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Abstract: In the paper, the authors recover an explicit formula for computing Bernoulli numbers in terms of Stirling numbers of the
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1 Introduction

It is well known that Bernoulli numbersBk for k ≥ 0 may
be generated by

x
ex−1

=
∞

∑
k=0

Bk
xk

k!
= 1−

x
2
+

∞

∑
k=1

B2k
x2k

(2k)!
(1)

for |x| < 2π . See [1, p. 48]. In combinatorics, Stirling
numbers of the second kindS(n,k) for n≥ k ≥ 0 may be
computed by
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See [1, p. 206]. Bell polynomials of the second kind
Bn,k(x1,x2, . . . ,xn−k+1) are defined by
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for n≥ k≥ 1, See [1, p. 134, Theorem A].
The aim of this paper is to recover an explicit formula

for computing Bernoulli numbersBn in terms of Stirling
numbers of the second kindS(n,k).

The main results may be summarized as the following
theorem.

Theorem 1 For n≥ k≥ 0, we have
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For n≥ 0, we have
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(n+1
i+1

)

(n+i
i
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2 Proof of Theorem 1

In combinatorics, Faà di Bruno formula may be described
in terms of Bell polynomials of the second kind
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Bn,k(x1,x2, . . . ,xn−k+1) by
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See [1, p. 139, Theorem C]. It is easy to see that
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Applying in (7) the functionsf (y) = 1
y and y = g(x) =
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asx→ 0. On the other hand, differentiatingn times on both
sides of (1) leads to
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As a result, we obtain
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In [1, p. 133], it was listed that
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for n≥ k ≥ 0. Lettingx1 = 0 andxm = 1 for m≥ 2 in (9)
and employing (3) give
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This implies that
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The formula (4) follows.
By virtue of
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see [1, p. 136], and the formula (4), we obtain
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from which, the formula (5) follows.
Substituting (5) into (8) leads to
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which may be rewritten as the formula (6). The proof of
Theorem1 is complete.

3 Remarks

Finally we list several remarks on something to do with
our main results.

Remark 1 The formula(5) may be alternatively proved
as follows.
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Taking xm = 1
m+1 for all m∈ N in (9) and utilizing(3)

yield
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The formula(5) follows.

Remark 2 In [1, p. 220] and [3, pp. 559–560], the
following explicit formula for computing Bernoulli
numbers Bn in terms of Stirling numbers of the second
kind S(n,k) was presented: For n≥ 0, we have
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which is a special case of the general formula [8, (2.5)].
We observe that the formula(11) is equivalent to the
one(10). In all, we may collect at least seven alternative
proofs for the formula(10) or (11) in the references [2],
[3], [ 4], [ 8], and [11].

Remark 3In [6, p. 1128, Corollary], among other things,
it was found that, for k≥ 1,
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In [5, Theorem 3.1], it was presented that Bernoulli
numbers B2k may be computed by
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for k∈N. In [10, Theorem 1.4], among other things, it was
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for n∈ N.

Remark 4 The object of the paper [2], motivated by the
paper [8], is to set matters straight by presenting a
bibliography, including 33 references, on explicit
formulas for Bernoulli numbers and to show how one can
easily manufacture expressions for Bernoulli numbers.

In [2, p. 48, (11)], it was deduced that

Bn =
n

∑
j=0

(−1) j
(

n+1
j +1

)

n!
(n+ j)!

j

∑
k=0

(−1) j−k
(

j
k
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kn+ j

for n ≥ 0. This may be rearranged as the form of the
formula(6).

On 21 January 2014, the authors searched out that the
formula(6) was ever derived in [7, p. 59] and [13, p. 140]
by different tools from Fàa di Bruno formula(7).

For more information on the history and literature of
explicit formulas for computing Bernoulli numbers, please
refer to [2], [ 7], [ 8], [ 12], and [13] and plenty references
therein.

Remark 5 This paper is a revised version of the
preprint [9].
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