
Appl. Math. Inf. Sci.6, No. 3, 411-418 (2012) 411

Applied Mathematics & Information Sciences
An International Journal

c© 2012 NSP
Natural Sciences Publishing Cor.

Application of Gamma Classifier to Development Effort
Prediction of Software Projects

Cuauht́emoc Ĺopez-Mart́ın1, Itzaḿa López-Ýañez2, Cornelio Ýañez-Ḿarquez3

1 Information Systems Department, CUCEA, Guadalajara University, Jalisco, Mexico, 45100.
2 Telematics Academy, Engineering and Advanced Technologies Interdiscilinary Professional Unit, National Polytechnic Institute,

Av. Instituto Polit́ecnico Nacional 2580, Mexico City, Mexico, 07340.
3 Neural Networks and Unconventional Computing Laboratory, Center for Computing Research, National Polytechnic Institute,

Av. Juan de Dios B́atiz s/n, Mexico City, Mexico, 07738.

Received: Feb 8, 2012; Revised Mar. 4, 2012; Accepted Apr. 16, 2012
Published online: 1 Sep. 2012

Abstract: The Gamma Classifier is a novel algorithm, immersed in the Associative Approach to Pattern Recognition, of which the
Alpha-Beta BAM is another relevant model. The Gamma Classifier has shown competitive performance in areas such as prediction of
atmospheric pollutants, wireless network sensor location, and concrete mix properties forecast. This paper introduces the fist successful
application of this model to development effort prediction of software projects. In this sense, an ongoing concern of software managers
is to predict how many hours should be spent on a development project, mainly regarding project budgeting and planning. Software
managers based typically their predictions on judgment-based techniques; however, models-based techniques (statistical regressions,
fuzzy logic, neural networks, or genetic programming) offer a good alternative. In this study, the Gamma Classifier was trained with a
data set of 163 software projects and then used for predicting the effort of another data set integrated by 68 projects; all projects were
developed by 53 and 21 practitioners respectively. Accuracy result of this classifier was compared with that of a fuzzy logic model and
that from a statistical regression model.

Keywords: Development effort prediction, Gamma classifier, associative models, software development.

1. Introduction

The Gamma Classifier is an algorithm of recent proposal,
which has shown good performances on such dissimilar ar-
eas as the prediction of atmospheric pollutants [1–4], the
location of wireless devices in a wireless sensor network,
and the forecast of the properties of a concrete mix [5,6].
These promising performances are not the only interesting
characteristic of this model. Similarly to other Alpha-Beta
Associative Models, the Gamma Classifier follows an un-
conventional take on the Associative Approach to Pattern
Recognition, being able to better cope with difficult prob-
lems than other more classically inclined models. Another
example of this fitness to difficult problems is the Alpha-
Beta Bidirectional Associative Memories (BAMs), which
is one of the earlier Alpha-Beta Associative Models and
one of the highest performers among them [7–9]. Such un-
conventional approach and good results have helped the

Alpha-Beta BAMs establish the Alpha-Beta Models as a
good alternative, helping also to raise awareness of the
properties and advantages (as well as limitations) of the
Associative Approach to Pattern Recognition.

These similarities in both performance and fitness to
different, apparently unrelated areas between the Alpha-
Beta BAMs and the Gamma Classifier, served the authors
as motivation to try and apply the latter model to a sel-
dom studied problem: that of predicting software develop-
ment effort in the context of small software development
projects. Indeed, the current work presents the first suc-
cessful application of the Gamma Classifier to software
development effort estimation.

The accuracy on software effort prediction (also known
as estimation [10]) is a research topic that has attracted
much of the interest of the software engineering commu-
nity during the latest decades (at least from 1966 [11]),
and this topic in software engineering can be defined as the

∗ Corresponding author: e-mail: cuauhtemoc@cucea.udg.mx ilopezy@ipn.mx cyanez@cic.ipn.mx

c© 2012 NSP
Natural Sciences Publishing Cor.

412 López-Mart́ın et al. : Application of Gamma Classifier to Development ...

process of predicting the amount of effort required for the
completion of a software artifact. The accuracy of a soft-
ware effort model is its ability to predict the effort value of
a new project closely to the actual one [12].

Based upon if project managers were better educated
in prediction techniques, they could improve their effort
and schedule prediction capability and credibility [13], this
paper contributes with a model for improving the initial
effort prediction (where project managers initially should
look to improve their chances of project success [13]).
Under-estimating a project may lead to under-staffing it,
under-scoping the quality assurance effort, and setting short
schedule, whereas to overestimating a project, if in a project
is given more resources than it really needs without suffi-
cient scope controls it may use them and the project is then
likely to cost more than it should, take longer to deliver
than necessary, and delay the use of the resources in the
next project [14].

The rest of the document is organized as follows. Sec-
tion 2 is dedicated to exploring the techniques which are
currently used to predict software development effort, as
well as some measures of performance used to compare
the obtained performance. Later, the Gamma Classifier is
discussed in section 3, while the experiments done and
their results are described and analyzed in section 4. On the
other hand, section 5 presents the conclusions and future
work, and finally the consulted references are included.

2. Software Development Prediction
Techniques

Software development prediction techniques could be clas-
sified into two general categories:

1.Expert judgment. This technique implies a lack of an-
alytical argumentation and aims to derive predictions
based on the experience of experts on similar projects;
this technique is based on a tacit (intuition-based) quan-
tification step [15].

2.Model-based technique. It is based on a deliberate (me-
chanical) quantification step [15] and it includes mod-
els based on statistical regressions (roughly half of all
prediction papers tried to build, improve or compare to
regression model-based prediction methods [10]), and
they include fuzzy logic [16], neural networks [17], ge-
netic programming [18], genetic algorithms [19], and
associative memories [20]).

Given that no single prediction technique is best for
all situations and that a careful comparison of the results
of several approaches is most likely to produce realistic
predictions [21–24], this paper compares three models: a
classifier, a fuzzy model and a statistical regression model
[25,26]. These models were generated from data of devel-
oped projects with practices of Personal Software Process
(PSP). This kind of process was selected because it is re-
lated to the Capability Maturity Model (CMM) that gives

an available description of the goals, methods, and prac-
tices needed in international software engineering indus-
trial practice [27], whereas PSP allows its instrumentation
at a personal level (twelve of the eighteen key process ar-
eas of the CMM are at least partially considered in PSP
[28]). In addition, the levels of software engineering train-
ing could be classified in the small and in the large soft-
ware projects, and when the approach is related to small
projects, the PSP (whose practices and methods are used
for delivering quality products on predictable schedules),
can be useful. PSP assumes that unless engineers have
the capabilities provided by personal training, they cannot
properly support their teams or consistently and reliably
produce quality products [28].

One of the most usual effort prediction approaches is
the construction of a conceptual model involving a set of
variables and a set of logical and quantitative relationships
between them [12]; in this paper, a classifier named Gamma
is trained with a data set of 163 projects developed through
years 2005, 2006 and 2007 by 53 practitioners (verification
or training stage). This data set was integrated by the fol-
lowing two independent variables: new and changed (N&C)
code, and reused code, whereas the dependent variable was
the effort. Afterwards, this Gamma classifier was applied
to other data set integrated by 68 developed projects through
year 2008 by other group integrated by 21 practitioners
(validation stage). The experimental design, data of the de-
veloped projects, and the names of the 74 practitioners are
included in [16].

Accuracy of the Gamma classifier is compared with
accuracies of the following two models: a classical statis-
tical regression, which corresponds to the approach most
common in parametric prediction models [10], and with a
fuzzy logic model. The reasons for comparing results of
the classifier against these two models are the following:
in accordance to [29], the comparison against a statistical
regression model is made because a regression analysis for
selecting the significant variables should be done as the de-
fault model construction method, on the other hand, data
and fuzzy logic model used in this study have already been
described in [16].

The hypotheses to be investigated in this paper are the
following:

H1Effort prediction accuracy of the Gamma Classifier is
statistically equal or better than those obtained from
a multiple linear regression, and from a fuzzy logic
model, when these three models were trained with 163
developed projects inside of a controlled experiment
(verification stage).

H2Effort prediction accuracy of the Gamma Classifier is
statistically equal or better than those obtained from
a multiple linear regression, and from a fuzzy logic
model, when these three models were applied to a new
set of 68 developed projects inside of a controlled ex-
periment (validation stage).

Source lines of code (LOC) remains in favor of many
models [30] and researchers commonly use it to correlate

c© 2012 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.6, No. 3, 411-418 (2012) / www.naturalspublishing.com/Journals.asp 413

effort. There are two measures of source code size: phys-
ical source lines and logical source statements. The count
of physical lines gives the size in terms of the physical
length of the code as it appears when printed [31]. In this
study, the independent variables of the models are N&C
as well as reused code and all of them were considered as
physical lines of code (LOC). N&C is composed of added
and modified code. The added code is the LOC written
during the current programming process, while the mod-
ified code is the LOC changed in the base project when
modifying a previously developed project. The base project
is the total LOC of the previous project while the reused
code is the LOC of previously developed project that are
used without any modification [28].

A coding standard should establish a consistent set of
coding practices that is used as a criterion when judging
the quality of the produced code [28]. Hence, it is nec-
essary to always use both the same coding and counting
standards. The developed projects for this study followed
these two guidelines.

There are many different definitions of software project
success [13], one of them is related to this paper: compar-
ing the actual versus predicted elapsed time for the project.
Conclusions of an accuracy criteria analysis recommends
the use of the Magnitude of Error Relative to the estimate
(MER) to evaluate and compare prediction models [32],
which is defined as follows:

MERi =
|AEi − PEi|

PEi
(1)

whereAE stands for Actual Effort andPE means Pre-
dicted Effort.

The MER value is calculated for each observationi
whose effort is predicted. The aggregation of MER over
multiple (n) observations can be achieved through the mean
(MMER) as follows:

MMER =
1
n

n∑

i=1

MERi (2)

A study of the most referenced journal with respect
to effort prediction work [10] showed that the diversity
of prediction approaches is very high and increasing, and
this increase is illustrated by the rising proportion of ap-
proaches related to techniques based upon models. A large
part of the research efforts involves the development of sta-
tistical models based on historical data [33].

Experimental results related to the application of pat-
tern recognition techniques have shown the effectiveness
for the particular application of software effort prediction
[34]. Other classifiers have been applied for predicting soft-
ware defects [35], whereas the Gamma Classifier has been
used for predicting air quality, the location of wireless de-
vices in a wireless sensor network, and the properties of a
concrete mix [1–6].

3. Gamma Classifier

The basis of the Gamma classifier is the gamma operator,
hence its name. The gamma operator is based on the alpha,
beta, anduβ operators and their properties, in particular
when dealing with binary patterns coded with the modified
Johnson-M̈obius code.

The alpha and beta operators are defined in tabular
form, taking into account the definitions of the setsA and
B, as is shown in Table 1. Thus, let there be the setsA =
{0, 1} andB = {0, 1, 2}.

α : A×A → B β : B ×A → A
x y α(x, y) x y β(x, y)
0 0 1 0 0 0
0 1 0 0 1 0
1 0 2 1 0 0
1 1 1 1 1 1

2 0 1
2 1 1

Table 1 Definition of the Alpha and Beta operators

The modified Johnson-M̈obius code allows to code a
set of real numbers into binary representations by, first,
subtracting the lesser negative (if there are negatives) from
all numbers, leaving only non-negative reals; then the num-
bers are scaled up in order to leave only non-negative in-
tegers (truncating the remaining decimals if necessary);
and thenem − ej zeros are concatenated withej ones,
whereem is the greatest non-negative integer number to
be coded, andej is the current non-negative integer num-
ber to be coded.

For instance, letD ⊂ R be defined asD = {1.6, 1.9,
0.3, 0.8,−0.1}; now, lets use the modified Johnson-Möbius
code (as explained above) to convert the elements ofD
into binary vectors.

1.Subtract the minimum:

D −→ T ⊂ R,

T = 1.7, 2.0, 0.4, 0.9, 0.0 (3)

Since−0.1 is the minimum number in the set, the mem-
bers of the transformed setT are obtained by subtract-
ing −0.1 to each member ofD (which is the same as
adding0.1): ti = di − (−0.1) = di + 0.1. Notice that
this step is particularly useful for handling negative
numbers, since now there will be only non-negative
numbers, with the minimum being 0.

2.Scale up the numbers:

T −→ E ⊂ Z+,

T = 17, 20, 4, 9, 0 (4)

c© 2012 NSP
Natural Sciences Publishing Cor.

414 López-Mart́ın et al. : Application of Gamma Classifier to Development ...

Since there is only one decimal digit, it is enough to
multiply each number by 10 to obtain integers, thus
the members of the integers setE are calculated as:
ei = ti × 10.

3.Concatenateem − ej zeros withej ones, whereem is
the maximum non-negative integer number to be coded,
andej is the current non-negative integer number to be
coded:

E −→ C =
{
ci|ci ∈ A20

}
,

C =





[00011111111111111111]
[11111111111111111111]
[00000000000000001111]
[00000000000111111111]
[00000000000000000000]





(5)

Given that the maximum number in the setE of non-
negative integers is 20, all binary vectors have 20 com-
ponents, i.e. they all are 20 bits long. In other words,
each member of theC set is a binary vector which be-
longs to the set resulting from applying 20 times the
cross product of the setA = {0, 1} to itself.
For example,e1 = 17 is converted into its binary rep-
resentationc1 by appendingem−e1 = 20−17 = 3 ze-
roes “000”, followed bye1 = 17 ones “1111111111111
1111”, which gives the final vector: “000111111111111
11111”.
This is because the maximum number in setE is 20,
thusem = 20; and the number to be converted ise1 =
17.

The unaryuβ operator receives as input ann-dimensional
binary vectorx, outputs a non-negative integer number,
and is calculated as shown below:

uβ =
n∑

i=1

β(xi, xi) (6)

Thus, ifx = [100110] then:

uβ(x) = β(1, 1) + β(0, 0) + β(0, 0)
+ β(1, 1) + β(1, 1) + β(0, 0)
= 1 + 0 + 0 + 1 + 1 + 0 = 3 (7)

The generalized gamma operatorγg which takes as
input two binary patternsx ∈ An and y ∈ Am, with
n,m ∈ Z+, n ≤ m, and a non-negative integer number
θ; and gives a binary number as output, can be calculated
as follows:

γg(x,y, θ) =

{
1 if m− uβ [α(x,y) mod 2] ≤ θ

0 otherwise
(8)

where mod 2 indicates the usual modulo 2 operator.

To better illustrate how the generalized gamma opera-
tor works, let us step through an example of its application.
Thus, let us findγg(x,y, θ) if x = [11100], y = [10110],
andθ = 2.

First, we have thatα(x,y) = [1 2 1 0 1]; then [1 2 1
0 1] mod 2 = [1 0 1 0 1]; now

uβ [10101] = β(1, 1) + β(0, 0) + β(1, 1),
+ β(0, 0) + β(1, 1)
= 1 + 0 + 1 + 0 + 1 = 3 (9)

and sincem = 5, 5− 3 = 2; given that2 ≤ θ = 2, the
result is 1.

The gamma classifier algorithm is depicted as follows:
Let k, m, n, p ∈ Z+; {xµ|µ = 1, 2, . . . , p} be the fun-

damental (learning) pattern set with cardinalityp, where
∀µxµ ∈ Rn, and lety ∈ Rn be ann-dimensional real-
valued pattern to be classified. It is assumed that the fun-
damental set is partitioned intom different and mutually
exclusive classes, each class having a cardinalityki, i =
1, 2, . . . ,m, and thus

∑
ki = p. In order to classifyy, the

following steps are implemented:

1.Code the fundamental set with the modified Johnson-
Möbius code, obtaining the following value ofem for
each component:

em(j) =
p∨

i=1

xi
j (10)

2.Compute the following stop parameter:

ρ =
n∧

j=1

em(j) (11)

3.Codey with the modified Johnson-M̈obius code, us-
ing the same parameters used with the fundamental set
(step 1). If anyyj is greater than the corresponding
em(j), theγg operator will use suchyj instead ofm
(according to equation 8).

4.Transform the index of all fundamental patterns into
two indices, one for the class they belong to, and an-
other for their position in the class (i.e.xµ which be-
longs to classi becomesxiω).

5.Initialize θ to zero.
6.Do γg(xiω

j , yj , θ) for each component of the funda-
mental patterns in each class.

7.Compute the weighted sumci for each class, as fol-
lows:

ci =

∑ki

ω=1

∑n
j=1 γg(xiω

j , yj , θ)
ki

(12)

8.If there is more than one maximum among the different
ci, incrementθ by 1 and repeat steps 6 and 7 until there
is a unique maximum, or the stop conditionθ ≥ ρ is
fulfilled.

c© 2012 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.6, No. 3, 411-418 (2012) / www.naturalspublishing.com/Journals.asp 415

9.If there is a unique maximum, assigny to the class
corresponding to such maximum:

Cy = Cj such that
m∨

i=1

ci = cj (13)

10.Otherwise, assigny to the class of the first maximum.

In order to train the Gamma classifier with the data,
some preprocessing is needed. First, a 2-dimensional vec-
tor is built with both independent variables, new and changed
code and reused code. The class associated to each pattern
is the corresponding value of the dependent variable: the
effort.

4. Experiments

The experimental results obtained by training and testing
the three models (statistical regression model, fuzzy model,
and the Gamma Classifier) are shown in Table 2, for both
verification and validation stages.

Stage Statistical Fuzzy Gamma
Regression Model Model Classifier

Verification 0.27 0.25 0.22
Validation 0.28 0.28 0.28

Table 2 Experimental results by model, in MMER

The ANOVA for MER from the 163 projects showed
that there was a statistically significant difference amongst
the accuracy of prediction for the three models (p-value of
Table 3 is less than 0.05). A means plot is useful for show-
ing which means are significantly different from which
others; in Figure 1 can be observed that the Gamma Clas-
sifier (GC) had the best accuracy (lower MMER), which
indicates that this classifier can be used for predicting the
effort.

Source Sum of Degrees Mean F-ratio p-value
squares of freedom square

Between 0.508 2 0.2843 8.30 0.0003
groups
Within 14.857 485 0.0306
groups
Total 15.366 487

Table 3 ANOVA Table for MER by Model (verification stage)

However, the validity of MER ANOVA is based on the
analysis of the following three assumptions of residuals:

1.Independent samples: The group of developers was made
up of separate practitioners and each of them devel-
oped its own projects, hence the data are independent.

Figure 1 Means plot of MER ANOVA (verification stage)

2.Equal standard deviations: In a plot of this kind the
residuals should fall roughly in a horizontal band cen-
tered and symmetric about the horizontal axis (as shown
in Figure 2), and

3.Normal populations: A normal probability plot of the
residuals should be roughly linear (as shown in Figure
3).

Hence, the three assumptions for residuals in the actual
data set were considered as met.

In an additional test, since ap-value = 0.0001 of the
Kruskal-Wallis test resulted less than 0.05, there was a sta-
tistically significant difference between the medians of the
models at the 95% confidence level.

Figure 2 Equal standard deviation plot of MER ANOVA (veri-
fication stage)

A second group integrated by 21 practitioners devel-
oped 68 projects that were used for validating the three
models. Once the three models for predicting the effort
were applied to these data, the MER by project as well
as the MMER by model were calculated.

In accordance with the ANOVA for MMER models
that is depicted in Table 4, there was not a statistically

c© 2012 NSP
Natural Sciences Publishing Cor.

416 López-Mart́ın et al. : Application of Gamma Classifier to Development ...

Figure 3 Normality plot of MER ANOVA (verification stage)

significant difference amongst the accuracy of prediction
for the three models (p-value is greater to 0.05) at 95% of
confidence.

Source Sum of Degrees Mean F-ratio p-value
squares of freedom square

Between 0.0471 2 0.0236 0.61 0.5426
groups
Within 7.7529 201 0.0385
groups
Total 7.8003 203

Table 4 ANOVA Table for MER by Model (validation stage)

ANOVA plots for equal standard deviation as well as
for normality were met (standard deviations were similar
and that their data showed normality).

As additional test, since ap-value = 0.8695 of the Krus-
kal-Wallis test resulted greater than 0.05, there was not a
statistically significant difference between the medians of
the models at the 95% confidence level.

5. Conclusions and Future Research

Given that no single technique is best for all situations
and that a careful comparison of the results of several ap-
proaches is most likely to produce realistic predictions [22–
24], three models were applied to the problem of software
development effort estimation in this work, and their re-
spective performances were compared. One of such mod-
els was applied for the first time to this particular problem:
the Gamma Classifier.

Two samples of 163 and 68 projects were used for veri-
fying and validating respectively the models; these projects
were developed by 53 and 21 practitioners respectively.
The 231 projects were developed following practices of
the Personal Software Process which allows the instru-
mentation of the Capability Maturity Model (CMM) at a

personal level. The independent variables of the models
were new and changed code as well as reused code, while
the dependent variable was the effort.

The accepted hypotheses in this research were the fol-
lowing:

H1Effort prediction accuracy of the Gamma Classifier is
better than those obtained from a multiple linear re-
gression, and from a fuzzy logic model, when these
three models were trained with 163 developed projects
inside of a controlled experiment.

H2Effort prediction accuracy of the Gamma Classifier is
statistically equal than those obtained from a multiple
linear regression, and from a fuzzy logic model, when
these three models were applied to a new set of 68 de-
veloped projects inside of a controlled experiment.

Based on these accepted hypotheses, the Gamma Clas-
sifier could be successfully used for predicting the effort of
software projects when both new and changed code, and
reused code are used as independent variables.

Given this competitive performance offered by the
Gamma Classifier, several extensions to the current work
present themselves for future research. On one hand, the
performance of the Gamma Classifier on this problem can
be further explored by trying different independent vari-
ables, on the same set of software development projects,
as well as applying this model to other data sets. On the
other hand, there are several associative models which ap-
pear to have similar performance to the Gamma Classi-
fier. One of these models is that of the Alpha-Beta Bidi-
rectional Associative Memories (BAMs), which could also
be applied to the current data set, with the current combi-
nation of independent and dependent variables, as well as
with different combinations of variables. Additionally, the
Alpha-Beta BAMs could be applied to other related data
sets.

Acknowledgement

The authors would like to thank the CUCEA of Guadala-
jara University, Programa de Mejoramiento del Profeso-
rado (PROMEP), Instituto Politécnico Nacional (Secre-
taŕıa Acad́emica, COFAA, SIP, UPIITA, and CIC), the
CONACyT, SNI, and the ICyTDF (grants PIUTE10-77
and PICSO10-85) for their economical support to develop
this work.

References

[1] I. López-Ýañez, A.J. Arg̈uelles-Cruz, O. Camacho-Nieto,
C. Yáñez-Márquez, Pollutants Time-Series Prediction Us-
ing the Gamma Classifier. International Journal of Compu-
tational Intelligence Systems, Atlantis Press, Vol.4, Issue 4,
2011, pages 680-711. ISSN: 1875-6883

c© 2012 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.6, No. 3, 411-418 (2012) / www.naturalspublishing.com/Journals.asp 417

[2] I. López-Ýañez, C. Ýañez-Márquez, V.M. Silva-Garćıa,
Forecasting Air Quality Data with the Gamma Clas-
sifier, Pattern Recognition. Peng-Yeng Yin (Ed.), IN-
TECH, 2009. ISBN: 978-953-307-014-8. Available from:
http://sciyo.com/articles/show/title/forecasting-air-quality-
data-with-the-gamma-classifier

[3] I. López-Ýañez, C. Ýañez-Márquez, O. Camacho-Nieto,
A.J. Argüelles-Cruz, Prediction of Air Contaminant Con-
centration Based on an Associative Pattern Classifier. Re-
vista Facultad de Ingeniera - Universidad de Antioquia, No.
60, 2011, pages 32-41. ISSN: 0120-6230

[4] C. Yáñez-Márquez, I. Ĺopez-Ýañez, G. de la L. Śaenz-
Morales, Analysis and Prediction of Air Quality Data with
the Gamma Classifier. Lecture Notes in Computer Science,
Springer Verlag, Vol.5197, 2008, pages 1611-3349. DOI:
10.1007/978-3-540-85920-879

[5] I. López-Ýañez, Teoŕıa y aplicaciones del Clasificador
Asociativo Gamma (In Spanish). PhD Thesis, Center for
Computing Research, National Polytechnics Institute, 2011,
México.

[6] I. López-Ýañez, Clasificador Autoḿatico de Alto De-
sempẽno (In Spanish). MSc Thesis, Center for Computing
Research, National Polytechnics Institute, 2007, México.

[7] M.E. Acevedo, C. Ýañez-Márquez, M.A. Acevedo,
Associative Models for Storing and Retrieving Con-
cept Lattices. EURASIP Mathematical Problems in
Engineering, Hindawi, Volume 2010, 2010, Article ID
356029. ISSN (printed): 1024-123X. ISSN (electronic):
1563-5147. DOI: 10.1155/2010/356029. Available from:
http://www.hindawi.com/journals/mpe/2010/356029.html

[8] M.E. Acevedo-Mosqueda, C. Ýañez-Márquez, I. Ĺopez-
Yáñez, Alpha-Beta Bidirectional Associative Memories:
Theory and Applications. Neural Processing Letters,
Springer-Verlag Berlin Heidelberg, Vol.26, No. 1, 2007,
pages 1-40. ISSN: 1370-4621. DOI:10.1007/s11063-007-
9040-2

[9] M.E. Acevedo-Mosqueda, C. Ýañez-Márquez, I. Ĺopez-
Yáñez, Complexity of Alpha-Beta Bidirectional Associative
Memories. Lecture Notes in Computer Science, Springer-
Verlag Berlin Heidelberg, LNCS4293, pages 357-366.
ISSN: 0302-9743. DOI:10.1007/1192523134

[10] M. Jørgensen, M. Shepperd, A Systematic Review of Soft-
ware Development Cost Estimation Studies. IEEE Transac-
tions on Software Engineering, Vol.33, 2007, pages 33-53.
DOI: 10.1109/TSE.2007.256943

[11] E.A. Nelson, Management Handbook for the Estimation of
Computer Programming Costs. AD-A648750, Systems De-
velopment Corp. 1966.

[12] S. Bibi, I. Stamelos, L. Angelis, Combining probabilistic
models for explanatory productivity estimation. Journal of
Information and Software Technology, Elsevier, Vol.50,
2008, pages 656-669. DOI: 10.1016/j.infsof.2007.06.004

[13] J.M. Verner, W.M. Evanco, N. Cerpa, State of the practice:
An exploratory analysis of schedule estimation and software
project success prediction. Journal of Information and Soft-
ware Technology, Elsevier, Vol.49, 2007, pages 181-183.
DOI:10.1016/j.infsof.2006.05.001

[14] T.I.F. De Barcelos, J.D. Simies da Silva, N. Sant Anna, An
investigation of artificial neural networks based prediction
systems in software project management. Journal of Sys-

tems and Software, Elsevier, Vol.81, 2008, pages 356-367.
DOI: 10.1016/j.jss.2007.05.011

[15] M. Jørgensen, Forecasting of Software Development Work
Effort: Evidence on Expert Judgment and Formal Models.
Journal of Forecasting, Elsevier, Volume23, Issue 3, 2007,
pages 449-462. DOI: 10.1016/j.ijforecast.2007.05.008

[16] C. Lopez-Martin, A fuzzy logic model for predicting the de-
velopment effort of short scale programs based upon two
independent variables. Journal of Applied Soft Comput-
ing, Elsevier, Vol.11, Issue 1, 2011, pages 724-732. DOI:
10.1016/j.asoc.2009.12.034

[17] C. López-Mart́ın, Applying a general regression neural net-
work for predicting development effort of short-scale pro-
grams. Journal of Neural Computing and Applications,
Springer, Vol. 20, No. 3, 2011, pages 389-401. DOI:
10.1007/s00521-010-0405-5

[18] W. Afzal, R. Torkara, On the application of genetic pro-
gramming for software engineering predictive modeling: A
systematic review. Journal of Expert Systems with Applica-
tions, Elsevier, Vol.38, Issue 9, 2011, pages 11984-11997.
DOI:10.1016/j.eswa.2011.03.041

[19] Sun-Jen, H., Nan-Hsing, Ch., Li-Wei, Ch. 2008. Integra-
tion of the grey relational analysis with genetic algo-
rithm for software effort estimation. Journal of Opera-
tional Research, Elsevier, Vol.18, pages 898-909. DOI:
10.1016/j.ejor.2007.07.002

[20] Y. Kultur, B. Turhan, A. Bener, Ensemble of neural net-
works with associative memory (ENNA) for estimating
software development costs. Journal of Knowledge-Based
Systems, Elsevier, Vol.22, 2009, pages 395-402. DOI:
10.1016/j.knosys.2009.05.001

[21] B. Boehm, Ch. Abts, S. Chulani, Software development cost
estimation approaches: A survey. Journal of Annals of Soft-
ware Engineering, Springer Verlag, Vol.10, 2000, pages
177-205. DOI: 10.1023/A:1018991717352

[22] D.H. Wolpert, W.G. Macready, No free lunch theorems for
search. IEEE Transactions on Evolutionary Computation,
1997.

[23] D.H. Wolpert, et al., No free lunch theorems for opti-
mization. IEEE Transactions on Evolutionary Computation,
1997.

[24] M. Sewell, No Free Lunch Theorems. 2006. Available at:
http://www.no-free-lunch.org/

[25] Z. Xu, T.M. Khoshgoftaar, Identification of fuzzy mod-
els of software cost estimation. Journal of Fuzzy Sets and
Systems, Elsevier, Vol.145, 2004, pages 141-163. DOI:
doi:10.1016/j.fss.2003.10.008

[26] C. López-Mart́ın, C. Yáñez-Márquez, A. Gutíerrez-Torńes,
Predictive Accuracy Comparison of Fuzzy Models for Soft-
ware Development Effort of Small Programs. Journal of
Systems and Software, Elsevier, Vol.81, issue 6, 2008,
pages 949-960. DOI: 10.1016/j.jss.2007.08.027.

[27] M. Manish-Agrawal, K. Chari, Software Effort, Quality, and
Cycle Time: A Study of CMM Level 5 Projects. IEEE Trans-
actions on Software Engineering, Vol.33, 2007, pages 145-
156. DOI: 10.1109/TSE.2007.29

[28] W. Humphrey, A Discipline for Software Engineering, Ad-
dison Wesley. 1995.

[29] B. A. Kitchenham, E. Mendes, G.H. Travassos, Cross ver-
sus Within-Company Cost Estimation Studies: A Systematic
Review. IEEE Transactions Software Engineering, Vol.33,
No. 5, 2007, pages 316-329. DOI: 10.1109/TSE.2007.1001

c© 2012 NSP
Natural Sciences Publishing Cor.

418 López-Mart́ın et al. : Application of Gamma Classifier to Development ...

[30] S. D. Sheetz, D. Henderson, L. Wallace, Understand-
ing developer and manager perceptions of function points
and source lines of code. The Journal of Systems and
Software, Elsevier, Vol.82, 2009, pages 1540-1549.
DOI:10.1016/j.jss.2009.04.038

[31] R.E. Park, Software Size Measurement: A Framework for
Counting Source Statements. Software Engineering Insti-
tute, Carnegie Mellon University. 1992, CMU/SEI-92-TR-
020

[32] T. Foss, E. Stensrud, B. Kitchenham, L. Myrtveit, A Simula-
tion Study of the Model Evaluation Criterion MMRE. IEEE
Transactions on Software Engineering. Vol.29, 2003, pages
985-995. DOI: 10.1109/TSE.2003.1245300

[33] N., Mittas, L. Angelis. Comparing cost prediction mod-
els by resampling techniques. The Journal of Systems and
Software, Elsevier, Vol.81, 2008, pages 616-632. DOI:
10.1016/j.jss.2007.07.039

[34] L.C. Briand, V.R. Basili, W.M. Thomas, A Pattern Recog-
nition Approach for Software Engineering Data Analysis.
IEEE Transactions on Software Engineering, Vol.18, 1992,
pages 931-942. DOI: 10.1109/32.177363

[35] S. Bibi, G. Tsoumakas, I. Stamelos, I. Vlahavas, Re-
gression via Classification applied on software defect
estimation. Journal of Expert Systems and Applica-
tions, Elsevier, Vol.34, 2008, pages 2091-2101. DOI:
10.1016/j.eswa.2007.02.012

Cuauhtémoc López-Martı́n
is a Professor-Researcher at the
Information Systems Department,
CUCEA Guadalajara University.
He received his Bachelor degree
in Computer Engineering at the
Universidad Aut́onoma de Tlax-
cala (1995), his MSc degree in In-
formation Systems at the Univer-
sity of Guadalajara (2000), and

his PhD degree in Computer Science at the National Poly-
technics Institute (IPN) Center for Computing Research
(CIC) in 2007, with mention of Honor.

Areas of interest: Systems Modeling and Simulation,
Software Engineering, in particular Software Quality, Soft-
ware Development Effort Estimation, and Personal soft-
ware process statistical control.

Itzamá López-Yáñez was
born in Obregon City, Sonora,
Mexico. He received his Bachelor
degree as Information Systems
Engineer (2003) at Monterrey
Institute of Technology and Su-
perior Studies (ITESM), Campus
Sonora Norte. He obtained the
MSc (2007) and PhD (2011)
degrees on Computer Sciences

at National Polytechnics Institute (IPN) Center for
Computing Research (CIC), both with mention of Honor.
Currently he is both a Professor at, and the President of the
Telematics Academy at IPN Engineering and Advanced
Technologies Interdiscilinary Professional Unit (UPIITA).

Areas of interest: Associative Memories, Neural Net-
works, Software Engineering, and Pattern Classification,
in particular the Gamma classifier.

Cornelio Yáñez-Márquez is
of Mexican nationality; he ob-
tained his Bachelor degree (1989)
on Physics and Mathematics at
National Polytechnics Institute
(IPN) Physics and Mathematics
Superior School. His MSc (1995)
and PhD (2002) degrees were re-
ceived at IPN Center for Com-
puting Research (CIC). Currently

a Researcher Professor, Titular C, at IPN CIC. He was
granted the Ĺazaro Ćardenas Award by the President of
the Republic. Member of the National Researchers System
(SNI).

Areas of interest: Associative Memories, Neural Net-
works, Mathematical Morphology, and Software Engineer-
ing.

c© 2012 NSP
Natural Sciences Publishing Cor.

