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Abstract: In this paper, we suggest an estimator of the population meanof the variable of interesty in the presence of non-response
in two situations. We obtain expressions for the bias and mean square error. This study is supported by the theoretical and empirical
results to show the performance of the proposed estimator over usual unbiased estimator and other existing estimators.
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1 Introduction

In surveys concerning human populations, information in most cases is not obtained from all the units in the survey even
after some call-backs. The failure to measure or to get information from some of the units in the selected sample is
referred to as non-response. Non-respondents differ significantly from the respondents. An extensive description of the
different types of non-response and their effects on surveys could be found in [2] and many other sampling literatures.
[3] considered the problem of non response while estimating the population mean by taking a subsample from the non
respondent group with the help of some extra efforts and an estimator was proposed by combining the information
available from response and non-response groups. In estimating population parameters like the mean, total or ratio,
sample survey experts sometimes use auxiliary informationto improve precision of the estimates. When the population
meanX̄ of the auxiliary variablex is known and in presence of non-response, the problem of estimation of population
meanȲ of the study variabley has been discussed by [2], [7], [6] and [9]. In [3], questionnaires are mailed to all the
respondents included in a sample and a list of non-respondents is prepared after the deadline is over. Then a sub sample
is drawn from the set of non respondents and a direct interview is conducted with the selected respondents and the
necessary information is collected.

Assume the population is divided into two groups, those who will not respond called non-response class. LetN1 and
N2 be the number of units in the population that belong to the response class and the non response class respectively
(N1+N2 = N). Let n1 be the number of units responding in a simple random sample ofsizen drawn from the population
and letn2 the number of units not responding in the sample. We may regard the sample ofn1 respondents as a simple
random sample from the response class and the sample ofn2 as a simple random sample from the non-response class. Let
k denote the size of the subsample fromn2 non-respondents to be interviewed andf = n2

k ; f > 1. Let ¯y1 andȳ2k denote
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the sample means ofy character based onn1 andk units respectively. Further we define:

W1 =
N1

N
W2 =

N2

N
as their corresponding weights

Ȳ =
1
N

N

∑
i=1

yi, Ȳ2 =
1

N2

N2

∑
i=1

yi, X̄ =
1
N

N

∑
i=1

xi, X̄2 =
1

N2

N2

∑
i=1

xi,

S2
y =

1
N −1

N

∑
i=1

(yi − Ȳ)2
, S2

2y =
1

N2−1

N2

∑
i=1

(yi − Ȳ2)
2
, S2

x =
1

N −1

N

∑
i=1

(xi − X̄)2

S2
2x =

1
N2−1

N2

∑
i=1

(xi − X̄2)
2
, Sxy =

1
N −1

N

∑
i=1

(yi − Ȳ )(xi − X̄) ,

S2xy =
1

N2−1

N2

∑
i=1

(yi − Ȳ2) (xi − X̄2)

[3] defined an unbiased estimator for estimating the population meanȲ in the presence of non response as

ȳ∗ = w1ȳ1+w2ȳ2k

wherew1 =
n1
n andw2 =

n2
n

The variance of ¯y∗ is given by

V (ȳ∗) = λ S2
y +λ

′
S2

2y (1)

whereλ = 1
n −

1
N , λ ′

= W2( f−1)
n

Furthermore, in estimating the population parameters suchas mean, total or ratio; it is well known that sample surveys
experts sometimes use auxiliary information to improve theprecision of the estimates. The auxiliary information can be
used at the estimation stage to compensate for units from thesampling frame. In a household survey, for example, the
household size can be used as an auxiliary variable for the estimation of, say, family expenditure. Information can be
obtained completely on the family size during a household listing while there may be non response on the household
expenditure.

[2] applied [3] technique to formulate a ratio estimator of the populationmeanȲ when information is missing on both
y andx. His proposed estimator with its bias and mean square error (MSE) is given as

ȳ∗∗R =
ȳ∗

x̄∗
X̄

B(ȳ∗∗R ) =
λ
X̄

(

RS2
x − Syx

)

+
λ ′

X̄

(

RS2
2x − S2yx

)

MSE (ȳ∗∗R ) = λ S2
d +λ

′
S2

2d (2)

where ¯x∗ = w1x̄1+w2x̄2k, R = Ȳ
X̄

, S2
d = S2

y −2RSyx+R2S2
x ,

S2
2d = S2

2y −2RS2yx+R2S2
2x

Similarly [7] suggested a ratio estimator based on the full response on the auxiliary variablex, whose population mean
X̄ is known. His proposed estimator with its bias and mean square error (MSE) is given as

ȳ∗R =
ȳ∗

x̄
X̄

B(ȳ∗R) =
λ
X̄

(

RS2
x − Syx

)

MSE (ȳ∗R) = λ S2
d +λ

′
S2

2y (3)

Using the transformation ¯xσ
i = (NX̄ − nxi)/(N − n), i = (1,2,3, ...,N), [11] obtained dual to ratio estimator as

ȳdR = ȳ

(

x̄σ

X̄

)
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where ¯xσ = (NX̄ − nx̄)/(N − n)
We study [11] in presence of non-response in two cases. When the non response occurs in the study variabley, the

MSE is found to be

MSE (ȳ∗dR) = λ S2
y +λ

′
S2

2y + g2λ R2S2
x −2gλ RSyx (4)

When the non response occurs in bothy andx, the MSE is found to be

MSE (ȳ∗∗dR) = λ
(

S2
y −2gRSyx+ g2R2S2

x

)

+λ
′ (

S2
2y −2gRS2yx+ g2R2S2

2x

)

(5)

[1] introduced an exponential ratio-type and exponential product-type estimators for population mean as

ȳeR = ȳexp

[

X̄ − x̄
X̄ + x̄

]

ȳeP = ȳexp

[

x̄− X̄
x̄+ X̄

]

[10] have studied [1] estimators in presence of non response, when non-responseoccurs on the study variable alone
and on both the study and auxiliary variables as well. The MSEof [10] are respectively given as

MSE (ȳ∗eR) = λ
(

S2
y +

S2
xR2

4
−RSyx

)

+λ
′
S2

2y (6)

MSE (ȳ∗∗eR) = λ
(

S2
y +

R2S2
x

4
−RSxy

)

+λ
′
(

S2
2y +

R2S2
2x

4
−RS2yx

)

(7)

[8] suggested a ratio cum dual to ratio estimator in simple random sampling as

ˆ̄Ybk1 = ȳ

[

α
X̄
x̄
+(1−α)

x̄σ

X̄

]

(8)

Motivated by [8] and [1], we have suggested an exponential ratio cum exponential dual to ratio estimator in SRSWOR
in presence of non response. Numerical illustration will also be carried out to judge the merits of the suggested estimator.

2 The Suggested Estimator

In this section, utilizing information on the auxiliary variablex with known population mean̄X , we suggest the following
estimator for the population mean̄Y in two different situations, which are as follows:

2.1 Case I: Non-response only on y

We define the following estimator for̄Y in the presence of non response as

T1 = ȳ∗
[

α1exp

(

X̄ − x̄
X̄ + x̄

)

+(1−α1)exp

(

x̄σ − X̄
x̄σ + X̄

)]

(9)

where ¯xσ = (NX̄ − nx)/(N − n) andα1 is suitably chosen constant whose value will minimize the MSE of T1.
To obtain the bias and MSE ofT1, we define:

ȳ∗ = Ȳ (1+ e∗0), x̄ = X̄(1+ e1) such that E(e∗0) = E(e1) = 0

For simple random sampling without replacement, the following expectations can be obtained either directly or by the
method discussed in [4] as

E(e∗2
0 ) =

V (ȳ∗)
Ȳ 2 =

1
Ȳ 2

(

λ S2
y +λ

′
S2

2y

)

, E(e2
1) =

V (x̄)
X̄2 ,

E(e∗0e1) =
Cov(ȳ∗, x̄)

Ȳ X̄
=

λ Syx

Ȳ X̄
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Now expressing (9) in terms of e’s, we have

T1 = Ȳ (1+ e∗0)

[

α1exp

{

−e1

2

(

1+
e1

2

)−1
}

+(1−α1)exp

{

−ge1

2

(

1−
ge1

2

)−1
}]

(10)

whereg = n
N−n

Assuming| e1
2 | < 1, | ge1

2 | < 1 so that
(

1+ e1
2

)−1
and

(

1− ge1
2

)−1
are expandable in terms of e’s. By expanding the

right hand side of (10), multiplying out and neglecting terms involving power of e’s greater than two, we have

T1− Ȳ = Ȳ

[

e∗0−
ge1

2
−

g
2

e∗0e1−
g2

8
e2

1+α1

(

g−1
2

e1+
g−1

2
e∗0e1+

3+ g2

8
e2

1

)]

(11)

Taking expectations on both sides of (11), we get the bias ofT1 to the first degree of approximation as

B(T1) =−Ȳ

[

λ gρyxCyCx

2
+

λ g2C2
x

8
−α1

(

λ (g−1)ρyxCyCx

2
+

λ (3+ g2)C2
x

8

)]

(12)

Squaring both sides of (11) and neglecting terms of e’s involving power greater than two, we have

(T1− Ȳ )2
= Ȳ 2

(

e∗2
0 +

g2

4
e2

1− ge∗0e1+α2
1
(g−1)2

4
e2

1+α1(g−1)e∗0e1−α1
g(g−1)

2
e2

1

)

(13)

Taking expectations on both sides of (13), we get the MSE ofT1 to the first order of approximation as

MSE(T1) = λ S2
y +λ

′
S2

2y +λ
g2

4
R2S2

x − gλ SyxR+α2
1
(g−1)2

4
λ R2S2

x

+α1(g−1)λ RSyx−α1
g(g−1)

2
λ R2S2

x (14)

The minimum ofT1 in (14) is obtained for

α1 =
g

g−1
−

2Kyx

g−1
= α∗ (say) (15)

whereKyx = ρyx
Cy
Cx

Substituting the value of (15) in (9) yields asymptotically optimum estimator for̄Y as

T1(opt) = ȳ∗
[

α∗exp

(

X̄ − x̄
X̄ + x̄

)

+(1−α∗)exp

(

x̄σ − X̄
x̄σ + X̄

)]

Putting (15) in (14), we get the MSE ofT1(opt) as

MSE(T1(opt)) =λ S2
y +λ

′
S2

2y −λ R2K2
yxS2

x

= λ S2
y

(

1−ρ2
yx

)

+λ
′
S2

2y (16)

which is the same as the variance of the linear regression estimator ȳlr = ȳ∗+ b(X̄ − x̄), whereb is the sample regression
coefficient ofy onx.

Remarks:
1. Whenα1 = 1, the proposed estimator reduces to exponential ratio estimatorȳ∗eR. The bias and MSE of ¯y∗eR is obtained
by puttingα1 = 1 in (12) and (14) as follows

B(ȳ∗eR) = λȲ

(

3
8

C2
x −

ρyxCyCx

2

)

MSE (ȳ∗eR) = λ
(

S2
y +

R2

4
S2

x −RSyx

)

+λ
′
S2

2y (17)
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2. Whenα = 0, the proposed estimator reduces to exponential dual to ratio estimator ¯y∗edR. The bias and MSE of ¯y∗edR is
obtained by puttingα1 = 0 in (12) and (14) as follows

B(ȳ∗edR) =−λȲ

(

g2C2
x

4
+

gρyxCyCx

2

)

MSE (ȳ∗edR) = λ S2
y +λ

′
S2

2y +λ R2 g2

4
S2

x − gλ RSyx (18)

2.2 Case II: Non-response on both y and x

We define the estimator for the population meanȲ assuming that there is non-response ony andx as

T2 = ȳ∗
[

α2exp

(

X̄ − x̄∗

X̄ + x̄∗

)

+(1−α2)exp

(

x̄σ − X̄
x̄σ + X̄

)]

(19)

To obtain the bias ofT2, we have ¯x∗ = X̄ (1+ e∗1) such thatE (e∗1) = 0 and

E
(

e∗
2

1

)

=
V (x̄∗)

X̄2 =
1

X̄2

(

λ S2
x +λ

′
S2

2x

)

, E (e∗0e∗1) =
Cov(ȳ∗, x̄∗)

Ȳ X̄
= λ Syx +λ

′
S2yx

Following the procedure as in case I, we find the bias and MSE ofT2 as

B(T2) =− ȲE

[

−
g
2

(

λ ρyxCyCx +λ
′
ρ2yxC2yC2x

)

+
g2

8

(

λC2
x +λ

′
C2

2x

)

+α2

{

g−1
2

(

λ ρyxCYCX +λ
′
ρ2yxC2yC2x

)

+
3+ g2

8

(

λC2
x +λ

′
C2

2x

)

}]

(20)

MSE (T2) =

[

(

λ S2
y +λ

′
S2

2y

)

+
R2g2

4

(

λ S2
x +λ S2

2x

)

− gR
(

λ Syx +λ
′
S2yx

)

+α2
2

R2(g−1)
4

(

λ S2
x +λ

′
S2

2x

)

+α2(g−1)
(

λ Syx +λ
′
S2yx

)

−α2
g(g−1)

2

(

λ S2
x +λ

′
S2

2x

)

]

(21)

The minimum ofT2 in (21) is obtained for

α2 =
g

g−1
−

2
(g−1)R

(

λ Syx +λ ′
S2yx

)

λ S2
x +λ ′S2

2x

= α∗∗ (say)

Substituting the value ofα2 in (21), we have the minimum MSE ofT2 as

MSE
(

T2(opt)

)

= λ S2
y +λ

′
S2

2y −

(

λ Syx +λ ′
S2yx

)2

λ S2
x +λ ′S2

2x

(22)

Remarks:
1. Whenα = 1, the proposed estimator reduces to exponential ratio estimatorȳ∗∗eR. The bias and MSE of ¯y∗∗eR is obtained
by puttingα2 = 1 in (20) and (21) as follows

B(ȳ∗∗eR) = λȲ

(

3
8

C2
x −

ρyxCyCx

2

)

+λ
′
Ȳ

(

3
8

C2
2x −

ρ2yxC2xC2y

2

)

MSE (ȳ∗∗eR) = λ
(

S2
y +

R2

4
S2

x −RSyx

)

+λ
′
(

S2
2y +

R2

4
S2

2x −RS2yx

)

(23)
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2. Whenα = 0, the proposed estimator reduces to exponential dual to ratio estimator ¯y∗∗edR. The bias and MSE of ¯y∗∗edR is is
obtained by puttingα2 = 0 in (20) and (21) as follows

B(ȳ∗∗edR) =−Ȳ

[

g
2

(

λ ρyxCyCx +λ
′
ρ2yxC2yC2x

)

+
g2

8

(

λC2
x +λ

′
C2

2x

)

]

MSE (ȳ∗∗edR) =
(

λ S2
y +λ

′
S2

2y

)

+
g2R2

4

(

λ S2
x +λ

′
S2

2x

)

− gR
(

λ Syx +λ
′
S2yx

)

(24)

3 Efficiency Comparisons

We will now investigate the efficiency of the suggested estimatorsT1(opt) over ȳ∗, ȳ∗eR, ȳ∗dR, ȳ∗edR & ȳ∗R andT2(opt) over ȳ∗,
ȳ∗∗eR, ȳ∗∗dR, ȳ∗∗edR & ȳ∗∗R respectively.

3.1 Case I

3.1.1 Comparison with ¯y∗

From (1) and (16), we have

V (ȳ∗)−MSE
(

T1(opt)

)

= R2λ K2
yxS2

x > 0 (25)

3.1.2 Comparison with ¯y∗R

From (3) and (16), we have

MSE (ȳ∗R)−MSE
(

T1(opt)
)

= λ (RSx +RKyxSx)
2 > 0 (26)

3.1.3 Comparison with ¯y∗dR

From (4) and (16), we have

MSE (ȳ∗dR)−MSE
(

T1(opt)

)

= λ
(

gRSx

4
+RKyxSx

)2

> 0 (27)

3.1.4 Comparison with ¯y∗eR

From (17) and (16), we have

MSE (ȳ∗eR)−MSE
(

T1(opt)

)

=
λ R2S2

x

4

(

1
4
+Kyx

)2

> 0 (28)

3.1.5 Comparison with ¯y∗edR

From (18) and (16), we have

MSE (ȳ∗edR)−MSE
(

T1(opt)

)

=
R2λ g2

4
S2

x − gRλ Syx+R2λ K2
yxS2

x > 0 (29)

if Syx < 0
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3.2 Case II

3.2.1 Comparison with̄y∗

From (1) and (22), we have

V (ȳ∗)−MSE
(

T2(opt)

)

=

(

λ Syx +λ ′
S2yx

)2

λ S2
x +λ ′S2

2x

> 0 (30)

3.2.2 Comparison with ¯y∗∗R

From (2) and (22), we have

MSE (ȳ∗∗R )−MSE
(

T2(opt)

)

=
[

λ
(

RS2
x − S2yx

)

+λ
′ (

RS2
2x − S2yx

)

]2
> 0 (31)

3.2.3 Comparison with ¯y∗∗dR

From (5) and (22), we have

MSE (ȳ∗∗dR)−MSE
(

T2(opt)

)

=
[

λ
(

gRS2
x + Syx

)

+λ
′ (

gRS2
2x+ S2yx

)

]2
> 0 (32)

3.2.4 Comparison with ¯y∗∗eR

From (23) and (22), we have

MSE (ȳ∗∗eR)−MSE
(

T2(opt)
)

=

[

λ
(

R
2

S2
x − Syx

)

+λ
′
(

R
2

S2
2x − S2yx

)]2

> 0 (33)

3.2.5 Comparison with ¯y∗∗edR

From (24) and (22), we have

MSE (ȳ∗∗edR)−MSE
(

T2(opt)

)

=

[

λ
(

Rg
2

S2
x − Syx

)

+λ
′
(

Rg
2

S2
2x − S2yx

)]2

> 0 (34)

3.2.6 Comparison with ¯y∗∗lr

The MSE of linear regression when non-response occur both ony andx is give as

MSE (ȳ∗∗lr ) =

(

1− f
n

)

S2
y

(

1−ρ2
yx

)

+
W2(k−1)

n
S2

2y +
W2(k−1)

n
ρyx

Sy

Sx

[

ρyx
Sy

Sx
S2

2x −2ρ2yxS2yS2x

]

(35)

From (35) and (22), we have

MSE (ȳ∗∗lr )−MSE
(

T2(opt)

)

=

(

λ Syx +λ ′
S2yx

)2

λ S2
x +λ ′S2

2x

−

(

1− f
n

)

S2
yρ2

yx +
W2(k−1)

n
ρyx

Sy

Sx

[

ρyx
Sy

Sx
S2

2x −2ρ2yxS2yS2x

]

> 0

(36)

if ρyx
Sy
Sx

S2x > 2ρ2yxS2y and
(

λ Syx +λ ′
S2yx

)2
>
(

1− f
n

)

S2
yρ2

yx

(

λ S2
x +λ ′

S2
2x

)
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4 Empirical Study

In this section, we have used the data of [5] to examine the performance of the different estimators. The data summary is
presented below:
Population I- Source: [5]
x : Chest circumference (in cm) of the children
y : Weight (in kg) of the children
N = 95, N1 = 71, N2 = 24, n = 35, Ȳ = 19.5, X̄ = 55.86, S2

y = 9.2416,S2
2y = 5.547, S2

x = 10.7158,S2
2x = 6.3001,

Syx = 8.4587,S2yx = 4.3095,ρyx = 0.85,ρ2yx = 0.729

Here, we have computed the percent relative efficiencies (PRE) of the different estimators ¯y∗eR, ȳ∗dR, ȳ∗edR, ȳ∗R, T1(opt)
andȳ∗∗eR, ȳ∗∗dR, ȳ∗∗edR, ȳ∗∗R , T2(opt) w.r.t. ȳ∗, for different values off andW2 and are presented in the following tables:

Table 1: PRE of the different estimators ¯y∗eR, ȳ∗dR, ȳ∗edR, ȳ∗R andT1(opt) with respect to ¯y∗

W2 f ȳ∗ ȳ∗eR ȳ∗dR ȳ∗edR ȳ∗R T1(opt)

1.5 100 143.455 151.492 125.411 199.173 336.915
0.1 2.00 100 146.768 154.484 129.261 199.239 319.451

2.50 100 149.715 157.128 132.732 199.295 305.939
3.00 100 152.353 159.482 135.879 199.343 295.172
1.50 100 146.768 154.484 129.261 199.239 319.451

0.20 2.00 100 152.353 159.482 135.879 199.343 295.172
2.50 100 156.877 163.492 141.365 199.422 279.096
3.00 100 160.616 166.779 145.98 199.173 267.666
1.50 100 149.715 112.476 112.476 199.295 305.939

0.30 2.00 100 156.877 122.185 122.185 199.422 279.096
2.50 100 162.253 129.955 129.955 199.511 263.106
3.00 100 166.437 136.314 136.314 199.576 252.494

Table 2: PRE of the different estimators ¯y∗∗eR, ȳ∗∗dR, ȳ∗∗edR, ȳ∗∗R andT2(opt) with respect to ¯y∗,

W2 f ȳ∗ ȳ∗∗eR ȳ∗∗dR ȳ∗∗edR ȳ∗∗R ȳ∗∗lr T2(opt)

1.50 100 145.599 144.441 119.844 206.379 364.570 364.597
0.1 2.00 100 150.955 150.102 118.7942 212.926 368.184 368.294

2.50 100 155.839 155.288 117.913 218.840 371.320 371.551
3.00 100 160.311 160.057 117.165 224.211 374.068 374.444
1.50 100 150.955 150.102 118.794 212.926 368.184 368.294

0.20 2.00 100 160.311 160.057 117.165 224.211 374.668 374.444
2.50 100 168.214 168.528 115.959 233.595 378.655 379.366
3.00 100 174.976 175.824 115.032 241.520 364.570 383.406
1.50 100 155.839 112.476 100 218.840 371.320 371.551

0.30 2.00 100 168.214 122.185 100 233.595 378.655 379.366
2.50 100 178.005 129.955 100 245.038 383.907 385.169
3.00 100 185.944 136.314 100 254.172 387.854 389.666

5 Conclusion

We conclude from table1 that when there is non response only ony, the suggested estimator at its optimumT1(opt) is
better than the usual unbiased estimator ¯y∗; and the estimators ¯y∗eR, ȳ∗dR, ȳ∗edR, ȳ∗R and equally efficient as linear regression
estimator and table2 when there is non response ony andx both that the suggested estimator at its optimumT2(opt) is
better than the usual unbiased estimator ¯y∗; and the estimators ¯y∗∗eR, ȳ∗∗dR, ȳ∗∗edR, ȳ∗∗R , ȳ∗∗lr .
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