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1 Introduction

Gronwall inequality is an important tool in the study of
existence, uniqueness, boundedness, stability, and other
qualitative properties of solutions of differential equations
and integral equations see for
instance [1–3, 5–7, 9, 11, 13, 14, 16, 17]. Many results on
its generalization can be found for example in [2, 5–15] .
However, in certain situations the bounds provided by the
above mentioned inequalities are not directly applicable,
and it’s desirable to find some new estimates which will
be equally important in order to achieve of desired goals;
see [3, 4, 13–22]. The main purpose of this paper is to
establish explicit bounds on retarded Gronwall-Bellman,
Bihari and Pachpatte-like inequalities which can be used
to study the qualitative behavior of the solutions of certain
classes of retarded integral and differential equations.
Some applications of some of our results are also given.
Pachpatte in [15] investigated the retarded inequality

u(t)≤ k+
∫ t

a
g(s)u(s)ds+

∫ α(t)

a
h(s)u(s)ds,∀ t ∈ J, (1)

where k is a constant. Replacingk by a nondecreasing
continuous functionf (t) in (1), Rashid in [16] studied the
following retarded inequality

u(t)≤ f (t)+
∫ t

a
g(s)u(s)ds+

∫ α(t)

a
h(s)u(s)ds,∀ t ∈ J.

(2)

However, sometimes we need to study such inequalities
with differentiable function in place of nondecreasing
continuous function termf (t). In this paper, some of our
results concern with integral inequalities with such a
differentiable functionf (t).
Throughout this paper,R denoted the set of real numbers;
R+ = [0,∞), R∗

+ = (0,∞), J = [a,b] is the subset ofR, ′
denotes the derivative.C (J,R+) denotes the set of all
continuous functions fromJ into R+ and C

1(J,J)
denotes the set of all continuously differentiable functions
from J into J.

2 Main results

In this section, several new retarded integral inequalities of
Gronwall-Bellman type are introduced.
Theorem 2.1. Let u(t), g(t), h(t) ∈ C (J,R+),
f (t) ∈ C (J,R∗

+), be nondecreasing functions andp < 1 is
a constant. Suppose thatα(t) ∈ C 1(J,J) be
nondecreasing function withα(t) ≤ t on J. If the
inequality

u(t)≤ f (t)+
∫ t

a
g(s)up(s)ds+

∫ α(t)

a
h(s)up(s)ds, (3)

holds for allt ∈ J, then

u(t)≤ f (t)

[

1+(1− p)[ξ (t)+η(t)]
]

1
1−p

,∀ t ∈ J, (4)
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where

ξ (t) =
∫ t

a
f p−1(s)g(s)ds,∀ t ∈ J, (5)

and

η(t) =
∫ α(t)

a
f p−1(s)h(s)ds,∀ t ∈ J. (6)

Proof. Sincef (t) is a positive and nondecreasing function,
we observe from (3) that
[

u(t)
f (t)

]

≤ 1+
∫ t

a
g(s) f p−1(s)

[

u(s)
f (s)

]p

ds

+

∫ α(t)

a
h(s) f p−1(s)

[

u(s)
f (s)

]p

ds,∀ t ∈ J.

Let

r(t) =
u(t)
f (t)

,∀ t ∈ J, r(0)≤ 1, (7)

then

r(t) ≤ 1+
∫ t

a
g(s) f p−1(s)rp(s)ds

+
∫ α(t)

a
h(s) f p−1(s)rp(s)ds,∀ t ∈ J.

Define a functionz(t) by the right hand side of the above
inequality, then we have

r(t)≤ z(t), r(α(t))≤ z(α(t)) ≤ z(t), z(a) = 1. (8)

Differentiatingz(t) with respect tot and using (8), we have

z−p(t)z′(t)≤ g(t) f [p−1](t)+ h(α(t)) f [p−1](α(t))α ′(t),

for all t ∈ J.By taking t = s in the above inequality and
integrating both sides froma to t, and making the change
of the variable we get

z(t)≤

[

1+(1− p)[ξ (t)+η(t)]
][ 1

1−p ]

,∀ t ∈ J. (9)

where ξ (t) and η(t) are defined by (5) and (6)
respectively . Therefore from (7), (8) and (9), we get the
required inequality in (4). The proof is complete.

Theorem 2.2. Let u(t), g(t), h(t) ∈ C (J,R+), and
f (t) ∈ C (J,R∗

+), α(t) ∈ C 1(J,J) be nondecreasing
functions with α(a) = a, and α(t) ≤ t on J. If the
inequality

up(t)≤ f p(t)+
∫ t

a
g(s)up(s)ds+

∫ α(t)

a
h(s)uq(s)ds,∀ t ∈ J,

(10)
holds, wherep > q ≥ 0, are constants. Then

u(t)≤ f (t)[Θ(t)]
1

[p−q] ,∀ t ∈ J, (11)

where

Θ (t) =exp

(

P1

∫ t

a
g(s)ds

)

×

[

1+P1

∫ α(t)

a
h(s) f−[p−q](s)exp

(

−P1

∫ α−1(s)

a
g(λ)dλ

)

ds

]

,

(12)

for all t ∈ J, whereP1 = [ p−q
p ].

Proof. Since f (t) is a positive, monotonic, nondecreasing
function, we observe from (10) that

[

u(t)
f (t)

]p

≤ 1+
∫ t

a
g(s)

[

u(s)
f (s)

]p

ds

+

∫ α(t)

a
h(s) f−[p−q](s)

[

u(s)
f (s)

]q

ds, ∀t ∈ J.

Let

r1(t) =
u(t)
f (t)

, ∀ t ∈ J, r(a)≤ 1, (13)

hence

rp
1(t)≤ 1+

∫ t

a
g(s)rp

1(s)ds+
∫ α(t)

a
h(s) f−[p−q](s)rq

1(s)ds,

(14)
for all t ∈ J. Define a functionκ(t) such that

κ p(t) = 1+
∫ t

a
g(s)rp

1(s)ds+
∫ α(t)

a
h(s) f−[p−q]rq

1(s)ds,

(15)
for all t ∈ J, we can easily obtain

r1(t)≤ κ(t), r1(α(t))≤κ(α(t))≤ κ(t), κ(a)= 1,∀ t ∈ J.
(16)

Differentiating (15) with respect tot and using (16), we
have

pκ [p−1]κ ′(t) ≤ g(t)κ p(t)

+ h(α(t)) f−[p−q](α(t))α ′(t)κq(t),∀ t ∈ J,

butκ > 0. Thus, we have

pκ [p−q−1]κ ′(t)−g(t)κ [p−q](t)≤ h(α(t)) f−[p−q(α(t))α ′(t),
(17)

if we let
κ [p−q](t) =ϒ (t), (18)

then we haveϒ (a) = 1, andpκ [p−q−1]κ ′(t) = [ 1
P1
]ϒ ′(t),

thus from (17) we obtain

ϒ ′−P1g(t)ϒ (t)≤ P1h(α(t)) f−[p−q](α(t))α ′(t),∀ t ∈ J.

The above inequality implies the estimation forϒ (t) such
that

ϒ (t)≤Θ(t),∀ t ∈ J,
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where Θ(t) as defined in (12). Then from the above
inequality and (2.16) in (2.14), we have

r1(t)≤ [Θ(t)]
1

[p−q] ,∀ t ∈ J.

The desired bound in (11) follows from the above
inequality and (13). The proof is complete.

Remark 2.1. Theorem 2.2 gives the explicit estimation in
Theorem 2.3 in [16] when p = 1.

Theorem 2.3. Let u(t), g(t), h(t) ∈ C (J,R+), and
f (t) ∈ C (J,R∗

+), α(t) ∈ C 1(J,J) be nondecreasing
functions withα(a) = a, α(t)≤ t on J. If the inequality

u(t) ≤ f (t)+
∫ α(t)

a
g(s)u(s)ds+

∫ α(t)

a
g(s)u(s)[u(s)

+

∫ α(s)

a
h(λ )u(λ )dλ ]ds, (19)

holds for all t ∈ J. Then

u(t)≤ f (t)exp

(

∫ α(t)

a
g(s)(1+ f (s)Θ1(s))ds

)

,∀ t ∈ J,

(20)
where

Θ1(t) =
exp(

∫ α(t)
a [g(s)+ h(s)]ds)

1−
∫ α(t)

a g(s) f (s)exp(
∫ s

a [g(τ)+ h(τ)]dτ)ds
,

(21)
for all t ∈ J, such that

∫ α(t)

a
g(s) f (s)exp(

∫ s

a
[g(τ)+ h(τ)]dτ)ds < 1,∀ t ∈ J.

Proof. Since f (t) is a positive, monotonic, nondecreasing
function, we observe from (19) that

u(t)
f (t)

≤ 1+
∫ α(t)

a
g(s)

u(s)
f (s)

ds

+

∫ α(t)

a
g(s) f (s)

u(s)
f (s)

[

u(s)
f (s)

+

∫ α(s)

a
h(λ )

u(λ )
f (λ )

dλ
]

ds,

for all t ∈ J. Let

r2(t) =
u(t)
f (t)

,∀ t ∈ J r2(a)≤ 1, (22)

hence

r2(t) ≤ 1+
∫ α(t)

a
g(s)r2(s)ds+

∫ α(t)

a
g(s) f (s)r2(s)[r2(s)

+
∫ α(s)

a
h(λ )r2(λ )dλ ]ds,∀ t ∈ J,

for all t ∈ J. LetV (t) equal the right hand side in the above
inequality, we have

r2(t)≤V(t), r2(α(t))≤V (α(t))≤V (t), V (a)= 1,∀ t ∈ J.
(23)

DifferentiatingV (t) with respect tot, and using (23) we
obtain

V ′(t)≤ g(α(t))α ′(t)V (t)[1+ f (α(t))γ(t)],∀ t ∈ J, (24)

whereγ(t) =V (t)+
∫ α(t)

a h(s)V (s)ds, henceγ(a) = 1, and
V (t)≤ γ(t).
Differentiatingγ(t) with respect tot, and using (24) we get

γ ′(t) ≤ [g(α(t))+ h(α(t))]α ′(t)γ(t)

+ g(α(t))α ′(t) f (α(t))γ2(t),∀ t ∈ J,

but γ(t)> 0, thus from the above inequality we get

γ−2(t)γ ′(t)− [g(α(t))+ h(α(t))]α ′(t)γ−1(t)

≤ g(α(t))α ′(t) f (α(t)),∀ t ∈ J.
(25)

If we let
l(t) = γ−1(t),∀ t ∈ J, (26)

then we getl(a) = 1 andγ−2γ ′(t) =−l′(t), thus from (25)
we have

l′(t)+[g(α(t))+h(α(t))]α ′(t)l(t)≥−g(α(t))α ′(t) f (α(t)).

The above inequality implies the estimation forl(t) such
that

l(t)≥
1−

∫ α(t)
a g(s) f (s)exp(

∫ s
a [g(τ)+ h(τ)]dτ)

exp(
∫ α(t)

a [g(s)+ h(s)]ds)
,∀ t ∈ J.

Then from the above inequality in (26), we have

γ(t)≤Θ1(t),∀ t ∈ J,

whereΘ1(t) as defined in (21), thus from (24) and the
above inequality we have

V ′(t)≤ g(α(t))α ′(t)V (t)[1+ f (t)Θ1(t)],∀ t ∈ J.

Integrating the above inequality froma to t, and making
the change of variable yield

V (t)≤ exp

(

∫ α(t)

a
g(s)(1+ f (s)Θ1(s))ds

)

,∀ t ∈ J.

Using the above inequality and (23) in (22), we get the
required inequality in (20). The proof is complete.

3 Further Inequalities

In this section, we present a number of more retarded
nonlinear integral inequalities of Gronwall-Bellman,
Bihari and Pachpatte-like, which are further
generalizations for some known results and can be used
as ready and powerful tools in developing the theory of
nonlinear retarded differential and integral equations.
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Theorem 3.1. Let u(t), g(t), h(t) ∈ C (J,R+), f (t), α1(t),
α2(t) ∈ C 1(J,J) be nondecreasing functions withαi(a) =
a, andαi(t) ≤ t on J for i = 1,2, andp > 1 is a constant.
Suppose that

up(t)≤ f p(t)+
∫ α1(t)

a
g(s)u(s)ds+

∫ α2(t)

a
h(s)u(s)ds,

(27)
for all t ∈ J. If f (t) ≥ 1,∀t ∈ J, then

u(t) ≤

[

f [p−1](a)+ (
p−1

p
)[ f p(t)− f p(a)

+ G(t)+H(t)]

]
1

p−1

,∀t ∈ J, (28)

where

G(t) =
∫ α1(t)

a
g(s)ds,∀t ∈ J, (29)

and

H(t) =
∫ α2(t)

a
h(s)ds,∀t ∈ J. (30)

Proof. LetV p
1 (t) equal the right hand side in (27), we have

u(t)≤V1(t); u(α(t))≤V1(α(t))≤V1(t); V1(a) = f (a),
(31)

for all t ∈ J. DifferentiatingV p
1 (t) with respect tot and

using (31), we obtain

pV [p−1]
1 V ′

1(t) ≤ p f [p−1](t) f ′(t)+ g(α1(t))α ′
1(t)V1(t)

+ h(α2(t))α ′
2(t)V1(t),∀t ∈ J,

sinceV1(t)> 0, we get

pV [p−2]
1 V ′

1(t) ≤ p f [p−1](t)
f ′(t)
V1(t)

+ g(α1(t))α ′
1(t)+ h(α2(t))α ′

2(t),∀t ∈ J,

but f (t) ≥ 1 ⇒ V1(t) ≥ 1 ⇒ f ′(t)
V1(t)

≤ f ′(t), thus from the
above inequality we get

pV [p−2]
1 V ′

1(t) ≤ p f [p−1](t) f ′(t)

+ g(α1(t))α ′
1(t)+ h(α2(t))α ′

2(t),∀t ∈ J.

Integrating the above inequality froma to t, and making
the change of variable yield

V1(t) ≤

[

f [p−1](a)+ (
p−1

p
)[ f p(t)− f p(a)

+ G(t)+H(t)]

] 1
p−1

,∀t ∈ J,

where G(t) and H(t) as defined in (29) and (30)
respectively. Using the above inequality in (31), we get
the required inequality in (28). The proof is complete.
Remark 3.1. Theorem 3.1 gives the explicit estimation in
Theorem 2.2 in [16] whenα1(t) = 1 andα2(t) = α(t).
Theorem 3.2. Let u(t), g(t), h(t) ∈ C (J,R+), and f (t),
α(t) ∈ C 1(J,J) be nondecreasing functions with
a ≤ α(t)≤ t on J.

(i)Suppose that

u(t)≤ f (t)+
∫ t

a
g(s)u(s)ds+

∫ α(t)

a
h(s)u(s)ds, (32)

holds for all t ∈ J, then

u(t)≤Θ2(t), ∀t ∈ J, (33)

where

Θ2(t) = exp

(

G1(t)+H1(t)

)

×

[

f (a)+
∫ t

a
f ′(s)exp

(

− [G1(s)+H1(s)]

)

ds

]

,

(34)

for all t ∈ J, where G1(t) =
∫ t

a g(s)ds, and

H1(t) =
∫ α(t)

a g(s)ds,∀ t ∈ J.
(ii)Suppose that

u(t) ≤ f (t)+
∫ t

a
g(s)u(s) lnu(s)ds

+

∫ α(t)

a
h(s)u(s) lnu(s)ds, (35)

holds for all t ∈ J, then

u(t)≤ exp

(

Θ2(t)

)

,∀t ∈ J, (36)

whereΘ2(t) as defined in (34).

Proof. (i) Let V2(t) equal the right hand side in (32) we
have

u(t)≤V2(t), u(α(t))≤V2(α(t)) ≤V2(t), V2(a) = f (a),
(37)

for all t ∈ J, DifferentiatingV2(t) with respect tot and
using (37), we have

V ′
2(t)− [g(t)+ h(α(t))α ′(t)]V2(t)≤ f ′(t),∀ t ∈ J.

The above inequality implies the estimation forV2(t) such
that

V2(t)≤Θ2(t),∀t ∈ J,

where Θ2(t) as defined in (34), then from the above
inequality in (37) we obtain the required inequality in (3).
The proof is complete.

(ii) Let a functionV3(t) equal the right hand side of
(35), thenV3(a) = f (a), andu(t) ≤ V3(t), and as in the
proof of (i) we obtain

V ′
3(t)

V3(t)
≤

f ′(t)
V3(t)

+g(t) lnV3(t)+h(α(t)) lnV3(t)α ′(t),∀ t ∈ J,

but f (t) ≥ 1,⇒ V3(t) ≥ 1,⇒ f ′(t)
V3(t)

≤ f ′(t), thus from the
above inequality we get

V ′
3(t)

V3(t)
≤ f ′(t)+g(t) lnV3(t)+h(α(t)) lnV3(t)α ′(t),∀ t ∈ J.
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Integrating the above inequality froma to t, and making
the change of variable yield

lnV3(t)≤

(

ln f (a)+ f (t)− f (a)

)

+

∫ t

a
g(s) lnV3(s)ds+

∫ α(t)

a
h(s) lnV3(s)ds,∀ t ∈ J.

(38)

Now by a suitable application of the inequality given in(i)
to (38), we have

lnV3(t)≤Θ2(t),∀ t ∈ J,

where Θ2(t) as defined in (34), then from the above
inequality we get

V3(t)≤ exp

(

Θ2(t)

)

,∀ t ∈ J.

Using the above inequality inu(t) ≤ V3(t), we get the
required inequality in (36). The proof is complete.

Remark 3.2. Theorem 3.2(i) and (ii) gives the explicit
estimations in(a1) and (a2) in Theorem 2.3 in [15]
respectively whenf (t) is a constant function.

Theorem 3.3. Let u(t), g(t), h(t) ∈ C (J,R+) and f (t),
α1(t) and α2(t) ∈ C 1(J,J) be nondecreasing functions
with αi(a) = a, i = 1,2, and a ≤ αi(t) ≤ t on J, let
wi ∈ C (R+,R+) be nondecreasing functions with
wi(u)≥ 1 for u ≥ 1, i = 1,2.
(i) Suppose thatf (t) ≥ 1,∀ t ∈ J and

u(t) ≤ f (t)+
∫ α1(t)

a
g(s)w1(u(s))ds

+

∫ α2(t)

a
h(s)w2(u(s))ds,∀ t ∈ J, (39)

holds then fora ≤ t ≤ t1

u(t)≤















W−1
2 [W2( f (a))+G(t)+H(t)+ f (t)− f (a)] if w1(u)≤ w2(u)

W−1
1 [W1( f (a))+G(t)+H(t)+ f (t)− f (a)] if w2(u)≤ w1(u).

(40)

where G(t) and H(t) as defined in (29) and (30)
respectively. and fori = 1,2, W−1

i are the inverse
functions of

Wi(ε) =
∫ ε

ε0

ds
wi(s)

,ε0 > 0,ε > 0, (41)

and t1 ∈ J is chosen so that
Wi( f (a)) + G(t) +H(t) + f (t)− f (a) ∈ Dom(W−1

i ), for
i = 1,2 respectively, for allt ∈ [a, t1].
(ii) Suppose that

u(t) ≤ f (t)+
∫ α1(t)

a
g(s)u(s)w1(lnu(s))ds

+
∫ α2(t)

a
h(s)u(s)w2(lnu(s))ds, (42)

holds for all t ∈ J, then fora ≤ t ≤ t2

u(t) ≤



















exp(W−1
2 [W2(ln f (a))+G(t)+H(t)+ f (t)− f (a)]) if w1(u) ≤ w2(u)

exp(W−1
1 [W1(ln f (a))+G(t)+H(t)+ f (t)− f (a)]) if w2(u) ≤ w1(u).

(43)

whereWi,W
−1
i ,G(t),H(t) are as in(i) and t2 chosen so

that

Wi(ln f (a))+G(t)+H(t)+ f (t)− f (a)∈ Dom(W−1
i ),

for i = 1,2, respectively, for allt ∈ [a, t2].

Proof. (i) Let V4(t) equal the right hand side in (39) we
have

u(t)≤V4(t), u(α(t))≤V4(α(t)) ≤V4(t), V4(a) = f (a);
(44)

for all t ∈ J. DifferentiatingV4(t) with respect tot and
using (44), leads to

V ′
4(t) ≤ f ′(t)+ g(α1(t))w2(V4(t))α ′

1(t)

+ h(α2(t))w1(V4(t))α ′
2(t),∀ t ∈ J.

In casew1(u)≤ w2(u), then from the above inequality we
have

V ′
4(t)≤ f ′(t)+w2(V4(t))[g(α1(t))α ′

1(t)+ h(α2(t))α ′
2(t)],

for all t ∈ J, butw2(V4(t))> 0, thus we get

V ′
4(t)

w2(V4(t))
≤

f ′(t)
w2(V4(t))

+ g(α1(t))α ′
1(t)+ h(α2(t))α ′

2(t),

for all t ∈ J, but f (t)≥ 1⇒V4(t)≥ 1⇒ w2(V4(t))≥ 1⇒
f ′(t)

w2(V4(t))
≤ f ′(t), thus from (41) we have

d
dt

W2(V4(t)) =
V ′

4(t)
w2(V4(t))

≤ f ′(t)+ g(α1(t))α ′
1(t)+ h(α2(t))α ′

2(t).

Integrating the above inequality froma to t and making the
change of variable we have

W2[V4(t)]≤W2( f (a))+G(t)+H(t)+ f (t)− f (a).

Using the above inequality in (44) gives the required
inequality (40).
The proof of the casew2(t) ≤ w1(t) can be completed
similarly.
(ii) The proof of the inequality in this case can be
completed by following the proof of the inequality in(i)
in this theorem and the case(ii) in the Theorem 3.2. The
proof is complete.

Remark 3.3. Theorem 3.3(i) and (ii) gives the explicit
estimations in (b1) and (b2) in Theorem 2 in [15]
respectively whenf (t) is a constant function,α1(t) = t
andα2(t) = α(t).

Remark 3.4. Theorem 3.3(i) gives the explicit estimation
in Theorem 2.4 in [16] whenα1(t) = t andα2(t) = α(t).
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Theorem 3.4. Let u(t),h(t) ∈ C (J,R+),α(t), f (t)
∈ C 1(J,J) be nondecreasing functions, withα(t) ≤ t,
α(a) = a, α ′(t) ≥ 0, let w ∈ (R+,R

∗
+) nondecreasing

function with w(u) ≥ 1 for u ≥ 1 , and
k(t,s) ∈ C (J × J,R+) with ∂k

∂ t (t,s) ∈ C (J × J,R+).
Suppose thatf (t)≥ 1 and

u(t) ≤ f (t)+
∫ α(t)

a
h(s)w(u(s))ds

+

∫ α(t)

a
k(t,s)w(u(s))ds,∀t ∈ J, (45)

then

u(t)≤W−1[W ( f (a))+H2(t)+ f (t)− f (a)+
∫ t

a
F(s)ds],

(46)
for all t ∈ J, holds for all values oft3 for which

[W ( f (a))+H2(t)+ f (t)− f (a)+
∫ t

a
F(s)ds]∈Dom(W−1),

for all t ∈ [a, t3], where

H2(t) =
∫ α(t)

a
[h(s)+ k(t,s)]ds, ∀ t ∈ J; (47)

F(t) =
∫ α(t)

a

∂k
∂ t

(t,s)ds, ∀ t ∈ J; (48)

W (r) =
∫ r

r0

ds
w(s)

,r0 > 0,r,> 0. (49)

Proof. Let V5(t) equal the right hand side in (45) we have

u(t)≤V5(t), u(α(t))≤V5(α(t))≤V5(t), V5(a) = f (a),
(50)

for all t ∈ J. DifferentiatingV5(t) with respect tot and
using (50), we have

V ′
5(t) ≤ f ′(t)+ h(α(t))α ′(t)w(V5(t))

+
∫ α(t)

a

∂k
∂ t

(t,s)w(V5(t))ds

+ k(t,α(t))w(V5(t))α ′(t), ∀ t ∈ J, (51)

butw(V5(t))> 0, thus (51) written as

V ′
5(t)

w(V5(t))
≤

f ′(t)
w(V5(t))

+ h(α(t))α ′(t)

+

∫ α(t)

a

∂k
∂ t

(t,s)ds+ k(t,α(t))α ′(t),∀ t ∈ J,

but f (t) ≥ 1 ⇒ V5(t) ≥ 1 ⇒ w(V5(t)) ≥ 1 ⇒ f ′(t)
w(V5(t))

≤

f ′(t), thus from (49) we get

d
dt
[W (V5(t))] =

V ′
5(t)

w(V5(t))

≤ f ′(t)+ h(α(t))α ′(t)+
∫ α(t)

a

∂k
∂ t

(t,s)ds

+ k(t,α(t))α ′(t),∀t ∈ J.

Integrating the above inequality froma to t and making the
change of variable yield

V5(t) ≤ W−1
(

W ( f (a))+H2(t)+ f (t)− f (a)

+
∫ t

a
F(s)ds]

)

,∀ t ∈ J,

where H2(t) and F(t) as defined in (47) and (48)
respectively. Using the above inequality in (50) we get the
result (46). The proof is complete.

4 Applications

In this section we apply our Theorems 3.4 and 2.3 to the
following integral equation in the Corollary 4.1 and
retarded integral equation in the Example 4.1 respectively,
as follows: consider the integral equation

u(t) = y(t)+
∫ t

a
Φ(s,u(α(s)),A(t,s))ds, ∀t ∈ J, (52)

whereΦ ∈ C (R3,R), satisfy the following conditions:

|y(t)| ≤ f (t),∀ t ∈ J; (53)

|Φ(t,u(α(t)),k(t,s))| ≤ h(α(t))w(|u(α(t))|)

+ k(t,α(s))w(|u(α(t))|), (54)

W−1(W ( f (a))+MH2(t)+ f (t)− f (a)+M
∫ t

a
F(s)ds)<∞,

(55)
where H2(t),F(t) as defined in Theorem 3.4,
h(t), f (t),w(t) ∈ C (J,R+) and

M = max
1

α ′(t)
, ∀ t ∈ J, (56)

Corollary 4.1. Consider the nonlinear integral equation
(52) and suppose thaty, Φ satisfy the conditions (53) and
(54), and α(t) ∈ C

1(J,J) with α(t) ≤ t, α(a) = a,
w(u) ≥ 1, for u ≥ 1 and k(t,s) ∈ C (J × J,R+) with
∂k
∂ t (t,s) ∈ C (J × J,R+), for all t ∈ J. If f (t) ≥ 1 then all
solutionu(t) of the equation (52) exist onJ, bounded and
satisfy the following estimation:

|u(t)| ≤ W−1(W ( f (a))+MH2(t)+ f (t)− f (a)

+ M
∫ t

a
F(s)ds), ∀ t ∈ J, (57)

whereM andW as defined in (56) and (49) respectively.
proof. Suppose that the hypotheses (53), (54) are satisfied,
and letu(t), be a solution of (52). Then from (52), (53) and
(54), we get

|u(t)| ≤ f (t)+
∫ t

a
h(α(s))g(|u(α(s))|)ds

+
∫ t

a
k(t,α(s))g(|u(α(s))|)ds,∀t ∈ J.

c© 2014 NSP
Natural Sciences Publishing Cor.



Math. Sci. Lett.3, No. 3, 157-164 (2014) /www.naturalspublishing.com/Journals.asp 163

by making the change of variable for the above inequality
we get

|u(t)| ≤ f (t)+M
∫ α(t)

a
h(s)w(|u(s)|)ds

+ M
∫ α(t)

a
k(t,s)w(|u(s)|)ds,∀t ∈ J.

Applying Theorem 3.4 to the above inequality, we get the
estimation (57). Thus from the hypothesis (55) and the
estimation in (57) implies the boundedness of the solution
of (52). The proof is complete.
Example 4.1. Consider the retarded integral equation:

u(t) = y(t)+
∫ α(t)

a
B(s,u(s))ds

+

∫ α(t)

a
A(s,u(s),B(s),

∫ s

a
D(τ,u(τ))dτ)ds, (58)

for all t ∈ J. Assume that











|y(t)| ≤ f (t);

|B(t,u(t))| ≤ g(t)|u(t)|;

|D(t,u(t))| ≤ h(t)|u(t)|;

(59)

|A(s,u(t),B(t),
∫ t

a
D(s,u(s))ds)| ≤ |B(t,u(t))|[|u(t)|

+

∫ t

a
|D(s,u(s))|ds];(60)

f (t)exp(
∫ α(t)

a
g(s)(1+ f (s)Θ1(s))ds) < ∞, (61)

for all t ∈ J where f (t),h(t),g(t),α(t) and u(t) are as
defined in Theorem 2.3, from (58), (59) and (60) we
obtain

|u(t)| ≤ f (t)+
∫ α(t)

a
g(s)|u(s)|ds+

∫ α(t)

a
g(s)|u(s)|[|u(s)|

+
∫ α(s)

a
h(τ)|u(τ)|dτ]ds,∀t ∈ J, (62)

for all t ∈ J. By Theorem 2.3 we get an explicit bound on
an unknown function|(u(t)| such that

|u(t)| ≤ f (t)exp(
∫ α(t)

a
g(s)(1+ f (s)Θ1(s))ds),∀ t ∈ J,

(63)
whereΘ1(t) as defined in (21). Thus from the hypotheses
(61) and the estimation in (63) implies the boundedness of
the solution of (58). The proof is complete.
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