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Abstract: This paper addresses the problem of estimating the population mean of the study variable 

using auxiliary information in double sampling. We have suggested a class of estimators of population 

mean in double sampling. It has been shown that the estimator due to Khatua and Mishra (2013) is a 

member of the proposed class. We have obtained the bias and mean square error (MSE) of the proposed 

class of estimators under large sample approximation. It is observed that the mean square error expression 

of the estimator tdge obtained by Khatua and Mishra (2013) is not correct. So, we have obtained the correct 

expression of the mean square error of the estimator tdge due to Khatua and Mishra (2013). We have 

compared the proposed class of estimators with that of usual unbiased estimator, usual double sampling 

ratio and product estimators, Singh and Vishwakarma (2007) estimators, usual regression estimator and 

usual double sampling ratio estimator and shown that the proposed estimator is better than existing 

estimators. Numerical illustrations are also given in support of the present study. 

Keywords: Auxiliary variable, Exponential estimator, Mean squared error, Two- Phase sampling.                           

 

1.    Introduction 

In survey sampling, it is not uncommon to estimate the finite population mean Y of the study 

variable of y. When information on auxiliary variable x, highly correlated with y, is readily 

available on all units of population, it is well known that ratio estimator (for high positive 

correlation), product estimator (for high negative correlation) and regression estimator (for high 

correlation) can be used to increase the efficiency, incorporating the knowledge of population 

mean X . However, in certain practical situation when the population mean of auxiliary variable

X  is not known a priori, the technique of two-phase sampling is successfully used in practice. 

The conventional method in such situation, a larger sample of size n' to furnish the good estimate 

of the population mean X  while a sub-sample size n is selected from the first phase sample 'n' to 

observe the characteristic under study. 
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Consider a finite population U={1,2,3. ... ... ... .N}. Let y and x be two real variable assuming the 

value yi and xi on the ith unit (i = 1,2,3.........N). Now consider y be the study variable and x be 

the auxiliary variable. We consider simple random sampling without replacement (SRSWOR) 

design to draw samples in each phase of two-phase sampling set-up. The first phase sample 

s′(s′ ⊂ u) of fixed size n' is drawn to observe x only. The second phase sample s (s ⊂ s′) of 

fixed size n' is drawn to observe y and x for given s, (n<n').  

Let, 
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Now the usual two phase ratio, product and regression estimators are given by 
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tdlr = y̅ + byx (x̅′ − x̅),                          (1.3) 

where byx is the sample regression coefficient of 'y' on 'x', caiculated from the data based on 

second phase sample of size 'n', 

The mean square error (MSE) of the estimators given in (1.1), (1.2) and (1.3) to first order of 

approximation are respectively given by 
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ρ being the population correlation coefficient between 'y' and 'x'.  

Singh and Vishwakarma (2007) have proposed modified exponential ratio and product estimate to 

estimate finite population mean Y  of study variable y in presence of auxiliary variable x. As 

Singh and Vishwakarma (2007) assumed that the population mean X of auxiliary variable x is 

not known, they used the two phase mechanism to estimate the population mean Y . 

The modified exponential ratio and product estimator suggested by Singh and Vishwakarma 

(2007) to estimate population mean Y  under two phase sampling are given by 
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The MSE of the estimators  dert   and dept  to first order of approximation respectively are  

given by  
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Khatua and Mishra (2013) have suggested a generalized exponential estimator to estimate finite 

population mean Y  under two-phase sampling scheme with assumption that the population mean 

auxiliary variable x, X  is not known. 
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where 1d  and 2d are suitable chosen constants or suitable chosen constants or statistics and 

21 dd   are not necessarily equal to unity. 

It is to be mentioned that the mean square error (MSE) expression of the estimator dget  obtained 

by Khatua and Mishra(2013) is not correct. The correct expression of the bias and MSE of the 

Khatua and Mishra (2013) estimator dget  are given in the following theorem. 
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Theoram 1.1 To the first degree of approximation, the bias and MSE of the Khatua and Mishra 

(2013) estimator dget  are respectively given by  
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where xy CCk   . 

Proof. To obtain the bias and MSE of  dget  we write 
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Now expressing (1.11) in terms of e’s we have  
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 Neglecting terms of e’s having power greater than two we have  
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Subtracting Y  from both side of the above expression we have  
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               (1.14) 

Taking expectation of both sides of (1.14) we get the bias of dget  to the first degree of 

approximation as  
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Squaring both sides of (1.14) and neglecting terms of e’s having power greater than two we have  
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Taking expectation of both sides of (1.16) we get the mean squared error of the estimator dget  to 

the first degree of approximation as  
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which is minimum when  
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Solving (1.18) we get the optimum values of 21 dandd  as 
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Substituting  2010 d,d  in place of  21 d,d  in (1.17) we get the minimum MSE of dget  as 
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which is correct expression of MSE of dget . 

If we set 1d1   in (1.11), then the class of estimators dget  reduces to: 
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Putting 1d1   in (1.15) and (1.17) the bias and MSE of   1dget  are respectively given by 
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The MSE  1dget  is minimized for  
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Thus the resulting (minimum) MSE of   1dget  is given by 
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which is equal to the approximate variance of the usual regression estimator 

    xxˆyy lrd                                                                                                      (1.27) 

where 
2
xxy ssˆ     is the sample regression coefficient of y on x. 

we note that the MSE expression of the estimator of tdge(1): 
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obtained by Khatua and Mishra (2013) is not corrected. So the other results of the paper are also 

incorrect. This led authors to derive the correct expression of MSE of the estimator tdge(1) which is 

given in 1.28.  

2. The Suggested Class of Estimators 

  For estimating the population mean Y , we define a class of estimators as 
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where  21,  are suitably chosen constants such that the MSE of t is minimum,  ,  are 

suitably chosen classes scalars which may assume real number or the functions of xy C,C,  etc. 

It is to be noted that for    1,0,   the proposed class of estimators st  reduces to the class of 

estimators reported by Khatua and Mishra (2013). 

To obtain the bias and MSE of st  we express st  in terms of e’s we have  
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We assume that 1e,1e 11   so that the right hand side of (2.2) is expandable. Expanding the 

right hand side, multiplying out and neglecting terms of e’s having power greater than two we 

have some members of the proposed class of estimators st  are given in Table 2.1 

Table 2.1 Some members of the proposed class of estimators st  

S.No. Estimators 
Values of scalars 
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where   2 . 

Taking expectation of both sides of (2.3) we get the bias of the proposed class of estimator t to the 

first degree of approximation as  
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Squaring both sides of (2.3) and neglecting terms of e’s having power greater than two we have 
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Taking expectation of both sides of (2.5) we get the mean squared error of st to the first degree of 

approximation as  
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Solving (2.7) we get the optimum values of 21 and   as 
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Putting (2.8) and (2.9) in (2.6) we get the minimum MSE of st  as  
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For 11  , the proposed class of estimators  st  reduces to : 
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Putting 11  in (2.4) and (2.6) we get the bias and MSE of  1st  to the first degree of 

approximation are respectively given by  
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which is equal to the approximate variance of the usual regression estimator lrdy  in two phase 

sampling. 

3. Efficiency comparisons  

For    0,0,0,1,,, 21   in (2.2.1), the class of estimators st reduces to the usual unbiased 

estimator  
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It is clear from (3.3), to (3.7) that the usual two – phase regression estimator dlry is better than 

sample mean y , ratio estimator tdr, the product estimator tdp in two phase sampling, two phase 

exponential ratio estimator tder and the two phase exponential procedure estimator tdep. 

Further from (2.10) and (2.15) we have 
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which shows that the proposed class of estimator’s ts is more efficient than the regression 

estimator tdlr. Thus the proposed class of estimator’s ts is better than usual unbiased estimator y , 

conventional two phase ratio estimator tdr two – phase product estimator tdp and the two phase 

regression estimator tdlr. 

4. Empirical Study 

To have tangible idea about the performance of the members of the proposed class of estimators ts 

over usual unbiased estimator y we have computed the percent relative efficiency (PRE) of the 

member of the suggested class of estimator’s ts with respect to y by using the formula: 

       100
AA2A2AA1

C
y,tPRE

32413212
2
21

2
1

2
y

s 



                                 (4.1) 

For better eye view, we have considered two natural population data set with positive correlation 

between y and x and two population data sets with negative correlation between y and x earlier 

considered by Khatua and Mishra (20103). The descriptions are given below: 

Population I: Murthy (1967), P. 228 

y: Output,  x: Fixed Capital, N =80, n=70 ,n=30 
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9413.0 , 44419.0k    

Population II: Das (1988) 

y: No. of agricultural labors for 1971,  x: No of agricultural labors for 1961, N =278,     n=70 , 

n=30 
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Population III: Steel and Torrie (1960), P. 282 
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4996.0 , 32027.0k    

Population IV: Gujurati(1999),  P. 259 

y: Year to year percentage change in the index of hourly earnings,  x: The unemployment rate 

(%),  N =12, n=8 ,n=5, 

,041667.0,11667.0 
 

066.4Y  , 0977.0C2
y  , 0535.0C2

x  , 0519.0Cyx  , 

718.0 , 970.0k    

We have computed the percent relative efficiencies of the different members of the proposed 

class of estimator’s tdge with respect to usual unbiased estimator y and findings are shown in 

Tables 2.4.1 and 2.4.2. 
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  Table 2.4.1 Percent relative efficiency with respect to mean per estimator ( y ) when ρ > 0 

Table 2.4.2 Percent relative efficiency with respect to mean per estimator ( y ) when ρ < 0 

 

Tables 2.4.1 and 2.4.2 clearly show that the modified two-phase estimator is more efficient than 

mean per unit estimator, two- phase ratio estimator, two –phase ratio type exponential estimator, 

two-phase product estimator, two-phase product type exponential and two-phase regression 

estimator. Tables 2.4.1 and 2.4.2 also exhibits that the new generated estimators are more 

efficient than the existing once. Thus the proposed estimators are to be preferred in practice. 
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