which in certain cases, can be much difficult. In
some situations, replacing generic proposal densities in Metropolis-Hastings algorithms by the conditional distribution of
the parameter component that is to be sampled, proves a better MCMC method. This very strategy of MCMC algorithms
are known as Gibbs samplers [10].

Gibbs sampler

The basic idea of Gibbs sampling is to partition the set of unknown parameters and then estimate them one at a time,
with each parameter or group of parameters estimated conditional on all the others. Suppose that the parameter vectorθ
is divided intoq components or subvectors,θ = (θ1,θ2, . . . ,θq). At each iterationt, an ordering of thed components of
θ is chosen, and eachθ t

j is sampled from the conditional disitribution given all other components ofθ :

p(θ j |θ t−1
− j ,y)

where,θ t−1
− j represents all subvectors ofθ other thanθ j at their current values:

θ t−1
− j = (θ t

1, . . . ,θ
t
j−1,θ

t−1
j+1, . . . ,θ

t−1
d )

Thus, each component ofθ is updated conditional on the current values of the other components ofθ .

R2jags

JAGS is an acronym for Just Another Gibbs Sampler. It is a program developed by statisticians that allows the user to fit
various Bayesian models including the complicated ones. Itanalyses Bayesian models using Markov Chain Monte Carlo
(MCMC) simulations and is licensed under GNU General PublicLicense version 2. In order to work closely with the R
language, another package R2jags has been developed which runs JAGS via R making the posterior analysis
comparatively easier. Thus, our main tool for fitting multilevel models is R2jags that can be called from R with the help
of the functionjags() . The arguments of this function are:

jags(data, inits, parameters.to.save, model.file="mode l.bug",
n.chains=3, n.iter=2000, n.burnin=floor(n.iter/2), n.t hin=max(1, floor((n.iter -
n.burnin) / 1000)),DIC=TRUE, working.directory=NULL,
jags.seed = 123,refresh = n.iter/50, progress.bar = "text" , digits=5,
RNGname = c("Wichmann-Hill", "Marsaglia-Multicarry","S uper-Duper",
"Mersenne-Twister"))

wheredata is either a named list of the data for the specified model,inits is a list, each element of which is itself a list
of initial values for the parameters that are to be estimatedor it can be function for creating initial values (possibly random),
parameters.to.save stands for the character vector of the names of the parameters to be saved and monitored,
model.file specifies the file that contains the model written in BUGS code. It may either have ‘.bug’ or ‘.txt’extension,
n.chains accepts an integer that determines the number of Markov chains to be run and defaults to 3,n.iter indicates
the number of total iterations per chain (including burn in samples, default is 2000). Remaining details can be seen from
the pdf manual available with the R2jags package [11].
The software package R2jags is an interface between R and JAGS. Data is created in R, simulation is done in JAGS and
finally output is reported with R.
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3.1.1 Fitting a Varying-intercept, varying-slope model

Setting up the data in R

We start by loading in the observed degradation measurements yi j reported in Table1 for ith unit at jth time for all the
batches. These 24 batches are assumed to be a random sample from a large population of batches. Data is entered as a
vectory, each element of which represents an individual measurements in each of the 24 batches at a particular timet.
Time is a variable for different time periods. The batches are entered as a categorical vectorbatch . The total number
of batches are specified byJ whereasn stands for the number of degradation measurements. Data is created with the
following commands.

batch<-rep(paste("batch",1:24,sep=""),4)
batch<-as.integer(factor(batch))
Time<-c(rep(0,24),rep(12,24),rep(24,24),rep(36,24))
y<-c(99.9,101.1,100.3,100.8,100,100.1,99.6,100.4,10 0.9,100.5,101.1,
100.9,99.8,100.1,100.7,100.3,100.2,99.8,100.8,100,9 9.6,100.2,99.8,
100,98.9,97.1,98.3,96.8,98,98.1,98.6,99.4,98.9,99.5 ,98.1,97.9,98.8,
99.1,98.7,98.3,98.2,97.8,98.8,98,99.6,98.2,97.8,99, 95.9,94.1,95.3,
94.8,96,98.1,96.6,96.4,96.9,94.5,93.1,95.9,93.8,93. 1,93.7,96.3,97.2,
95.8,95.8,96,92.6,97.2,95.8,95,92.9,91.1,92.3,90.8, 92,95.1,92.6,95.4,
96.9,93.5,91.1,93.9,89.8,90.1,91.7,93.3,94.2,90.8,9 4.8,92,88.6,94.2,
90.8,92)
n<-length(y)
J<-length(unique(batch))

Formulation of multilevel regression model

The next step in multilevel modeling is to allow more than oneregression coefficient to vary by batch. We commence
with a varying-intercept, varying-slope model including variable Time as unit-level predictor. Thus, our data-level
model is,

yi ∼ N(α j [i]+β j [i]Timei ,σ2
y )

Eachyi contributes towards the likelihood function through normal probability density. We further assume thatyi ’s are
conditionally independent. Thus, the overall likelihood function is the product of these contributions. The measurement
error termei ’s are considered to be independently and identically normally distributed with mean zero and unknown
varianceσ2

y . Although JAGS permits composite expressions in its distributional specifications yet, for clarity, we split the
model into two parts

yi ∼ N(ŷi ,σ2
y )

ŷi = α j [i]+β j [i]Timei

The codes defining the model are fractured into subparts for step-wise illustrations and have been reassembled at the end.

Codes defining the likelihood function or data-level model

cat(" model {
for (i in 1:n){

y[i]˜dnorm(y.hat[i], tau.y)
y.hat[i]<-a[batch[i]] + b[batch[i]] * Time[i] }

The specification of normal distribution in R2jags is made with the inverse-variance parameter(τ = 1/σ2) instead of the
usual variance parameter. The functioncat behaves pretty much likepaste with the exception that the result is not a
character object and the codes are directly written to a file we specify.

The group-level model or prior distributions

Here, we model the random interceptsα j and slopesβ j from the same population with multivariate normal distribution
with mean vectorµ and variance-covariance matrixΣ . Ignoring the correlation between these random coefficients could
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be quite impractical, so we allowed for the presence of correlationρ between them.

(α j ,β j)∼ MVN(µ ,Σ) # Bivariate normal random effects

where,µ = (µα ,µβ )
T # Mean vector

Σ =

[

σ2
α σ2

αβ
σ2

αβ σ2
β

]

# Variance-covariance matrix

The diagonal elements of var-cov matrixΣ are variances of interceptsα j and slopesβ j respectively whereas the
off-diagonal elements are the covariance between them.

for (j in 1:J) {
a[j]<-B[j,1]
b[j]<-B[j,2]
B[j,1:2]˜dmnorm(B.hat[j,], Tau.B[,])
B.hat[j,1]<-mu.a
B.hat[j,2]<-mu.b

}

We have used uppercase letters for matrix parameters while lowercase letters for scalars and vectors. We are still left
with two quantitiestau.y and rho which must be assigned priors before moving ahead. The inverse-varianceτy is
being defined deterministically in terms of standard deviation parameterσy, which is then given a probability distribution.
Correlation parameterρ is given uniform prior distribution in the range(−1,1).

tau.y<- pow(sigma.y, -2)
sigma.y ˜ dunif (0, 100)
rho ˜ dunif(-1,1)

Hyperprior distributions

The probability distribution associated with the parameter of the prior distribution is known as hyperprior distribution.
Since, we have assigned an informative bivariate normal prior to random intercepts and slopes, we have two
hyperparameters in the matrix form. We follow a common practice and use weak-informative hyperprior distributions for
the parameters of bivariate normal prior. These are specified outside the group-level model.

mu.a ˜dnorm(0,0.0001)
mu.b ˜dnorm(0,0.0001)

Thus, the termsµα andµβ are each given univariate normal prior distributions with mean 0 and standard deviation 100.
This roughly means that we are expecting these coefficients to lie in the range(−100,100). If the estimates are in this
range, the prior distribution is contributing almost negligibly in the inference. We define the variance-covariance matrix Σ
of bivariate normal random effects as inverse ofTau.B i.e. Sigma.B) in the JAGS code. Non-informative hyper priors
for σ2

α andσ2
β have been coded as following:

Tau.B[1:2,1:2]<-inverse(Sigma.B[,])
Sigma.B[1,1]<-pow(sigma.a,2)
sigma.a ˜ dunif(0, 100) # SD of intercepts
Sigma.B[2,2]<-pow(sigma.b,2)
sigma.b˜ dunif(0,100) # SD of slopes

The off-diagonal elementsσ2
αβ are defined in terms of correlation parameterρ

Sigma.B[1,2]<-rho * sigma.a * sigma.b
Sigma.B[2,1]<-Sigma.B[1,2]

}", file="degradation.txt")

The above model codes can be reassembled in the following wayso as to make it work.
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cat(" model {
for (i in 1:n){

y[i]˜dnorm(y.hat[i], tau.y)
y.hat[i]<-a[batch[i]] + b[batch[i]] * Time[i] }
for (j in 1:J) {

a[j]<-B[j,1]
b[j]<-B[j,2]
B[j,1:2]˜dmnorm(B.hat[j,], Tau.B[,])
B.hat[j,1]<-mu.a
B.hat[j,2]<-mu.b

}
tau.y<- pow(sigma.y, -2)
sigma.y ˜ dunif (0, 100)
rho ˜ dunif(-1,1)
mu.a ˜dnorm(0,0.0001)
mu.b ˜dnorm(0,0.0001)
Tau.B[1:2,1:2]<-inverse(Sigma.B[,])

Sigma.B[1,1]<-pow(sigma.a,2)
sigma.a ˜ dunif(0, 100)
Sigma.B[2,2]<-pow(sigma.b,2)
sigma.b˜ dunif(0,100)

Sigma.B[1,2]<-rho * sigma.a * sigma.b
Sigma.B[2,1]<-Sigma.B[1,2]

}", file="degradation.txt")

Data, initial values, and parameters

We have earlier defined all the data variables and finally we unite them in a listed form as per the requirement of R2jags.

drug.data<-list("n","y","J","Time","batch")

Supplying initial values for all the model parameters that are to be simulated, is the next important task to be undertaken.
The functionjags accepts a listed data object of initial values (preferably random initial values using random-number
generators) for the parameters . If the initial values are not supplied,jags generates them itself. However, it often crashes
when using self-generated initial values.

inits<-function() {list(mu.a=rnorm(1,100,1),mu.b=rno rm(1),
sigma.y=runif(1,0,100),sigma.a=runif(1),
sigma.b=runif (1),rho=runif(1,-1,1))}

Next, we specify the names of the parameters that we want to save from the JAGS run within the vectorparams

params<-c("a","b","mu.a","mu.b","sigma.a","sigma.b" , "sigma.y",
"rho")

Calling JAGS from R

After setting up the codes in jags, we finally run the model viathe functionjags . We assess convergence by checking if
the distributions of the different simulated chains mix; thus atleast 2 chains must be simulated. We preferred to simulate 3
chains.

output<-jags(drug.data,inits,params,model.file="deg radation.txt",
n.iter=12000, n.chains=3)

Summarizing the output

The results are printed with the functionprint , which prints detailed summary of results and it is not possible to
show here. However, its relevant parts are summarized in Table 2.
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Table 2: Posterior summary of model parameters

Quantiles
Parameters Mean sd 0.025 0.250 0.50 0.75 0.975 Rhat

α1 100.576 0.191 100.155 100.472 100.570 100.697 100.947 1.010
α2 100.595 0.196 100.188 100.483 100.585 100.717 100.982 1.011
α3 100.663 0.233 100.212 100.518 100.638 100.789 101.170 1.051
α4 100.577 0.199 100.152 100.471 100.565 100.694 100.972 1.011
α5 100.660 0.240 100.178 100.510 100.638 100.797 101.195 1.050
α6 100.670 0.247 100.200 100.513 100.650 100.803 101.219 1.051
α7 100.638 0.211 100.207 100.508 100.621 100.769 101.080 1.039
α8 100.571 0.201 100.131 100.470 100.565 100.696 100.960 1.009
α9 100.538 0.205 100.095 100.429 100.545 100.669 100.920 1.008
α10 100.614 0.208 100.167 100.494 100.605 100.738 101.046 1.035
α11 100.559 0.204 100.117 100.453 100.554 100.684 100.958 1.009
α12 100.651 0.233 100.183 100.507 100.628 100.782 101.170 1.057
α13 100.593 0.195 100.161 100.480 100.585 100.721 100.967 1.017
α14 100.703 0.285 100.182 100.517 100.667 100.859 101.368 1.084
α15 100.537 0.208 100.083 100.426 100.541 100.671 100.927 1.008
α16 100.616 0.209 100.177 100.494 100.605 100.743 101.039 1.031
α17 100.608 0.199 100.181 100.492 100.596 100.726 101.018 1.023
α18 100.605 0.198 100.189 100.492 100.595 100.728 101.008 1.027
α19 100.642 0.219 100.202 100.506 100.621 100.773 101.111 1.038
α20 100.590 0.196 100.141 100.485 100.584 100.710 100.985 1.018
α21 100.504 0.233 99.980 100.392 100.515 100.650 100.905 1.014
α22 100.570 0.194 100.148 100.465 100.564 100.693 100.947 1.012
α23 100.532 0.218 100.050 100.413 100.538 100.669 100.949 1.007
α24 100.500 0.250 99.951 100.368 100.508 100.653 100.966 1.011
β1 -0.205 0.019 -0.243 -0.217 -0.205 -0.193 -0.167 1.001
β2 -0.208 0.019 -0.246 -0.221 -0.208 -0.195 -0.171 1.003
β3 -0.269 0.020 -0.310 -0.282 -0.269 -0.256 -0.231 1.012
β4 -0.194 0.020 -0.232 -0.207 -0.194 -0.182 -0.156 1.002
β5 -0.278 0.020 -0.317 -0.291 -0.278 -0.265 -0.241 1.006
β6 -0.280 0.020 -0.323 -0.292 -0.279 -0.266 -0.241 1.012
β7 -0.250 0.019 -0.288 -0.262 -0.249 -0.237 -0.213 1.005
β8 -0.197 0.020 -0.236 -0.210 -0.198 -0.185 -0.158 1.001
β9 -0.173 0.020 -0.211 -0.187 -0.173 -0.161 -0.134 1.002
β10 -0.245 0.019 -0.282 -0.258 -0.245 -0.232 -0.207 1.007
β11 -0.177 0.019 -0.215 -0.190 -0.176 -0.163 -0.139 1.002
β12 -0.264 0.020 -0.305 -0.276 -0.263 -0.250 -0.226 1.016
β13 -0.223 0.019 -0.261 -0.236 -0.223 -0.210 -0.185 1.006
β14 -0.307 0.020 -0.347 -0.321 -0.307 -0.294 -0.268 1.022
β15 -0.173 0.019 -0.212 -0.186 -0.174 -0.160 -0.135 1.002
β16 -0.245 0.020 -0.283 -0.258 -0.245 -0.232 -0.208 1.002
β17 -0.229 0.019 -0.267 -0.242 -0.230 -0.216 -0.191 1.002
β18 -0.225 0.019 -0.262 -0.238 -0.225 -0.212 -0.188 1.003
β19 -0.262 0.019 -0.300 -0.275 -0.262 -0.249 -0.225 1.007
β20 -0.223 0.019 -0.261 -0.236 -0.223 -0.210 -0.186 1.001
β21 -0.149 0.020 -0.187 -0.163 -0.150 -0.136 -0.109 1.001
β22 -0.203 0.019 -0.241 -0.216 -0.203 -0.190 -0.165 1.003
β23 -0.157 0.020 -0.194 -0.170 -0.157 -0.144 -0.119 1.001
β24 -0.130 0.020 -0.170 -0.143 -0.130 -0.116 -0.090 1.003

bpvalue 0.535 0.499 0.000 0.000 1.000 1.000 1.000 1.001
ρ -0.318 0.548 -0.976 -0.787 -0.469 0.069 0.882 1.016

µα 100.597 0.147 100.314 100.505 100.587 100.689 100.887 1.038
µβ -0.220 0.013 -0.245 -0.228 -0.220 -0.211 -0.196 1.012
σα 0.150 0.117 0.004 0.058 0.123 0.216 0.423 1.033
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σβ 0.052 0.010 0.036 0.045 0.051 0.058 0.076 1.009
σy 0.826 0.072 0.698 0.775 0.822 0.872 0.984 1.001

deviance 233.834 9.080 218.750 227.351 232.939 239.209 253.788 1.001

DIC info (using the rule, pD = var(deviance)/2)
pD= 41.2 DIC = 275.1
DIC is an estimate of expected predictive error (lower deviance is better)

Table 2 summarizes the inference for the model parameters on the basis of 6000 iterations out of 12000. The
convergence statistic,̂R in the last column is approximately the square root of the variance of the mixture of all the
chains, divided by the average within-chain variance.R̂ being less than equal to 1.1 indicates that the chains have mixed
well. The interceptα1 has a posterior mean of 100.576 and a standard standard deviation of 0.191. It has a posterior
median of 100.57 with a 95% credible interval of[100.155,100.947]. While, for α24, it is in the range[99.951,100.966].
For the Time coefficient β5, posterior median is calculated to be−0.278 with 50% credible interval of
[−0.291,−0.265]. In this model, the unexplained within-batch variation hasposterior standard deviation ofσ̂y = 0.826;
the posterior standard deviation of the batch intercepts isσ̂α = 0.15 and that of batch slopes iŝσβ = 0.052. The
correlationρ between intercepts and slopes is−0.318. The estimated effective number of parameters,pD has been
reported immediately after the output table. The deviance for this model is 233.834.

3.1.2 Assessment of goodness of fit: A posterior predictive check

Checking the adequacy of the fit of the model is crucial to statistical analyses. The basic technique for assessing the
goodness of fit of the model to the data is to compare the simulated values drawn from the posterior predictive distribution
of the replicated datayrep with the observed datay. If the model fits, thenyrep is similar toy. Any systematic differences
between the simulations and the data indicates a lack of fit ofthe model. In order to evaluate the fit of the posterior
distribution of the Bayesian model, we compute Bayesian p-value. It quantifies the proportion of times that the replicated
data could be more extreme than the observed data as measuredby the test quantity:

pB = Pr(T(yrep,θ )≥ T(y,θ )|θ )

where, the probability is taken over the posterior distribution of θ and the posterior predictive distribution ofyrep:

pB =

∫∫

IT(yrep,θ)≥T(y,θ)p(y
rep|θ )p(θ |y)dyrepdθ ,

where, the propertyp(yθ rep|θ ,y) = p(yrep|θ ) has been considered andI is the indicator function.

Generally, this complex computation is handled throughS simulations. Let we have simulations from posterior
density ofθ . For each simulatedθ -value, draw oneyrep from the predictive distribution. This leads to the joint posterior
distribution,p(yrep,θ |y). The estimated p-value is just the proportion of theseS simulations for which the test quantity
equals or exceeds its realized value, i.e

T(yreps,θ s)≥ T(y,θ s), s= 1, . . . . . .S

In R2jags, it is very simple to evaluate Bayesian p-value. Wehave used sum-squares type discrepancy measure and
computed sum of squared residuals (SSR) for actual and observed data set. Thestep function is used to test whether the
new data set is more extreme. The mean of resulting logical vector leads to the required Bayesian p-value. All these
commands must be encoded within the model and the object “bpvalue” must be saved in the vectorparams in order to
get its value in the output. The p-value near 0.5 indicates a good fit of the model to the data while values close to 0 or 1
suggests a doubtful fit.

for (i in 1:n) {

residual[i]<-y[i]-y.hat[i] # Residuals for observed
# data

predicted[i]<-y.hat[i] # Predicted values
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sq[i]<-pow(residual[i], 2)

y.new[i]˜dnorm(y.hat[i], tau.y) # one new data set at each
# MCMC iteration

sq.new[i]<-pow(y.new[i]-predicted[i], 2) # Squared resi duals for
# new data

}

fit<-sum(sq[]) # Sum of squared residuals
# for actual data set

fit.new<-sum(sq.new[]) # Sum of squared residuals
# for new dataset

test<-step(fit.new - fit) # Test whether new data set
# more extreme

bpvalue<-mean(test) # Bayesian p-value

Also, we carried out the posterior predictive check graphically. A plot of lack of fit for the replicated data versus the lack
of fit for the observed data is made and has been presented in Figure2. If the model fits the data, then half of the points in
the plot will lie above and half of them below a 1 : 1 line.

out<-output$BUGSoutput
plot(out$sims.list$fit,out$sims.list$fit.new)
abline(0,1)

Fig. 2: Graphical posterior predictive check of the model adequacyfor the degradation data analysis plotting predictive vs. realized
sum of squares discrepancies.

3.2 Analysis of the data using optimization tool

The lme4 package of R has a functionlmer which is an acronym for linear mixed-effects models with R, to fit linear
mixed-effects models and implements Laplace approximation. The rationale for using it as a Bayesian tool is that the
computational methods implemented in this function treatsthe parameter as random which is contrary to classical set up.
In addition to this, it purveys the restricted maximum likelihood estimation (see [12] and [13]) where instead of working
on original data vector, a linear combination of observations is chosen to define the likelihood function such that it is
invariant to the values of fixed effect parameters. Integrating out the likelihood function against the parameters itself
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suggests that paradigm is Bayesian. We have employedlmer to approximate the target density. The arguments of the
function are:

lmer(formula, data = NULL, REML = TRUE, control = lmerContro l(), start = NULL,
verbose = 0L, subset, weights, na.action, offset, contrast s = NULL, devFunOnly =
FALSE, ...)

Here, we define some of its arguments in order to save the space. Rest of the details can be obtained from its pdf manual
available with the lme4 package [14]. The argumentformula stands for a two-sided formula object describing both
random and fixed-effects part of the model. The reponse variable is placed at left of a∼ operator while the input variables
are on its right side, separated by a + operator. Random-effects terms are distinguished by vertical bars (“—”) separating
expressions for design matrices from grouping factors,data refers to an optional dataframe containing the variables
named in the formula. If not supplied, it takes the variablesfrom the environment from whichlmer is called. The
argumentREMLspecifies the logical scalar. When TRUE (default), the estimates are chosen to maximize the REML
criterion.

3.2.1 Fitting a varying-intercept and varying-slope modelusing R

Setting up the data

The model is the same, defined earlier. Since, we have considered normal probability density for each potency
measurement, the functionlmer would be most appropriate for the analysis. Batch is the categorical variable.
Therefore, it is entered into the workspace as a factor vector.

batch<-rep(paste("batch",1:24,sep=""),4)
batch<-factor(batch)
Time<-c(rep(0,24),rep(12,24),rep(24,24),rep(36,24))
y<-c(99.9,101.1,100.3,100.8,100,100.1,99.6,100.4,10 0.9,100.5,101.1,
100.9,99.8,100.1,100.7,100.3,100.2,99.8,100.8,100,9 9.6,100.2,99.8,
100,98.9,97.1,98.3,96.8,98,98.1,98.6,99.4,98.9,99.5 ,98.1,97.9,98.8,
99.1,98.7,98.3,98.2,97.8,98.8,98,99.6,98.2,97.8,99, 95.9,94.1,95.3,
94.8,96,98.1,96.6,96.4,96.9,94.5,93.1,95.9,93.8,93. 1,93.7,96.3,97.2,
95.8,95.8,96,92.6,97.2,95.8,95,92.9,91.1,92.3,90.8, 92,95.1,92.6,95.4,
96.9,93.5,91.1,93.9,89.8,90.1,91.7,93.3,94.2,90.8,9 4.8,92,88.6,94.2,
90.8,92)

Analysis with lmer

We chose to adopt the REML estimation criterion. With all thedata variables defined, we finally fit the model as

M1<-lmer(y˜Time+(Time|batch))

Summarizing the output

The functiondisplay available in the package arm prints all the relevant posterior quantities for the purpose of
inference.

Table 3: Parameter estimates

coef.est coef.se
(Intercept) 100.61 0.14

Time -0.22 0.01
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Table 4: Error terms
Groups Name Std. Dev. Correlation

(Intercept) 0.17
batch

Time 0.05 -1.00
Residual 0.80

number of obs: 96, groups: batch, 24
AIC = 299, DIC = 268
deviance = 277.5

4 Juxtaposition of exact and approximate Bayesian Analysisof the data

The correlation between the random intercepts and slopes resulted bylmer is perfect negative correlation which is much
impractical, rather, an ideal situation. But, with the JAGSmodel, we have got a reasonable negative correlation. Further,
the deviance of the JAGS model is 232.9 which is much lesser in comparison to what is yielded by the functionlmer i.e.
277.5. Thus, it can be seen that the Bayesian analysis of the degradation model using Gibbs sampling procedure gives a
better solution as compared to the analysis based on approximations.
It can be found that the intercepts are not varying much between the batches. Therefore, it is the slope which would decide
the rate of degradation mechanism within various batches. The posterior medians of slopes obtained by the two methods
have been presented parallel to each other in Table5.

Table 5: Comparison of slopes resulted bylmer andjags for all the 24 batches

Estimates of slopes by Estimates of slopes by
Batch lmer jags Batch lmer jags

1 -0.20394 -0.205 13 -0.22350 -0.223
2 -0.20725 -0.208 14 -0.31489 -0.307
3 -0.27413 -0.269 15 -0.16968 -0.173
4 -0.19254 -0.194 16 -0.24795 -0.245
5 -0.28387 -0.278 17 -0.23006 -0.229
6 -0.28553 -0.28 18 -0.22515 -0.225
7 -0.25292 -0.25 19 -0.26591 -0.262
8 -0.19579 -0.197 20 -0.22350 -0.223
9 -0.16968 -0.173 21 -0.14357 -0.149
10 -0.24795 -0.245 22 -0.20229 -0.203
11 -0.17299 -0.177 23 -0.15178 -0.157
12 -0.26757 -0.264 24 -0.12242 -0.13

From Table5 it can be found that batch 24 of the drug is undergoing minimumdegradation with a slope of−0.13 whereas
the maximum degradation is occuring in batch 14 with the slope value as−0.307.

5 Conclusions and final remarks

In this paper, we introduce multilevel modeling in a practical degradation data problem. The analysis has been presented
in Bayesian paradigm using both simulation technique via functionjags and has been juxtaposed with the approximate
results evaluated in R vialmer . The work presented in this paper is not mathematical but rather conceptual and
computational. Although the approximate solution given bylmer and the exact solution yielded byR2jags has come
out to be much closer for the parameters, yet, the correlation could not be estimated appropriately bylmer . Moreover,
with lmer , much programming effort is required to simulate predictions and predicted data. Also, with the small
number of groups, the precise estimation of variance components withlmer might not be possible in the absence of
enough information. Whereas, in addition to the routine posterior quantities and quantiles, JAGS allows predictions of
new units in the same framework. The modular form of JAGS allows the programmers to bring together all sorts of
Bayesian models such as linear and generalized linear modeland thus, facilitates much complicated modeling.
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Thus, Bayesian methods using simulation technique seems tobe a reasonable choice especially for more complicated
degradation model. Further, working with simulations rather than simply getting point estimates of parameters, the user
can directly capture inferential uncertainty and incorporate it into prediction of future samples.
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