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Abstract: Erich Hecke (1936) introduced the groupsH(λq) = 〈S,T : S2 = T q = 1〉 generated by two linear-fractional transformations

S(z) = −1
z andT (z) = −1

z+λ . In this paper, we discuss the action of hecke groupsH(λq) on real quadratic fields. In particular, we explore

the orbits ofQ(
√

m)\Q whereQ(
√

m)\Q is the disjoint union ofQ∗(
√

n) = { a+
√

n
c : a,c 6= 0,b = a2−n

c ∈Z | (a,b,c) = 1} for n= k2m.
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1 Introduction

In 1936 Erich Hecke [2] introduced the groupsH(λ )
generated by two linear-fractional transformations
S(z) = −1

z andT (z) = −1
z+λ . Hecke showed thatH(λ ) is

discrete if and only ifλ = λq = 2cos(π
q ), q ∈ N, q ≥ 3 or

λ ≥ 2. Hecke groupH(λq) is isomorphic to the free
product of two finite cyclic group of order 2 andq, and it
has a presentation

H(λq) = 〈S,T : S2 = T q = 1〉 ∼=C2∗Cq

The first few of these groups areH(λ3) = PSL(2,Z), the
modular group, H(λ4) =

〈

S,T : S2 = T 4 = 1
〉

,

H(λ5) = H(1+
√

5
2 ) and

H(λ6) = H(
√

3) = 〈S,T : S2 = T 6 = 1〉. It was proved
that the action ofH = 〈x,y : x2 = y4 = 1〉, where
x(z) = −1

2z and y(z) = −1
2(z+1) , on the rational projective

line Q ∪ {∞} is transitive [7,12]. The action of the
modular group G =

〈

x′,y′ : x′2 = y′3 = 1
〉

, where
x′(z) = −1

z and y′(z) = −1
z+1, on the real quadratic fields

has been discussed in [3,9,11] and [10].
Let n = k2m, k ∈ N andm is a square free positive integer.
ThenQ(

√
m)\Q is a disjoint union of

Q∗(
√

n)= {a+
√

n
c

: a,c 6= 0,b=
a2− n

c
∈Z | (a,b,c)= 1}.

If α = a+
√

n
c ∈Q∗(

√
n) and its conjugateα have opposite

signs thenα is called an ambiguous number [3]. The set
of ambiguous numbers inQ∗(

√
n) is denoted byQ∗

1(
√

n)
and|Q∗

1(
√

n)| has been determined in [1] as a function of
n. Since Q

′′
(
√

n) = Q∗(
√

n) ∪ 1
2Q

∗(
√

n) and for
n 6≡ 0(mod 4)
Q∗∗(

√
n) = {α(a,b,c) ∈ Q∗(

√
n) | c ≡ 0(mod 2)} are

two H-subsets ofQ(
√

m)\Q.
The results of [12] are extended in [13] to all non-square
n ≡ 0(mod 4) and was proved that
Q

′′
(
√

n) = Q∗∼(
√

n) ∪ Q∗∼(
√

4n), where
Q∗∼(

√
n) = (Q∗(

√ n
4)\Q∗∗(

√ n
4))∪Q∗∗(

√
n). Moreover

the proper H-subsets of Q∗∗(
√

n) or
Q

′′
(
√

n) = Q∗∗(
√

n) ∪ Q∗∼(
√

4n) according as
n 6≡ 0(mod 4) or n ≡ 0(mod 4) have been discovered. As
we denote the number ofH-orbits of Q∗∼(

√
4p) by

o∗∼H (4p) and the number ofH-orbits of Q
′′
(
√

p) by
oH(p). In a recent paper [15], H-orbits of Q∗∼(

√
4p),

p ≡ 1(mod 4), have been found for the case

|(
√

p
1 )H |amb + |(

√
p

−1 )
H |amb = |Q∗∼

1 (
√

4p)|. In this paper
we discuss the case whenever
|(

√
p

1 )H |amb + |(
√

p
−1 )

H |amb < |Q∗∼
1 (

√
4p)|.

We tabulate the actions on,α = a+
√

n
c with b = a2−n

c , of
x,y and their combinations in Table 1 and we cite the
following results for later reference.
Lemma 1.1 [11] Let m be a square-free positive integer.
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Table 1: The action of elements ofH on α = a+
√

n
c ∈Q

′′
(
√

n)

α a b c

x(α) = −1
2α −a c

2 2b

y(α) = −1
2(α+1) −a−c c

2 2(2a+b+c)

y2(α) = −(α+1)
2α+1 −3a−2b−c 2a+b+c 4a+4b+c

(xy)k(α) = α +k a+kc 2ka+b+k2c c

yx(α) α
1−2α a−2b b −4a+4b+c

(y2x)(α) = 1−2α
2(−1+α)

3a−2b−c −4a+4b+c
2 2(−2a+b+c)

(yx)k(α) = α
1−2kα a−2kb b −4ka+4k2b+c

(y3x)k(α) = α −k a−kc 2ka+b+k2c c

Then
|Q∗

1(
√

m )| = 2τ(m) + 4∑⌊√m⌋
a=1 τ(m − a2) where τ(m)

stands for the number of positive divisors ofm and⌊√m⌋
is the largest integer less than

√
m.

Lemma 1.2 [9] Let p ≡ 1(mod 4). ThenQ∗(
√

p) splits

into at least twoG-orbits, namely,(
√

p)G and (
1+

√
p

2 )G

under the action ofG.
Lemma 1.3 [11] Let n be square free positive integer.

Then |Q∗∗
1 (

√
n)| = 2τ ′′(n) + 4∑⌊√n⌋

a=1 τ ′′(n − a2) where
τ ′′(u) denotes those divisors ofu, which are divisible by
2. �

Lemma 1.4 [12] Let α ∈ Q′′(
√

n). Then αH = (α)H if
and only if there exists an elementβ in αH such that
x(β ) = β .

2 Types ofG-orbits of Q∗(
√

p) and H-orbits
of Q

′′
(
√

p)

We start this section by describing the closed paths
(circuits) for the action of groupH(λ4) (see [6] and figure
1).
Definition 2.1. If n1,n2, n3,n4, ...,nk is a sequence of
positive integers and

i j = 0,1,2, il 6= il+1 (l = 1,2, ...,k−1), i1 6= ik

Then by a circuit of the type

(n1i1,n2i2,n3i3,n4i4, ...,nkik )

we shall mean the circuit (counter clockwise) in whichn j,
j = 1,2,3, ...,k squares havei j vertices outside the circuit.
Remark 2.2. 1. Since it is immaterial with which
ambiguous number ofαH the circuit begins, we can
express type of the orbit in Definition 2.1. by any of the
following k-equivalent forms

(n1i1,n2i2, ...,nkik ) = (n2i2,n3i3, ...,nkik ,n1i1)

= ...(nkik ,n1i1, ...,nk−1ik−1) (1)

2. This circuit induces an element

g = (xyik+1)nk ...(xyi2+1)n2(xyi1+1)n1

of H and fixes a particular vertex of a square lying on the
circuit and hence the ambiguous length of this circuit is
given by 2(n1+ n2+ n3+ ...+ nk)
The following example and figure 2, both are the best

Fig. 1: The coset diagram for the action ofH on α ∈Q
′′
(
√

n)

description of the above definition and remark.
Example 2.3. By the circuit of the type
(20,11,12,20,12,11,20) we mean the circuit (see figure 2)
induces an element
h = (xy)2(xy2)(xy3)(xy)2(xy3)(xy2)(xy)2 of H which fixes

vertex
√

7
1 . Let l1 =

√
7

1 . (xy)2(l1) = 2+
√

7
1 = l2,

(xy2)(l2) = 1+
√

7
4 = l3, (xy3)(l3) = −2+

√
7

2 = l4,

(xy)2(l4) = 2+
√

17
2 = l5, (xy3)(l5) = −1+

√
7

4 = l6,

(xy2)(l6) == −2+
√

7
1 = l7 (xy)2(l7) = l1,and the

ambiguous length of this circuit is
2(2+1+1+2+1+1+2).
The following four results have been taken from [15] for

Fig. 2: Orbit of l1 =
√

7
1 andh(l1) = l1

our convenience in section 3.
Theorem 2.4.Let n ≡ 1(mod 8). ThenQ

′′
(
√

n) splits into

four H-subsets. In particular(
√

n
1 )H , (

√
n

−1)
H , (1+

√
n

2 )H and

c© 2016 NSP
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(1+
√

n
4 )H are at least fourH-orbits ofQ

′′
(
√

n).
Remark 2.5.It can be easily seen that

1.o∗∼H (p) = oG(p) whenp ≡ 1(mod 4).
2.oG(4p)= 2 oG(p) if p≡ 1, or 5(mod 8) such thatp−1

is not a perfect square
3.oG(4p) = 2oG(p)+2 if p ≡ 5(mod 8) such thatp−1

is a perfect square

Theorem 2.6.Let p ≡ 1(mod 4. Then

1.oH(p) = 2 oG(p) if p ≡ 1(mod 8).
2.oH(p) = oG(p)+1 if p ≡ 5(mod 8) such thatp−1 is

not a perfect square.
3.oH(p) = 2oG(p)+1 if p ≡ 5(mod 8) such thatp−1 is

a perfect square.

Remark 2.7.Let p ≡ 1 or 5(mod 8) such thatp− 1 is a

perfect square. Then the numbers
±⌊√p⌋+√

p
1 and

±⌊√p⌋+√
p

−1 are contained in (
√

p
1 )H and (

√
p

−1 )
H

respectively. Also the numbers±1+
√

p
±(p−1) are contained in

(
1+

√
p

2 )H . Similarly the numbers
1+

√
p

±√
p−1 are contained in

(
1+

√
p

4 )H and −1+
√

p
±√

p−1
are contained in (

−1+
√

p
4 )H

respectively.
Lemma 2.8. Let n ≡ 0(mod 4). Then
|Q∗∼

1 (
√

n)| = 2(|Q∗∗
1 (

√
n)|). Whereas ifn 6≡ 0(mod 4)

|Q∗∼
1 (

√
4n)|= 2(|Q∗

1(
√

n)|− |Q∗∗
1 (

√
n)|).

3 H-orbits of Q∗∼(
√

4p) with o∗∼H (4p)> 4

Let p ≡ 1(mod 4). If

|(√p)H |amb + |(
√

p
−1 )

H |amb = |Q∗∼
1 (

√
4p)|, then we have

o∗∼H (p) = 2. If |(√p)H |amb + |(
√

p
−1 )

H |amb < |Q∗∼
1 (

√
4p)|,

then we have the following results.

Lemma 3.1.Let p ≡ 1(mod 4). Then

1.(α)H ∩ (α)H = Ø for all

α ∈Q∗∼(
√

4p)\((
√

p
1 )H ∪ (

√
p

−1 )
H).

2.(α)H ∩ (−α)H = Ø for all α ∈ Q∗∼(
√

4p)\(
√

p
1 )H ∪

(
√

p
−1 )

H).

Proof. By [9] we know that a+
√

p
±c ,

−a+
√

p
±c are contained

in (
√

p)H or (
√

p
−1 )

H where c 6≡ 0(mod 2) and
c+

√
p

±a ,
−c+

√
p

±a are contained in(1+
√

p
2 )H or (

1+
√

p
4 )H

where a 6≡ 0(mod 2). Hence by Lemma 1.4. we have
(α)H ∩ (α)H = Ø for all

α ∈ Q∗∼(
√

4p)\((√p)H ∪ (
√

p
−1 )

H ∪ (
1+

√
p

2 )H ∪(1+
√

p
4 )H)

The 2nd part directly follows from Theorem 3.3 [13].
�

In the following lemma we use
Q

′′′′
(
√

p) =Q′(
√

p)∪ 1
2Q

′(
√

p).

Lemma 3.2. Let p ≡ 1(mod 4). Then

1+
√

p
4 ∈ Q′′′′(

√
p) or Q∗∼(

√
4p)\Q′′′′(

√
p) according as

p ≡ 1(mod 8) or n ≡ 5(mod 8) for p > 13.
Proof. The proof is straightforward. �

Lemma 3.3.Let p ≡ 5(mod 8) such thatp−1 is a perfect
square. If

(Q∗∼(
√

4p)\Q′′′′(
√

p))\((
√

p
1 )H ∪ (

√
p

−1 )
H) 6= /0, then

either
1+

√
p

q1
or

2+
√

p
t1

∈
(Q∗∼(

√
4p)\Q′′′′(

√
p))\((√p)H ∪ (

√
p

−1 )
H).

Proof. Using Remark 2.7, (
√

p)ambH ∪ (
√

p
−1 )ambH =

{±a+
√

p
±1 ,

±a+
√

p
±(p−a2)

,0 ≤ a ≤ ⌊√p⌋}. If

(Q∗∼(
√

4p)\Q′′′′(
√

p))\((√p)H ∪ (
√

p
−1 )

H) 6= /0, then
either p−1 is not power of two or is power of 2. In first
case p − 1 is not power of two then there exists
1+

√
p

q1
∈ (Q∗∼(

√
4p)\Q′′′′(

√
p))\((√p)H ∪ (

√
p

−1 )
H). If

p− 1 is power of 2 thenp− 4 is not power of 2. Thus
there exists
2+

√
p

t1
∈ (Q∗∼(

√
4p)\Q′′′′(

√
p))\((√p)H ∪ (

√
p

−1 )
H).

�

Corollary 3.4. Let p ≡ 5(mod 8) such thatp − 1 is a
perfect square. If

(Q∗∼(
√

4p)\Q′′′′(
√

p))\((
√

p
1 )H ∪ (

√
p

−1 )
H) 6= /0, then

(
√

p)H ∪ (
√

p
−1 )

H ∪ (
1+

√
p

q1
)H ∪ (

−1+
√

p
q1

)H ∪ (
1+

√
p

−q1
)H ∪

(
−1+

√
p

−q1
)H ⊆ Q∗∼(

√
4p) or (

√
p)H ∪ (

√
p

−1 )
H ∪ (

2+
√

p
t1

)H ∪
(
−2+

√
p

t1
)H ∪ (

2+
√

p
−t1

)H ∪ (
−2+

√
p

−t1
)H ⊆Q∗∼(

√
4p).

Proof. The proof is straightforward and follows by
Lemma 3.3. �

Lemma 3.5.Let p ≡ 1(mod 8) such thatp−1 is a perfect
square. ThenQ∗∼(

√
4p) splits into at least sixH-orbits

for p > 17.
Proof. Using Remark 2.7,

(
√

p
1 )H

amb ∪ (
√

p
−1 )

H
amb = {±a+

√
p

±1 ,
±a+

√
p

±(p−a2)
,0 ≤ a < ⌊√p⌋}

and (
1+

√
p

2 )H
amb ∪ (

1+
√

p
4 )H

amb = {±a+
√

p
±2 ,

±a+
√

p
p−a2
±2

,
±1+

√
p

±⌊√p⌋ :

a = 1,3, ...,⌊√p⌋ − 1}. Also

(
√

p)H ∪ (
√

p
−1 )

H ⊆ Q∗∼(
√

4p)\Q′′′′(
√

p) and

(
1+

√
p

2 )H ∪ (
1+

√
p

4 )H ⊆Q′′′′(
√

p).
For p > 17 we have atleast four moreH-orbits namely
(
−1+

√
p

4 )H , (1+
√

p
8 )H , (3+

√
p

8 )H and(−3+
√

p
8 )H contained

in Q′′′′(
√

p) since otherwise⌊√p⌋ = 4 and hence
−1+

√
p

4 ,
1+

√
p

8 ,
3+

√
p

8 and 3+
√

p
8 ∈ (

1+
√

p
2 )H ∪ (

1+
√

p
4 )H .

Hence For p > 17,
−1+

√
p

4 ,
1+

√
p

8 ,
3+

√
p

8 and
3+

√
p

8 6∈ (
1+

√
p

2 )H ∪ (
1+

√
p

4 )H . This shows Q′′′′(
√

p)
contains at least sixH-orbits.
By Corollary 3.4 we have sixH-orbits either(

√
p

1 )H ∪
(
√

p
−1 )

H ∪ (
1+

√
p

q1
)H ∪ (

−1+
√

p
q1

)H ∪ (
1+

√
p

−q1
)H ∪ (

−1+
√

p
−q1

)H or

(
√

p)H ∪ (
√

p
−1 )

H ∪ (
2+

√
p

t1
)H ∪ (

−2+
√

p
t1

)H ∪ (
2+

√
p

−t1
)H ∪

c© 2016 NSP
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(
−2+

√
p

−t1
)H contained inQ∗∼(

√
4p)\Q′′′′(

√
p). Thus we

have at least twelveH-orbits. �

Lemma 3.6.Let p ≡ 5(mod 8) such thatp−1 is a perfect
square. ThenQ∗∼(

√
4p) splits into at least sixH-orbits

for p > 13
Proof Using Lemma 3.2.,

1+
√

p
4 ∈ Q∗∼(

√
4p)\Q′′′′(

√
n).

Also (
√

p
1 )H ∪ (

√
p

−1 )
H ⊆ Q∗∼(

√
4p)\Q′′′′(

√
p). For

p > 13,
±1+

√
p

4 6∈ (
√

p
1 )H ∪ (

√
p

−1 )
H otherwise for

p = 13, ±1+
√

13
±4 ∈ (

√
13
1 )H ∪ (

√
13

−1 )H hence(±1+
√

p
±4 )H

exists and contained inQ∗∼(
√

4p)\Q′′′′(
√

p). Thus

(
√

p
1 )H ∪ (

√
p

−1 )
H ∪ (

1+
√

p
±4 )H ∪ (

−1+
√

p
±4 )H ⊆

Q∗∼(
√

4p) \Q′′′′(
√

p) and (1+
√

p
2 )H ⊆ Q′′′′(

√
p). Hence

we have eightH-orbits. �

Example 3.7.Let p = 37. By Theorem 2.4,Q∗∼(
√

4p)
splits in at least six H-orbits, namely,
(
√

37
1 )H ,(

√
37

−1 )H ,(1+
√

37
3 )H ,(

1+
√

p
−3 )H ,(−1+

√
37

3 )H and(−1+
√

37
−3 )H .

By Theorem 2.8, |(
√

37
±1 )H |amb = 36 and

|(1+
√

37
2 )H |amb = 24. By Lemma 1.1,|Q∗

1(
√

37)| = 124
and by Lemma 1.3, |Q∗∗

1 (
√

37)| = 56. Using Theorem
2.8, |Q∗∼

1 (
√

148)| = 2(124 − 56) = 136. Since

|(
√

p
1 )H |amb + |(

√
p

−1 )
H |amb = 72 < 136. Therefore by

Lemmas 3.2 and 3.3 at least four moreH-orbits exists
which are(±1+

√
37

±3 )H . Also |(1+
√

37
3 )H |amb = 16. Here the

sum of cardinalities of all six orbits is 144. Therefore we
conclude thatQ∗∼(

√
148) splits into exactly sixH-orbits.

Example 3.8.Let p = 577. ThenQ∗∼(
√

4p) splits into

fourteen H-orbits, namely,(577
1 )H ,(577

−1 )
H , (1+

√
577

3 )H ,

(1+
√

577
−3 )H , (−1+

√
577

3 )H , (−1+
√

577
−3 )H , (1+

√
577

9 )H ,

(1+
√

577
−9 )H , (−1+

√
577

9 )H , (−1+
√

577
−9 )H , (3+

√
577

71 )H ,

(3+
√

577
−71 )H , (−3+

√
577

71 )H and(−3+
√

577
−71 )H .

We conclude this paper with the following remarks.
Remark 3.9. Let p ≡ 5(mod 8) such thatp − 1 is a
perfect square. Then
1. p ≡ 1 or 5(mod 16) according as
⌊√p⌋ ≡ 0 or 2(mod 4).

2. Let Y = {±1+
√

p
±c ∈ Q∗(

√
p) : c = 1,⌊√p⌋2} and

Z = {±1+
√

p
±c ∈ Q∗(

√
p) : c = 1, ⌊

√
p⌋2

2 ,⌊√p⌋}. Then

Y ∪ x(Y ) ⊆ (
1+

√
p

2 )H and

Z ∪ x(Z)⊆ (
1+

√
p

4 )H ∪ (
−1+

√
p

4 )H . �

Remark 3.10. Let p ≡ 5(mod 8) such that
p−1= ⌊√p⌋2 = (2q1)

2. Then

1. |(1+
√

p
4 )H |amb = |(−1+

√
p

4 )H |amb = 2
√

p−1+4.

2. (1+
√

p
4 )H = (

1+
√

p
q1

)H . �

Remark 3.11.It can be easily seen by Theorem 2.6; and
Remark 2.5 that

1.257 and 761 are the only primesp ≡ 1(mod 8) and
p < 2011 such thatoH(p) = 12.

2.401 and 1601 are the only primesp ≡ 1(mod 8) and
p < 2011 such thatoH(p) > 12: For p = 401,

Q′′(
√

p) splits into twentyH-orbits, namely,(
√

p
1 )H ,

(
√

p
−1 )

H , (
1+

√
p

2 )H , (
−1+

√
p

4 )H , (
1+

√
p

5 )H , (
−1+

√
p

5 )H ,

(
1+

√
p

−5 )H , (
−1+

√
p

−5 )H , (
1+

√
p

8 )H , (
−1+

√
p

8 )H , (
1+

√
p

10 )H ,

(
−1+

√
p

10 )H , (1+
√

p
16 )H , (−1+

√
p

16 )H , (1+
√

p
25 )H , (1+

√
p

−25 )H ,

(
−1+

√
p

25 )H , (
−1+

√
p

−25 )H and(
3+

√
p

28 )H .
For p = 1601, Q′′(

√
p) splits into twenty eight

H-orbits, namely,(
√

p
1 )H , (

√
p

−1 )
H , (

1+
√

p
2 )H , (

1+
√

p
4 )H ,

(
−1+

√
p

4 )H , (
1+

√
p

5 )H , (
1+

√
p

−5 )H , (
−1+

√
p

5 )H ,

(
−1+

√
p

−5 )H , (
1+

√
p

8 )H , (
−1+

√
p

8 )H , (
1+

√
p

10 )H ,

(
−1+

√
p

10 )H , (1+
√

p
16 )H , (−1+

√
p

16 )H , (1+
√

p
25 )H , (1+

√
p

−25 )H ,

(
−1+

√
p

25 )H , (
−1+

√
p

−25 )H , (
1+

√
p

32 )H , (
1+

√
p

50 )H ,

(
−1+

√
p

50 )H , (3+
√

p
8 )H , (−3+

√
p

8 )H , (3+
√

p
199 )H , (3+

√
p

−199 )
H ,

(
−3+

√
p

199 )H and(
−3+

√
p

−199 )H .
3.The primesp ≡ 5(mod 8) and p < 2011 such that

oH(p) = 9 are
101,197,269,389,557,677,701,1301,1613,1949 and
1973.

4.1901 is the only primep ≡ 5(mod 8) and p < 2011
such thatoH(p)> 12.

5.37,349,373,709,757,829,877,997,1213 and 1861
are the primesp ≡ 5(mod 8) and p < 2011 such that
o∗∼H (p) = 9.

4 Conclusion

We have explored the action of hecke group
H(λ4) =

〈

S,T : S2 = T 4 = 1
〉

, on the subsetsQ(
√

m) \Q
of the real quadratic fields and different types of the orbits
are introduced. TheH-orbits of Q∗∼(

√
4p) with

o∗∼H (4p) > 4 are investigated and the classification of
H-orbits is given depending upon the nature of prime
p < 2011, using modular arithmetic.
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