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Abstract: Data often arrive with hierarchical structure and mullexegression modeling is the most popular approach to ke
data. This paper demonstrates how multilevel model can &kyzad in Bayesian framework, with reference to a practiegiradation
data problem. Assuming a varying-intercept, varying-slodel for the data, the exact as well as the approximateeimée procedures
have been developed using R and JAGS and their performaneebkean compared. Further, the concept of Bayesian p-vhmes
been discussed to assess the adequacy of the proposed model.
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1 Introduction

Lifetime analysis has always been the cornerstone of iiétialassessments. For products that are highly reliable,
assessment of reliability using lifetime data becomesequimbersome. Recently, degradation data has emerged to be a
superior alternative to highly censored lifetime data. @halyst neither have to wait for failures to occur nor have to
look for any accelerating relationship, (see ej.[Failures usually occur from a degradation mechanismkimgr
continuously within the items for which there are severaarelateristics that degrade (or grow) over time. The
experimenter needs to choose one of the degrading chasticeethat can be appropriately related to failure. Thuth w
the degradation data, we define the failure of item in termshsfervable characteristics. The item is said to be failed
when the amount of degradation exceeds that some pre-sgkttifieshold level of degradation. These kind of failures
are termed as soft failures.

Much literature is available on modeling of degradationdoft failures) data. There are two major approaches for
degradation data modeling. The first approach assumesdigignato be a random process in time. Many authors have
worked in this area. Few of them have been mentioned h2feispd a Wiener process model to analyze degradation
data. B] considered that the degradation process in the model é&ntakbe a Wiener diffusion process with a time scale
transformation. The alternative approach is to use gemtgdadation path modelsd][developed statistical methods
using degradation measures to estimate a time-to-faiigteltition for a broad class of degradation models. Nadn
mixed effects model was considered by them and point estgvaatd confidence intervals of percentiles of the failure tim
distribution were obtained by a two-stage methdiipfesented a case study which used degradation data antiaried
factorial design to improve the reliability of fluoresceatrips. After the construction of appropriate degradatich pa
model, parameters of it were estimatesl. froposed an approximated maximum likelihood estimatdhefparameters
of multivariate normal random effects. The functikdEandNLMEBEwere written in S-PLUS specifically for this purpose.
The approach so far in dealing with these kind of problemstaastimate model parameters thereby using them to define
failure-time distribution.

Difficulties with the existing approach

The closed form of failure-time distribution can be obtairier simple path models but the complexity arises when the
functional form of actual degradation path is non-linead @he model has more than one random parameter. The
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specification of failure-time distribution in this situati becomes a challenge and one has to evaluate it numetigally
using any of the several simulation techniques. Moreolierntethods used so far mostly relied on maximum likelihood
or least squares estimation of the model parameters whichteework well when the sample size is moderate to large
but for small sample sizes, the procedure becomes biased, Bayesian methods are the only alternative that can work
efficiently even in small sample size situation. Althouglrthis a vast literature available on the degradation aisalys
with Bayesian approach, we have worked here differentlythiis piece of work, an attempt has been made to
demonstrate the approximate as well as exact Bayesiansimalydegradation data. For the purpose of illustrations, a
real degradation data has been considered. The whole d#attmrsis made using the functidmer available with the
Ime4 package of R (sed]), as one of the optimization tool and the functimys present in R2jags package which
implements Gibbs sampling for the posterior analysis angeseas a simulation tool. Also, the performance of both the
tools have been juxtaposed. Conclusions are made directthe basis of multilevel linear regression analysis of the
degradation data problem.

2 Practical motivating situation: Drug potency data

Potency of a drug is measured in terms of the amount of it redub produce an effect of specified intensity. Since,
it is a degrading quantity, the companies perform a stglsliidy to determine survival time of a drug being produced.
[7] carried out a stability study on 24 batches of a drug over-ai®®th period. The lifetime (shelf life) of a drug is the
length of time it takes for the drug’s potency to decreaseli 9f its original stated potency. Taklepresents observed
degradation at different time periods for each of 24 batches

Table 1: Drug potency (in percent of original stated potency)
Time(months) Time(months)
Batch 0 12 24 36 | Batch 0 12 24 36
999 989 959 929 13 99.8 98.8 93.8 898
1011 97.1 941 911 14 100.1 99.1 93.1 90.1
100.3 98.3 953 923 15 100.7 98.7 93.7 917
100.8 96.8 94.8 90.8 16 100.3 98.3 96.3 93.3
100.0 98.0 96.0 92.0 17 100.2 98.2 97.2 942
100.1 98.1 98.1 951 18 99.8 978 958 90.8
99.6 986 96.6 92.6 19 100.8 98.8 958 94.8
1004 99.4 96.4 954 20 100.0 98.0 96.0 920
1009 989 969 96.9 21 99.6 99.6 92.6 88.6
100.5 995 945 93% 22 100.2 98.2 97.2 942
|
)

1011 981 931 911 283 99.8 97.8 958 90.8
1009 979 959 939 24 100.0 99.0 95.0 92.0

el
SREBowo~v~ourwrhr

Hamada et al.g] analysed the same dataset considering a linear degragietib model for this data as
Di(t) = D(t,6) = 100~ (1/6)t

They considered normal measurement errors for each ddgmaadservations. The analysis was done in Hierarchical
Bayes’ framework with log-normal prior densities for eaéh Failure-time distribution was evaluated for reliability
assessments.
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The graphic summary of the data can be obtained with Figju@n the basis of this graphic summary, we propose a
different framework to analyze the same drug potency degi@m data. \We can detect a linear relationship between the
amount and time of degradation of drug amongst various katdfioreover, it is evident that the intercepts and the slope
are varying by batches. Keeping this in view, we propose aaldidcussed in Section 3.
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Fig. 1: Trellis plot of degradation-time relationship in 24 drugdies

3 Bayesian Analysis of the data

We proceed with the Bayesian analysis for the above datagée first section, exact Bayesian analysis using simarati
tool has been presented whereas in the next section, we gtheloptimization tool for the analysis of the data.

3.1 Exact Bayesian Analysis using simulation technique

It can be seen that the data is structured hierarchicallgs within batches. Four units from each of the batches were
observed for degradation for different time periods. Here have unit-level predictor as the time (in months). Our goa
in analyzing this data is to find the degradation trend withabatches and conclude which one of the 24 batches of drug
is the most suitable for releasing into the market. A separegression model can be fit within each batch and thus we
have unit-level and batch-level as the two levels of muléleegression. Since, the intercepts and the slopes degidg
amongst 24 batches, in this situation the resulting modéhaie three levels: datg interceptsa and slope$8 , each
having a different variance componeunts g, andag respectively. Computation of explained variance for bbthunit-

level and batch-level model is greatly affected by the utadety in o and3 parameters which motivated us to fit a single
fitted multilevel model for this dataset.

(@© 2015 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

82 NS 2 R. Shehla, A. A. Khan: Simulation-based Analysis of DegtiadtaData....

The fitting of multilevel model brings a challenge of estimgtthe data level regression and group-level regression at
once. Thus, multilevel models are commonly evaluated ireBen framework where the data-level model is treated as the
likelihood function and the group-level model provides gii®r information to estimate the individual-level coeiéiots.

So, a multilevel model has its own hierarchy, with the paramseof the data-level model at the bottom, controlled by the
hyperparameters of the group-level model. Therefore, dilendl model is also referred to dserarchical modelsee
[9]). Using Bayes’ rule, we combine the prior information abthe unknown parameters along with the likelihood to
compute the posterior density which represents an updatadi&dge about the parameters.

We generally get stuck in analytically deriving the posiesifor more complicated models. With the great advances
in computing power, simulation has become the major attactor Bayesian data analysts. Making use of the
simulations from the resulting posterior density, inferemfor the vector of parameters are derived. MetropolistiHgs
algorithms often provide effective methods for simulatfrgm intractable posterior densities. However, the susods
these methods depends on the choice of reasonable progosities which in certain cases, can be much difficult. In
some situations, replacing generic proposal densitiesdatrdyolis-Hastings algorithms by the conditional disitibn of
the parameter component that is to be sampled, proves a MEEC method. This very strategy of MCMC algorithms
are known as Gibbs sampled].

Gibbs sampler

The basic idea of Gibbs sampling is to partition the set ofnawkn parameters and then estimate them one at a time,
with each parameter or group of parameters estimated ¢ondliton all the others. Suppose that the parameter véctor
is divided intog components or subvecto®= (61, 6,...,8;). At each iteratiort, an ordering of thel components of

6 is chosen, and eacﬂ] is sampled from the conditional disitribution given all etitomponents of:

p(6;16'5hy)
where,@‘_‘j1 represents all subvectors 8fother thand; at their current values:
t—1 t t t—1 t—1
97]- :(91,...,9j_1,9j+1,...,9d )

Thus, each component 6fis updated conditional on the current values of the otherpmrants of.

R2jags

JAGS is an acronym for Just Another Gibbs Sampler. It is anamgleveloped by statisticians that allows the user to fit
various Bayesian models including the complicated onesadtyses Bayesian models using Markov Chain Monte Carlo
(MCMC) simulations and is licensed under GNU General Pubiense version 2. In order to work closely with the R
language, another package R2jags has been developed winishJAGS via R making the posterior analysis
comparatively easier. Thus, our main tool for fitting mekiél models is R2jags that can be called from R with the help
of the functionjags() . The arguments of this function are:

jags(data, inits, parameters.to.save, model.file="mode l.bug",

n.chains=3, n.iter=2000, n.burnin=floor(n.iter/2), n.t hin=max(1, floor((n.iter -
n.burnin) / 1000)),DIC=TRUE, working.directory=NULL,

jags.seed = 123,refresh = n.iter/50, progress.bar = "text" , digits=5,
RNGname = c("Wichmann-Hill*, "Marsaglia-Multicarry","S uper-Duper"”,

"Mersenne-Twister"))

wheredata is either a named list of the data for the specified mddag  is a list, each element of which is itself a list

of initial values for the parameters that are to be estimatdédan be function for creating initial values (possitdpndom),
parameters.to.save stands for the character vector of the names of the parasntetdre saved and monitored,
model.file specifies the file that contains the model written in BUGS ctideay either have ‘.bug’ or ‘.txt'extension,
n.chains accepts aninteger that determines the number of Markownshabe run and defaults tojter  indicates

the number of total iterations per chain (including burnamples, default is 2000). Remaining details can be seen from
the pdf manual available with the R2jags packalB.[

The software package R2jags is an interface between R an8.J8&a is created in R, simulation is done in JAGS and
finally output is reported with R.
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3.1.1 Fitting a Varying-intercept, varying-slope model
Setting up the datain R

We start by loading in the observed degradation measurampgmeported in Tablel for it unit at j™" time for all the
batches. These 24 batches are assumed to be a random sampkelfirge population of batches. Data is entered as a
vectory, each element of which represents an individual measurenmeeach of the 24 batches at a particular time
Time is a variable for different time periods. The batches arerextas a categorical vectoatch . The total number

of batches are specified ywhereas stands for the number of degradation measurements. Datadted with the
following commands.

batch<-rep(paste("batch",1:24,sep=""),4)
batch<-as.integer(factor(batch))
Time<-c(rep(0,24),rep(12,24),rep(24,24),rep(36,24))

y<-c(99.9,101.1,100.3,100.8,100,100.1,99.6,100.4,10 0.9,100.5,101.1,
100.9,99.8,100.1,100.7,100.3,100.2,99.8,100.8,100,9 9.6,100.2,99.8,
100,98.9,97.1,98.3,96.8,98,98.1,98.6,99.4,98.9,99.5 ,98.1,97.9,98.8,
99.1,98.7,98.3,98.2,97.8,98.8,98,99.6,98.2,97.8,99, 95.9,94.1,95.3,
94.8,96,98.1,96.6,96.4,96.9,94.5,93.1,95.9,93.8,93. 1,93.7,96.3,97.2,
95.8,95.8,96,92.6,97.2,95.8,95,92.9,91.1,92.3,90.8, 92,95.1,92.6,95.4,
96.9,93.5,91.1,93.9,89.8,90.1,91.7,93.3,94.2,90.8,9 4.8,92,88.6,94.2,
90.8,92)

n<-length(y)
J<-length(unique(batch))

Formulation of multilevel regression model

The next step in multilevel modeling is to allow more than oegression coefficient to vary by batch. We commence
with a varying-intercept, varying-slope model includingriable Time as unit-level predictor. Thus, our data-level
model is,
yi ~ N(aj + By Time;, oy)
Eachy; contributes towards the likelihood function through normebability density. We further assume thgs are
conditionally independent. Thus, the overall likelihoaehétion is the product of these contributions. The measantm
error termeg’s are considered to be independently and identically ntyndistributed with mean zero and unknown
varianceay2 . Although JAGS permits composite expressions in its distional specifications yet, for clarity, we split the
model into two parts
yi ~N(%i,07)
Vi = ajj + By Timey
The codes defining the model are fractured into subpartgdprwise illustrations and have been reassembled at the end

Codes defining the likelihood function or data-level model

cat(" model {

for (i in 1:n){
yliI"dnorm(y.hat[i], tau.y)
y.hat[i]<-a[batch[i]] + b[batch[i]] *Time[i] }

The specification of normal distribution in R2jags is madehwiie inverse-variance parameter= 1/0?) instead of the
usual variance parameter. The functwat behaves pretty much likeaste with the exception that the result is not a
character object and the codes are directly written to a #epecify.

The group-level model or prior distributions

Here, we model the random interceptsand slopeg; from the same population with multivariate normal disttibo
with mean vectou and variance-covariance matix Ignoring the correlation between these random coeffisieould
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be quite impractical, so we allowed for the presence of tatiom p between them.

(aj,Bj) ~MVN (u,2) # Bivariate normal random effects
where,u = (ua,uB)T # Mean vector
02 o2
a a . . .
2= 5 f # Variance-covariance matrix
9ap %5

The diagonal elements of var-cov matrk are variances of intercepts; and slopesB; respectively whereas the
off-diagonal elements are the covariance between them.

for (j in 1:J) {
afjl<-B[j,1]
b[jl<-B[j,2]
B[j,1:2]"dmnorm(B.hat[j,], Tau.B[,])
B.hat[j,1]<-mu.a
B.hat[j,2]<-mu.b

}

We have used uppercase letters for matrix parameters vavilertase letters for scalars and vectors. We are still left
with two quantitiestau.y andrho which must be assigned priors before moving ahead. Thesaeveariancey is
being defined deterministically in terms of standard déwsparameteoy, which is then given a probability distribution.
Correlation parametey is given uniform prior distribution in the rande-1,1).

tau.y<- pow(sigma.y, -2)
sigma.y ~ dunif (0, 100)
rho ~ dunif(-1,1)

Hyperprior distributions

The probability distribution associated with the paramefethe prior distribution is known as hyperprior distritmrt.
Since, we have assigned an informative bivariate normadrpidé random intercepts and slopes, we have two
hyperparameters in the matrix form. We follow a common pecacind use weak-informative hyperprior distributions for
the parameters of bivariate normal prior. These are spddfitside the group-level model.

mu.a ~“dnorm(0,0.0001)
mu.b “dnorm(0,0.0001)

Thus, the termgiy andpg are each given univariate normal prior distributions witkam 0 and standard deviation 100.
This roughly means that we are expecting these coefficierlie in the rangg—100 100). If the estimates are in this
range, the prior distribution is contributing almost ngdily in the inference. We define the variance-covarianceimna

of bivariate normal random effects as invers&afi.B i.e.Sigma.B) in the JAGS code. Non-informative hyper priors
for of andaj have been coded as following:

Tau.B[1:2,1:2]<-inverse(Sigma.B[,])
Sigma.B[1,1]<-pow(sigma.a,2)

sigma.a ~ dunif(0, 100) # SD of intercepts
Sigma.B[2,2]<-pow(sigma.b,2)

sigma.b™ dunif(0,100) # SD of slopes

The off-diagonal elementsgﬁ are defined in terms of correlation parameger
Sigma.B[1,2]<-rho *sigma.a *sigma.b

Sigma.BJ[2,1]<-Sigma.B[1,2]
}", file="degradation.txt")

The above model codes can be reassembled in the followingwag to make it work.
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cat(" model {
for (i in 1:n){
yliI"dnorm(y.hat[i], tau.y)
y.hat[i]<-a[batchl[i]] + b[batch[i]] *Time[i] }
for (j in 1:J) {
a[j]<-B[j,1]
b[j]<-BJj,2]
B[j,1:2]"dmnorm(B.hat[j,], Tau.B[,])
B.hat[j,1]<-mu.a
B.hat[j,2]<-mu.b
}
tau.y<- pow(sigma.y, -2)
sigma.y = dunif (0, 100)
rho © dunif(-1,1)
mu.a ~“dnorm(0,0.0001)
mu.b “dnorm(0,0.0001)
Tau.B[1:2,1:2]<-inverse(Sigma.B[,])
Sigma.BJ[1,1]<-pow(sigma.a,2)
sigma.a ~ dunif(0, 100)
Sigma.BJ[2,2]<-pow(sigma.b,2)
sigma.b™ dunif(0,100)
Sigma.B[1,2]<-rho *sigma.a *sigma.b
Sigma.B[2,1]<-Sigma.B[1,2]
}', file="degradation.txt")

Data, initial values, and parameters

We have earlier defined all the data variables and finally wiedinem in a listed form as per the requirement of R2jags.
drug.data<-list("n","y","J3","Time","batch")

Supplying initial values for all the model parameters thatta be simulated, is the next important task to be undentake
The functionjags accepts a listed data object of initial values (preferablydom initial values using random-number
generators) for the parameters . If the initial values atesnppliedjags generates them itself. However, it often crashes
when using self-generated initial values.

inits<-function() {list(mu.a=rnorm(1,100,1),mu.b=rno rm(1),
sigma.y=runif(1,0,100),sigma.a=runif(1),
sigma.b=runif (1),rho=runif(1,-1,1))}

Next, we specify the names of the parameters that we wanveofsam the JAGS run within the vectparams

params<-c("a","b","mu.a","mu.b","sigma.a","sigma.b" , 'sigma.y",
"rho")

Calling JAGSfromR

After setting up the codes in jags, we finally run the modeltki@functiofags . We assess convergence by checking if
the distributions of the different simulated chains mibygtatleast 2 chains must be simulated. We preferred to sienBla
chains.

output<-jags(drug.data,inits,params,model.file="deg radation.txt",
n.iter=12000, n.chains=3)

Summarizing the output

The results are printed with the functignint , which prints detailed summary of results and it is not pussio
show here. However, its relevant parts are summarized ite Pab
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Table 2: Posterior summary of model parameters

Quantiles
Parameters Mean sd 0.025 0.250 0.50 0.75 0.975 | Rhat
o1 100.576 0.191] 100.155| 100.472| 100.570] 100.697| 100.947| 1.010
oo 100.595 0.196 100.188| 100.483| 100.585| 100.717| 100.982| 1.011
o3 100.663 0.233 100.212| 100.518| 100.638| 100.789| 101.170| 1.051
Qg 100.577 0.199 100.152| 100.471| 100.565| 100.694| 100.972| 1.011
Os5 100.660 0.240 100.178| 100.510| 100.638| 100.797| 101.195| 1.050
Os 100.670 0.247 100.200| 100.513| 100.650| 100.803| 101.219| 1.051
a7 100.638 0.211] 100.207| 100.508| 100.621| 100.769| 101.080| 1.039
og 100.571 0.201] 100.131| 100.470| 100.565| 100.696| 100.960| 1.009
o9 100.538 0.205 100.095| 100.429| 100.545| 100.669| 100.920| 1.008

a10 100.614 0.20§ 100.167| 100.494| 100.605| 100.738| 101.046| 1.035
a11 100.559 0.204 100.117| 100.453| 100.554| 100.684| 100.958| 1.009
a2 100.651 0.233 100.183| 100.507| 100.628| 100.782| 101.170| 1.057
13 100.593 0.195 100.161| 100.480| 100.585| 100.721| 100.967| 1.017
O14 100.703 0.28Y 100.182| 100.517| 100.667| 100.859| 101.368| 1.084
15 100.537 0.20§ 100.083| 100.426| 100.541| 100.671| 100.927| 1.008
16 100.616 0.209 100.177| 100.494| 100.605| 100.743| 101.039| 1.031
a7 100.608 0.199 100.181| 100.492| 100.596| 100.726| 101.018| 1.023
18 100.605 0.198 100.189| 100.492| 100.595| 100.728| 101.008| 1.027
O19 100.642 0.219 100.202| 100.506| 100.621| 100.773| 101.111| 1.038
020 100.590 0.194 100.141| 100.485| 100.584| 100.710| 100.985| 1.018
a1 100.504 0.233 99.980 | 100.392| 100.515| 100.650| 100.905| 1.014
022 100.570 0.194 100.148| 100.465| 100.564| 100.693| 100.947| 1.012
a3 100.532 0.21§ 100.050| 100.413| 100.538| 100.669| 100.949| 1.007
024 100.500 0.250 99.951 | 100.368| 100.508| 100.653| 100.966| 1.011

B1 -0.205 0.019] -0.243 | -0.217 | -0.205 | -0.193 | -0.167 | 1.001
B2 -0.208 0.019| -0.246 | -0.221 | -0.208 | -0.195 | -0.171 | 1.003
Bs -0.269 0.020| -0.310 | -0.282 | -0.269 | -0.256 | -0.231 | 1.012
Ba -0.194 0.020; -0.232 | -0.207 | -0.194 | -0.182 | -0.156 | 1.002
Bs -0.278 0.020| -0.317 | -0.291 | -0.278 | -0.265 | -0.241 | 1.006
Be -0.280 0.020; -0.323 | -0.292 | -0.279 | -0.266 | -0.241 | 1.012
Br -0.250 0.019] -0.288 | -0.262 | -0.249 | -0.237 | -0.213 | 1.005
Bs -0.197 0.020| -0.236 | -0.210 | -0.198 | -0.185 | -0.158 | 1.001
Bo -0.173 0.020; -0.211 | -0.187 | -0.173 | -0.161 | -0.134 | 1.002
Bio -0.245 0.019] -0.282 | -0.258 | -0.245 | -0.232 | -0.207 | 1.007
Bi1 -0.177  0.019| -0.215 | -0.190 | -0.176 | -0.163 | -0.139 | 1.002
Bi2 -0.264 0.020; -0.305 | -0.276 | -0.263 | -0.250 | -0.226 | 1.016
Bis -0.223  0.019| -0.261 | -0.236 | -0.223 | -0.210 | -0.185 | 1.006
Bia -0.307  0.020| -0.347 | -0.321 | -0.307 | -0.294 | -0.268 | 1.022
Bis -0.173 0.019] -0.212 | -0.186 | -0.174 | -0.160 | -0.135 | 1.002
Bie -0.245 0.020| -0.283 | -0.258 | -0.245 | -0.232 | -0.208 | 1.002
B17 -0.229 0.019] -0.267 | -0.242 | -0.230 | -0.216 | -0.191 | 1.002
Bis -0.225 0.019] -0.262 | -0.238 | -0.225 | -0.212 | -0.188 | 1.003
Buo -0.262 0.019| -0.300 | -0.275 | -0.262 | -0.249 | -0.225 | 1.007
Bzo -0.223 0.019] -0.261 | -0.236 | -0.223 | -0.210 | -0.186 | 1.001
Baa -0.149 0.020; -0.187 | -0.163 | -0.150 | -0.136 | -0.109 | 1.001
B2 -0.203 0.019| -0.241 | -0.216 | -0.203 | -0.190 | -0.165 | 1.003
Bes -0.157 0.020; -0.194 | -0.170 | -0.157 | -0.144 | -0.119 | 1.001
Boa -0.130 0.020| -0.170 | -0.143 | -0.130 | -0.116 | -0.090 | 1.003
bpvalue 0.535 0.499 0.000 0.000 1.000 1.000 1.000 | 1.001
p -0.318 0.548] -0.976 | -0.787 | -0.469 | 0.069 0.882 | 1.016
Ha 100.597 0.147 100.314| 100.505| 100.587| 100.689| 100.887| 1.038
Hp -0.220 0.013] -0.245 | -0.228 | -0.220 | -0.211 | -0.196 | 1.012

Oq 0.150 0.117, 0.004 0.058 0.123 0.216 0.423 | 1.033
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og 0.052 0.010] 0.036 0.045 0.051 0.058 0.076 | 1.009
Oy 0.826  0.072] 0.698 0.775 0.822 0.872 0.984 | 1.001
deviance | 233.834 9.080 218.750| 227.351| 232.939| 239.209| 253.788| 1.001

DIC info (using the rule, g = var(deviance)/2)
pD=412 DIC =2751
DIC is an estimate of expected predictive error (lower dewgais better)

Table 2 summarizes the inference for the model parameters on this b&ss000 iterations out of 12000. The
convergence statistidz in the last column is approximately the square root of theavae of the mixture of all the
chains, divided by the average within-chain variariReeing less than equal tollindicates that the chains have mixed
well. The intercepin; has a posterior mean of 1876 and a standard standard deviation df9Q. It has a posterior
median of 1007 with a 95% credible interval d00.155 100947). While, for a4, it is in the rangd99.951 100,966 .
For the Time coefficient 35, posterior median is calculated to be0.278 with 50% credible interval of
[—0.291,-0.265. In this model, the unexplained within-batch variation pasterior standard deviation 6f = 0.826;
the posterior standard deviation of the batch intercepi§qis= 0.15 and that of batch slopes & = 0.052. The
correlationp between intercepts and slopes-i9.318. The estimated effective number of parametpgshas been
reported immediately after the output table. The deviancéhis model is 233834.

3.1.2 Assessment of goodness of fit: A posterior predictiexk

Checking the adequacy of the fit of the model is crucial toisttaal analyses. The basic technique for assessing the
goodness of fit of the model to the data is to compare the stedilalues drawn from the posterior predictive distribatio

of the replicated datg®” with the observed data If the model fits, thery™P is similar toy. Any systematic differences
between the simulations and the data indicates a lack of fih@fmodel. In order to evaluate the fit of the posterior
distribution of the Bayesian model, we compute Bayesiaalpe: It quantifies the proportion of times that the repédat
data could be more extreme than the observed data as meaguhegtest quantity:

s =Pr(T(y*",6) > T(y.6)[6)

where, the probability is taken over the posterior distitmuof 8 and the posterior predictive distribution yfP:
Pe = / 7 (yrer,0)=T(y.0) P(Y' "1 8) p(6]y) dy*Pd,

where, the propertp(y?™®P|8,y) = p(y"®P|0) has been considered ahi the indicator function.

Generally, this complex computation is handled thro®kimulations. Let we have simulations from posterior
density of6. For each simulate@-value, draw ongeP from the predictive distribution. This leads to the joinisparior
distribution, p(y™P, 8]y). The estimated p-value is just the proportion of thBsmulations for which the test quantity
equals or exceeds its realized value, i.e

T(Y®™,0% >T(y,0%, s=1,..... S

In R2jags, it is very simple to evaluate Bayesian p-value.N&fee used sum-squares type discrepancy measure and
computed sum of squared residuals (SSR) for actual andwsabdata set. Thetep function is used to test whether the
new data set is more extreme. The mean of resulting logiaztbvdeads to the required Bayesian p-value. All these
commands must be encoded within the model and the objecatbpymust be saved in the vectearams in order to

get its value in the output. The p-value neds ihdicates a good fit of the model to the data while valuesecto® or 1
suggests a doubtful fit.

for (i in 1:n) {

residual[i]<-y[i]-y.hat[i] # Residuals for observed
# data

predicted[i]<-y.hat[i] # Predicted values
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sq[i]<-pow(residualli], 2)

y.new[i]"dnorm(y.hat][i], tau.y) # one new data set at each
# MCMC iteration
sg.newli]<-pow(y.newli]-predicted[i], 2) # Squared resi duals for
# new data
}
fit<-sum(sq(]) # Sum of squared residuals
# for actual data set
fit.new<-sum(sqg.newl[]) # Sum of squared residuals
# for new dataset
test<-step(fit.new - fit) # Test whether new data set
# more extreme
bpvalue<-mean(test) # Bayesian p-value

Also, we carried out the posterior predictive check graalfycA plot of lack of fit for the replicated data versus theka
of fit for the observed data is made and has been presenteglireRi If the model fits the data, then half of the points in
the plot will lie above and half of them belowa 1 : 1 line.

out<-output$BUGSoutput
plot(out$sims.list$fit,out$sims.list$fit.new)
abline(0,1)

60 80 100 120 140
1

SSQ discrepancy for new data set

40

50 60 70 80 90 100
SSQ discrepancy for actual data set

Fig. 2: Graphical posterior predictive check of the model adeqdacyhe degradation data analysis plotting predictive eslized
sum of squares discrepancies.

3.2 Analysis of the data using optimization tool

The Ime4 package of R has a functimner which is an acronym for linear mixed-effects models with &fit linear
mixed-effects models and implements Laplace approximafitie rationale for using it as a Bayesian tool is that the
computational methods implemented in this function trédagparameter as random which is contrary to classical set up
In addition to this, it purveys the restricted maximum likelod estimation (se€elp] and [13]) where instead of working

on original data vector, a linear combination of observatics chosen to define the likelihood function such that it is
invariant to the values of fixed effect parameters. Intéggadut the likelihood function against the parameterdfitse
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suggests that paradigm is Bayesian. We have emploged to approximate the target density. The arguments of the
function are:

Imer(formula, data = NULL, REML = TRUE, control = ImerContro [(), start = NULL,
verbose = OL, subset, weights, na.action, offset, contrast s = NULL, devFunOnly =
FALSE, ...)

Here, we define some of its arguments in order to save the sRastof the details can be obtained from its pdf manual
available with the Ime4 packagé&4. The argumenformula stands for a two-sided formula object describing both
random and fixed-effects part of the model. The reponsehblaria placed at left of a- operator while the input variables
are on its right side, separated by a + operator. Randoratsfierms are distinguished by vertical bars (“—") separati
expressions for design matrices from grouping factdeda refers to an optional dataframe containing the variables
named in the formula. If not supplied, it takes the varialftesn the environment from whickmer is called. The
argumentREMLspecifies the logical scalar. When TRUE (default), the estid® are chosen to maximize the REML
criterion.

3.2.1 Fitting a varying-intercept and varying-slope magshg R
Setting up the data

The model is the same, defined earlier. Since, we have caoedideormal probability density for each potency
measurement, the functioimer would be most appropriate for the analysis. Batch is thegcaieal variable.
Therefore, it is entered into the workspace as a factor vecto

batch<-rep(paste("batch",1:24,sep=""),4)
batch<-factor(batch)
Time<-c(rep(0,24),rep(12,24),rep(24,24),rep(36,24))

y<-c(99.9,101.1,100.3,100.8,100,100.1,99.6,100.4,10 0.9,100.5,101.1,
100.9,99.8,100.1,100.7,100.3,100.2,99.8,100.8,100,9 9.6,100.2,99.8,
100,98.9,97.1,98.3,96.8,98,98.1,98.6,99.4,98.9,99.5 ,98.1,97.9,98.8,
99.1,98.7,98.3,98.2,97.8,98.8,98,99.6,98.2,97.8,99, 95.9,94.1,95.3,
94.8,96,98.1,96.6,96.4,96.9,94.5,93.1,95.9,93.8,93. 1,93.7,96.3,97.2,
95.8,95.8,96,92.6,97.2,95.8,95,92.9,91.1,92.3,90.8, 92,95.1,92.6,95.4,
96.9,93.5,91.1,93.9,89.8,90.1,91.7,93.3,94.2,90.8,9 4.8,92,88.6,94.2,
90.8,92)

Analysiswith Imer

We chose to adopt the REML estimation criterion. With all tlaga variables defined, we finally fit the model as
M1<-Imer(y"Time+(Time|batch))

Summarizing the output

The functiondisplay available in the package arm prints all the relevant pastaguantities for the purpose of
inference.

Table 3: Parameter estimates

coef.est coef.se
(Intercept) 100.61 0.14
Time -0.22 0.01
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Table 4: Error terms

Groups Name Std. Dev. Correlation
(Intercept) 0.17
batch Time 0.05 -1.00
Residual 0.80

number of obs: 96, groups: batch, 24
AIC =299, DIC = 268
deviance = 277.5

4 Juxtaposition of exact and approximate Bayesian Analysisf the data

The correlation between the random intercepts and sloge#ied bylmer is perfect negative correlation which is much
impractical, rather, an ideal situation. But, with the JA@S8del, we have got a reasonable negative correlation. &rth
the deviance of the JAGS model is 232vhich is much lesser in comparison to what is yielded by timefionlmer i.e.
2775. Thus, it can be seen that the Bayesian analysis of the digiza model using Gibbs sampling procedure gives a
better solution as compared to the analysis based on appatgns.

It can be found that the intercepts are not varying much batwiee batches. Therefore, it is the slope which would decide
the rate of degradation mechanism within various batchles.pbsterior medians of slopes obtained by the two methods
have been presented parallel to each other in Table

Table 5: Comparison of slopes resulted lmger andjags for all the 24 batches

Estimates of slopes by Estimates of slopes by
Batch Imer jags Batch Imer jags

-0.20394 -0.205 13 -0.22350 -0.223
-0.20725 -0.208 14 -0.31489 -0.307
-0.27413 -0.269 15 -0.16968 -0.173
-0.19254 -0.194 16 -0.24795 -0.245
-0.28387 -0.278 17 -0.23006 -0.229
-0.28553 -0.28 18 -0.22515 -0.225
-0.25292 -0.25 19 -0.26591 -0.262

-0.19579 -0.197 20 -0.22350 -0.223
-0.16968 -0.173 21 -0.14357 -0.149
-0.24795 -0.245 22 -0.20229 -0.203
-0.17299 -0.177 23 -0.15178 -0.157
-0.26757 -0.264 24 -0.12242 -0.13

P
REBowo~NwourwhrR

From Tablées it can be found that batch 24 of the drug is undergoing minindegradation with a slope 6f0.13 whereas
the maximum degradation is occuring in batch 14 with theeslgdue as-0.307.

5 Conclusions and final remarks

In this paper, we introduce multilevel modeling in a praatidegradation data problem. The analysis has been prdsente
in Bayesian paradigm using both simulation technique wefionjags and has been juxtaposed with the approximate
results evaluated in R vimer . The work presented in this paper is not mathematical buteratonceptual and
computational. Although the approximate solution giverimogr and the exact solution yielded iRR2jags has come

out to be much closer for the parameters, yet, the correl@ibwld not be estimated appropriatelyloyer . Moreover,
with Imer , much programming effort is required to simulate preditsi@nd predicted data. Also, with the small
number of groups, the precise estimation of variance compisrwithimer might not be possible in the absence of
enough information. Whereas, in addition to the routinetgrasr quantities and quantiles, JAGS allows predictiohs o
new units in the same framework. The modular form of JAGSwallthe programmers to bring together all sorts of
Bayesian models such as linear and generalized linear rmadehus, facilitates much complicated modeling.

(@© 2015 NSP
Natural Sciences Publishing Cor.



J. Stat. Appl. Pro4, No. 1, 79-91 (2015) www.naturalspublishing.com/Journals.asp NS = 91

Thus, Bayesian methods using simulation technique seelesdaeasonable choice especially for more complicated
degradation model. Further, working with simulations eaithan simply getting point estimates of parameters, tee us
can directly capture inferential uncertainty and incoggeiit into prediction of future samples.
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