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1 Introduction semigroups, semilattice of left (right) groups and

semilattice of groups in terms of soft union ideals,

bi-ideals, interior ideals, quasi-ideals, generalized
Obi-ideals. Furthermore, we define soft union normal
semigroups and discuss on the relation of this concept
f_Yvith semigroups.

Soft sets was introduced by Molodtsa\9 for modeling
vagueness and uncertainty in 1999. Many relate
concepts with soft sets, especially soft set operati@Bs [
4,24,5] have recently undergone tremendous studies. So
set theory have found its wide-ranging applications in the
mean of algebraic structures such as groupq,
semirings 0], rings [1,26], BCK/BCl-algebras 13,14, o
15), BL-algebras 81], nearrings 23, and soft 2 Preliminaries
substructures and union soft substructu6eaT).

In [28], Sezgin et al. defined soft union semigroups,
soft union left (right, two-sided) ideals and bi-ideals and In this section, we recall some notions relevant to
soft semiprime ideals of semigroups and obtained theirsemigroups and soft sets. gemigroup Ss a nonempty
basic properties. And in2B], Sezgin et al. 29 defined  Set with an associative binary operation. Throughout this
soft union interior ideals, quasi-ideals, generalizedpaper,Sdenotes a semigroup. A nonempty subsetf S
bi-ideals and investigate the interrelations of them.is called aright ideal of Sif ASC A and is called deft
Moreover, they characterized regular, intra-regular,idealof Sif SAC A. By two-sided idea(or simplyideal),
completely regular, weakly regular and quasi-regularwe mean a subset & which is both a left and right ideal
semigroups by the properties of these ideals2g 29]. of S. A subsemigroupX of Sis called abi-ideal of S if
Thus, they made a new approach to the classicaKSXC X. A nonempty subseA of Sis called arinterior
semigroup theory via soft set theory with these concepts. ideal of Sif SASC A. A nonempty subseQ of Sis called

In this paper, we characterize certain classes ofdquasi-idealof Sif QSNSQC Q.
semigroups, such as semisimple semigroups, duo We denote by L[a](R[a,J[a],B[a]Q[al,![a]), the
semigroups, right (left) zero semigroups, right (left) principal left (right, two-sided, bi-ideal, quasi-ideal,
simple semigroups, semilattice of left (right) simple interior ideal) of a semigrouf generated by € S that
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is, iii) f s+ (gshhs) = (fs*gs)N(fs* hs) and (fsNgs) * hs =
Lla] ={a}uUSa (fsxhg)N(gs*hs). 5
Rla] = {ajuaS iv)If fsCgs, then §xhsCgs*hsand hs* fsChs* gs.
Jia] ={ajuSavaSusas V)If ts,ls € S(U) such that ¢Cfs and kCgs, then
Qla] = {a}u(aSNSa ts1sC fs+ gs.

_ 2

8] ={apu{a’}usas Definition 6.[28] Let X be a subset of S. We denote by
A semigroupSis calledregular if for every elementiof %« the soft characteristic function of the complement X
S there exists an elementin S such thata = axa or and define as
equivalentlya € aSa An elementa of S is called a )
completely regulaiif there exists an elemente S such Fe(X) = {07 !f Xe X,
that a = axa and ax = xa A semigroupS is called U, if xeS\X
completely regulaiif every element ofS is completely
regular. A semigrouisis calledleft (right) regular if for
each elemené of S, there exists an elemerte S such
thata = x& (a = a®x). A semigroup is calledeft (right) fs(xy) C fs(x) U fs(y)
regular if for each elemené of S, there exists an element N
x € Ssuch that forallx,y € S.

Definition 7.[28] Let S be a semigroup ang; be a soft set
over U. Then, §is called a soft union semigroup of S, if

Definition 8.[28] A soft set over U is called a soft union

left (right) ideal of S over U if

A semilatticeis a structures= (S,.), where “.” is an infix

binary operation, called thee(milzalttice operationsuch fs(ab) < fs(b) (fs(ab) < fs(a))

that “.” is associative, commutative and idempotent. Forfor alla,b € S. A soft set over U is called a soft union two-
all undefined concepts and notions about semigroups, weided ideal (soft union ideal) of S if it is both soft uniort lef
refer to [L1,21]. and soft union right ideal of S overU.

a=xa (a=a’x).

Definition 1.([7,19]) A soft set i over U is a set defined Definition 9.[28 A soft union semigroup sfover U is
by called a soft union bi-ideal of S over U if
fa:E — P(U) such thatf(x) = 0if x ¢ A.
. . . fs(xyz < fs(x) U fs(2)
Here fa is also called an approximate function. A soft set
over U can be represented by the set of ordered pairs ~ forall x,y,z€ S.

_ . Definition 10[29 A soft set over U is called a soft union

fa={(x fal)) : X € E, fal) €P(U)}- interior of S over U if
Definition 2.[7] Let fa, fs € S(U). Then, A is called a soft
subset of § and denoted by fg, if fa(X) C fa(x) for all fs(y2) € Ts(y)

xeE. forall x,y,ze S.

Definition 3.[7] Let fa, fs € S(U). Then, union of £ and Definition 11[29] A soft set over U is called a soft union
fg, denoted by fUfg, is defined as AU fg = f555, where  quasi-ideal of S over U if

facg(X) = fa(X) U fg(x) forall x € E. — ~

A (X) = Tl U fe (X (fs+8)T(8 + fs) Dfs.

Definition 4.[7] Let fa, fg € S(U). Then, intersection of L . :
fa and f, denoted by A7 fg, is defined asAffs = fasg, Def|n|t|o_n 12.[_29] A soft set over_U is called a soft union
where fg(X) = fa(x) N fa(x) for all x € E. generalized bi-ideal of S over U if

Definition 5.Let S be a semigroup ang &nd gs be soft fs(xyz) € fs(x) U fs(2)
sets over the common universe U. Then, soft union produgpy gji x,y,z€ S.
fs* gsis defined by
For the sake of brevity, soft union semigroup, soft union
(fxgs)(X) = { Nyeyd fs(Y)UGs(2)}, if 3y,z€ S such thatrighygeft, two-sided, interior, quasi, generalized bidal
=10,

otherwise are abbreviated bySU-semigroup, SU-right (left,
two-sided, interior, quasi, generalized bi-) ideal,
forallx € S. respectively.
It is easy to see that ifs(x) = 0 for all x € S, thenfg
Theorem 1[28] Let fs,gs,hs € SU). Then, is an SU—ser¥1igroup (right iée)al, left ideal, ideal, bi-ideal,
i) (fs* gs) *hs = fs* (gs* hs). interior ideal, quasi-ideal, generalized bi-ideal)®bver
i) fs* (gsUhs) = (fs* gs)U(fs* hs) and (fsUgs) * hs = U. We denote such a kind~<SU-semigroup (right ideal,
(fsx hs)U(gs* hs). left ideal, ideal, bi-ideal) by [28].
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Lemma 1Let fs be any SU-semigroup over U. Then, we 3 Semisimple semigroups
have the followings:
ND AR : 3.5_7 In this section, we characterize semisimple semigroups
“|)6 * 6~2~6~ (rSis reg~ul~ar,6 #6=0) with respect toSU-ideals of semigroups. A semigrop
ii)fsx 026 and 6 fs20. is calledsemisimpléf J2 = J holds for every ideal of S,
iii)fs16 = 6 and U6 = fs. that is, every ideal oBis idempotent.
Definition 13[28] A soft set § over U is called soft union

semiprime if for all a S, Proposition 3[30] For a semigroup S, the following

conditions are equivalent:
2
fs(a) < fs(a”). 1)S is semisimple.

Theorem 2[28,29] Let X be a nonempty subset of a 2)a§ (SaS(Sag for every element a of S, that is, there
semigroup S. Then, X is a subsemigroup (left, right, existelementsy,zec S such that a xayaz.
two-sided ideal, bi-ideal, interior ideal, quasi-ideal,
generalized bi-ideal) of S if and only if%c is an
SU-semigroup (left, right, two-sided ideal, bi-ideal,
interior ideal, quasi-ideal, generalized bi-ideal) of S. ProofLet fs be anSU-interior ideal ofS. Let a andb be
Proposition 1]28,29] Let fsbe a soft set over U. Then,  any elements o8 Then, sinceSis semisimple, there exist

i)fsis an SU-semigroup over U if and only if fsDfs. elementx,y,z€ Ssuch that

ifsis an SU-Ieflgight) ideal of S over U if and only if a= xayaz

0 x fsDfg (fs*x 6D fg). B
iii) f sis an SU-bi-ideal of S over U ifand only i§ £ fs<C fs ~ Thus, we have

Proposition 4Every SU-interior ideal of a semisimple
semigroup S is an SU-ideal of S.

and kx 0+ fsOfs , _ fs(ab) = fs((xayaab) = fs(xay)a(zh)) C fs(a)
iv)fs is an SU-interior ideal of S over U if and only if , ) , .
B+ fox 0O s, Hence, fs is an SU-right ideal of S. Similarly, one can

prove thatfs is an SU-left ideal of S. Thus, fs is an

v)fsis an SU-generalized bi-ideal of S over U if and only SU-ideal ofS

if fsx 0% fsD fs.
Theorem 3[28] Every SU-left (right, two sided) ideal of Now we shall give a characterization of a semisimple

a semigroup S over U is an SU-bi-ideal of S over U. semigroup bysU-ideals.
Proposition 2[29] For a semigroup S, the following Theorem 8For a semigroup S, the following conditions
conditions are equivalent: are equivalent:
1)Every SU-ideal of a semigroup S over U is an 1)Sis semisimple.

SU-interior ideal of S over U. 2)fsx fs = fg for every SU-ideal 4 of S. (That is, every
2)Every SU-quasi ideal of S is an SU-semigroup of S. SU-ideal is idempotent).
3)Every one-sided SU-ideal of S is an SU-quasi-ideal of S3) fsx fg = fs for every SU-interior § of S. (That is, every
4)Every SU-quasi-ideal of S is an SU-bi-ideal of S. SU-interior ideal is idempotent).

Theorem 4[28] For a semigroup S the following %) fsUgs = fs* gs for every SU-idealsgfand gs of S.
conditions are equivalent: 5)fsUgs = fs* gs for every SU-ideal § and every SU-
1)S is regular interior ideal gs of S.

2)fs % gs — fs.Ggs for every SU-right ideal § of S over U 6) fsUgs = fs+*gs for every SU-interior ideal §and every

; SU-ideal g; of S.
and SU-left ideal gof S over U. 7)fsUgs = fs*gs for every SU-interior idealsgfand gs of
Theorem 5[28] For a semigroup S the following S

conditions are equivalent: 8)The set of all SU-ideals of a semisimple semigroup S is a
1)S is regular. semilattice under the soft union product, that isx fgs*
2)For every SU-quasi-ideal of Sg £ fs 0 * fs. hs) = fs* (gs*hs), fs*gs=gs* fsand & fs= fsfor

all SU-ideals § and gs of S.
9)The set of all SU-interior ideals of a semisimple
semigroup S is a semilattice under the soft union

Theorem 6[29] Let fg be a soft set over U, where S is
a regular semigroup. Then, the following conditions are

equiyalent: . product.
1)fsis an SU-ideal of S over U. _
2)fs is an SU-interior ideal of S over U. ProofFirst assume that (1) holds. L&fandgs be anySU-

interior ideals ofS. Since,§ itself is anSU-interior ideal
of Sand sincefg is anSU-ideal of Sby Propositiord, we
have:

Theorem 7[28] For a left regular semigroup S, the
following conditions are equivalent:

1)Every leftideal of S is a two-sided ideal of S.

2)Every SU-left ideal of S is an SU-ideal of S. fs# gso fs+ 6O fs and fs+gsD0 x gsIgs.
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Thus, fS * gSi) fsogs.
Now, let a be any element ofs. Since there exist
elementsy,z,w € Ssuch that

a= (xay)(zaw),

and sincefs andgs areSU-interior ideals ofS, we have
(fsxgs)(a) = [ (fs(p)Ugs(a))
a=pq
C fg(xay) Ugs(zaw)
C fs(a)Ugs(a)
= (fsUgs)(a)

and so we havés* gsC fsUgs. Hence,
fs* gs = fsUgs.

So, (1) implies (7). (7) implies (6), (6) implies (4), (7)
implies (5), (5) implies (4), (4) implies (2), (7) implies
(3), (3) implies (2) and (7) implies (9), (9) implies (8), (8)
implies (2).

Assume that (2) holds. Letbe any element &. Since
the soft characteristic functioff|jq))c of Sis anSU-ideal
of Sand sincea € J[a], we have

S ae(@) =0

Now, leta ¢ J[a]
such that = J[a

(L) *a)e) (@) = [ (Laga)e(b) UL {gjae(c) =U

a=hc

[a]. Thus, there do not exidt c € J[a)

J
J[a]. Hence,

But this is a contradiction and thus,

ae J[a]JLa] = g{a} UaSJSaJsSaS({a} UaSu SaJ
Sag = {a“}Ua‘SuaSaJaSa%aSaJaSaS aSSaJ
aSSa% S&US&SUSaSal SaSa® SaSasSaSas)
SaSSaSaSSaS$ (Sag(SaS

Hence Sis semisimple and so, (2) implies (1).

4 Regular duo semigroups

In this section, we characterize a left (right) duo semigrou
in terms ofSU-ideals. A semigrous is calledleft (right)
duoif every left (right) ideal ofSis a two-sided ideal 0$.

A semigroupSis duoif it is both left and right duo.

Definition 14.A semigroup S is called soft union left
(right) duo if every SU-left (right) ideal of S is an

ProofFirst assume thais left duo. Letfs be anySU-left
ideal of Sanda andb be any elements d&. It is known
thatSais a left-ideal ofS. And so, by hypothesis, it is a
two-sided ideal o8, SinceSis regular, we have

abe (aSgb C (SgSC Sa
This implies that there exists an elemar Ssuch that
ab=xa
Thus, sincefg is anSU-left ideal of S, we have
fs(ab) = fs(xa) C fs(a)

This means thats is anSU-right ideal ofSand sofgis an
SU-ideal of S. Thus,Sis soft union left duo and (1) implies

2).

Conversely, assume th&is soft union left duo. LeA
be any left ideal of. Then, the soft characteristic function
“nc of Alis anSU-left ideal of S. By assumption,”ac is
anSU-ideal ofSand scA is a two-sided ideal db. Thus,S
is left duo and (2) implies (1). The right dual of the proof
can be seen similarly. So, the proofis completed.

Theorem 10For a regular semigroup S, the following
conditions are equivalent:

1)S is duo.
2)S is soft union duo.

Every SU-right (left) ideal of S is an SU-bi-ideal of S
([28]). Moreover, we have the following:

Theorem 11Let S be a regular duo semigroup. Then,
every SU-bi-ideal of S is an SU-ideal of S.

ProofLet fs be any SU-bi-ideal of S and a,b be any
elements of. It is known thatSais a left ideal ofS. Since
Sis a duo semigrouBais a right ideal ofS. And sinceS
is regular, we have

abe (aSgb C a((SaS) C aSa
This implies that there exists an elemar Ssuch that
ab=axa
Then, sincefs is anSU-bi-ideal of S, we have
fs(ab) = fs(axa) C fs(a) U fs(a) = fs(a).

This means thats is anSU-right ideal ofS. It can be seen
in a similar way thatfsis anSU-left ideal of S. Therefore,

SU-ideal of S and is called soft union duo, if it is both soft fsis anSU-ideal ofS. This completes the proof.

left and soft right duo.
Theorem 9For a regular semigroup S, the following
conditions are equivalent:

1)S is left (right) duo.
2)S is soft union left (right) duo.

Theorem 12[9,20] For a semigroup S, the following
conditions are equivalent:

1)S is a regular duo semigroup.
2)ANB = AB for every left ideal A and every right ideal B
of S.
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3)Q@? = Q for every quasi-ideal of S. (That is, every quasi-

ideal is idempotent.)
AHEQE=ENQNE for every ideal E and every quasi-
ideal Q of S.

Theorem 13For a semigroup S, the following conditions
are equivalent:

1)S is a regular duo semigroup.
2)S is a regular soft union duo semigroup.
3)fs* gs= fsUgs for all SU-bi-ideals §and gs of S.
4)fs* gs = fsUgs for all SU-bi-ideal & and for all SU-
quasi-ideal g of S.
5)fs* gs = fsUgs for all SU-bi-ideal & and and for all
SU-rightideal g of S
6) fsxgs = fsUgs for all SU-quasi-ideal § and for all SU -
bi-ideal gs of S.
7)fs* gs= fsUgs for all SU-quasi-idealsfand gs of S.
8)fs* gs = fsUgs for all SU-quasi-ideal § and for all SU-
rightideal gs of S.
9)fs* gs = fsUgs for all SU-left ideal § and for all SU-
bi-ideal gs of S.
10)fs* gs = fsUgs for all SU-left ideal § and for all SU-
rightideal gs of S.
11)fs* gs = fsUgs and hs x ks = hsUks for all SU-right
ideals £ and gs of S and for all SU-left ideal fiand ks
of S.
12)Every SU-quasi-ideal of S is idempotent.

ProofThe equivalence of (1) and (2) follows from
Theoreml0. Assume that (2) holds. Ldt andgs be any
SU-bi-ideals ofS. Then, by Theoreri1, fsis anSU-right
ideal of S and gs is an SU-left ideal of S. SinceS is
regular, it follows by Theorerd that

fsxgs= fsUgs

Thus, (2) implies (3). It is clear that (3) implies (4), (4)
implies (5), (5) implies (8), (8) implies (11), (11) implies
(3), (3) implies (6), (6) implies (7), (7) implies (8) and (6)
implies (9), (9) implies (10), (10) implies (11).

Assume that (11) holds. Lét andB be any left ideal
and right ideal ofS, respectively. Let be any element of
ANBanda¢ AB. Then,a € Aanda € B and there do not
existx € A andy € B such that = xy. Since.”ac and.“ge
is anSU-leftideal andSU-right ideal ofS, respectively, we
have

YAc(a) = ygc(a) =0.

and
(yAc * <EﬁBc)(a) =U

But this is a contradiction, sa € AB. Thus,ANB C AB.
For the converse inclusion, latbe any element oAB and
a¢ ANB. Then, there existe Aandze Bsuch thaa=yz
Thus,

(yAcOyBc)(a) =U

and

(FacxSee) (@) = [ (Lac(M)U.Se(n)) C

a=mn

(Fae(y)U-S8e(2))

Hence,(.ac * .7g¢)(a) = 0. But this is a contradiction.
This implies thata € AN B and thatAB C AN B. Thus, we
have AB = ANB. It follows by Theoreml2 thatSis a
regular duo semigroup. Thus (11) implies (1). It is clear
that (7) implies (12) by takings = fs.

Conversely, assume that (12) holds. L@tbe any
quasi-ideal ofSanda be any element of anda ¢ QQ.
Then, “ is an SU-quasi-ideal ofS. Thus, we have
“oc(a) = 0 and since there do not exigiz € Q such that
a=yz

(ch * ch)(a) =U

But this is a contradiction. Hence, we have Q2 andQ C
Q2. Since the converse inclusion always hol@sz Q2. It
follows by Theorenl2 thatSis a regular duo semigroup
and that (12) implies (1). This completes the proof.

Theorem 14For a semigroup S, the following conditions
are equivalent:

1)S is a regular duo semigroup.

2)fg* gg* fs = fsUgs for every SU-ideal§and every SU-
bi-ideal gs of S.

3)fsxgs* fs = fsUgs for every SU-ideal §and every SU-
quasi-ideal g of S.

ProofFirst assume that (1) holds. Lét and gs be any
SU-bi-ideal and anySU-ideal of S, respectively. Then, we
have

fox gg* fsD (fs B) % B = fgx (0% 0) Dfgx B fs

On the other hand, sinc®is regular and duofg is anSU-
ideal ofSby Theoreni 1l Hence, we have

fs* gs* fsD (8 + gs) * 0Ogs* 629
and so

(fs* gs* fs) D fsUgs

In order to show the converse inclusion, ktbe any
element ofS. Then, sinceS is regular, there exists an
elementin Ssuch that

a=axa= (axaxa

Thus, we have

(fs*gsx fs)(a) = [fs* (gs* fs)](a)

() [fs(a) U (gs* fs)(a)]

a=pq
fs(ax) U

(gs* fs) (axa)

)u{ 1 [g

axa:bc

fs(ax) U (gs(a) U fs(xa))
fs(a) U (gs(a) U fs(a))
= fs(a@)Ugs(a)
(fsUgs)(a)

= fs(ax) b) U fs(c)

(©)]}
c
c

=0
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and sofg* gs* fsC fsUgs Thus, we obtain that
fs * Jg fs = fSOgS-

Hence, (1) implies (2). It is clear that (2) implies (3).
Assume that (3) holds. LeE and Q any two-sided
ideal and quasi-ideal o8, respectively anda be any
element ofENQ anda ¢ EQE. Then,a€ E andac Q
and there do not exisk,z € E andy € Q such that
a = xyz Since “gc and Y is an SU-ideal and
SU-quasi-ideal ofS, respectively, we have

Fee(a) = S (a) = 0.

and
(See * S+ Fee) (8) = U

But, this is a contradiction and so= EQE. Thus,ENQ C
EQE. For the converse inclusion, latbe any element of
EQE anda ¢ ENQ. Then, there exist,z€ E andy € Q
such thata = xyz Thus,
(yEconc)(a) =U
and
(yEc * ch * yEc)(a) =0

But this is a contradiction and sa € EN Q. Thus,
EQEC ENQ and soEQE = ENQ. It follows from
Proposition12 that S is regular duo. Hence, (3) implies
(1). This completes the proof.

5 Right (left) zero semigroup

In this section, we characterize right (left) zero semigi®u
in terms ofSU-ideals ofS. A semigroupSis calledright
(left) zeroif xy=y (xy=x) forallx,ye S.

Proposition 5For a semigroup S, the following conditions
are equivalent:

1)The set of all idempotent elements of S forms a left

(right) zero subsemigroup of S.
2)For every SU-left (right) idealdfof S, &(e) = fs(f) for
all idempotent elements e and f of S.

ProofFirst assume that the sdt of all idempotent
elements ofS is a left zero subsemigroup db Let
g, f € Isandfs be anSU-left ideal of S. Then, since

ef=e and fe=f
we have
fs(e) = fs(ef) C fs(f) = fs(fe) C fs(e)

and so

fs(e)
Thus, (1) implies (2).

fs(f).

Conversely, assume that (2) holds. Siiis regular,
it is obvious thats # 0. Moreover, the soft characteristic
function . f))c is an SU-left ideal of S Thus, by
assumption, we have

e (@) = Fne(f) =0

and soe € L[f] = Sf. (Here note that, iSis a regular
semigroupl-[a] = Safor everya € S([9]). Thus, for some
X € S, we have

e=xf=x(ff) = (xf)f =ef

This means thats is a left zero semigroup. Thus (2)
implies (1). The case whe#is right zero, the proof can
be seen similarly. This completes the proof.

Corollary 1.For an idempotent semigroup S, the following
conditions are equivalent:
1)S is left (right) zero.
2)For every SU-left (right) idealdfof S, &(e) = fg(f) for
all elements gf € S.

Proposition 6Let S be a group. Then, every SU-bi-ideal
of S is a constant function.

ProoflLet Sbe a group with identitye and fs be anySU-
bi-ideal ofSanda be any element d&. Then,
fs(a) = fs(eag C fs(e) U fs(e) = fs(e) = fs(eg) =
fs((aat)(ata)) = fs(a(atat)a) C fs(a) U fs(a) =
fs(a)
and sofg(e) = fs(a). This implies thatfs is a constant
function.

Proposition 7 For a regular semigroup S, the following

conditions are equivalent:

1)S is a group.

2)For every SU-bi-ideal § of S, §(e) = fs(f) for all
idempotent elementsec S.

Proof Assume that (1) holds. Ldt be anySU-bi-ideal of
S. Then, it follows from Propositios that fs is a constant
function. This implies that

fs(e) = fs(f)

for all idempotent elements f € S. Thus (1) implies (2).

Conversely, assume that (2) holds. kestnd f be any
idempotent elements db. As is well-known, ifSis a
regular semigrouB[x], the principal ideal o5 generated
by x € Sis B[x] = xSx ([9]). Moreover, since the soft
characteristic function”|gf)c is an SU-bi-ideal of Sand
sincef € B[f], we have

Zg1)e(8) = Hgi)e(f) =0
and sce e B[f] = fsf, which means that¢= fxf for some

x € S. One can similarly obtain thdt= eyefor somey € S,
Thus, we have

e=fxf=1x(ff)=(fxf)f =ef=e(eye = (eeye=eye=f

Since S is regular,ls # 0 and S contains exactly one
idempotent. Thus, it follows from ¢], p.33) thatSis a
group. Thus (2) implies (1). This completes the proof.
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6 Right (left) simple semigroups

ProofLet fs be anSU-bi-ideal of Sanda andb be any
elements ofS. Then, sincesis left simple, there exists an

In this section, we define soft union simple semigroup®&lémentin Ssuch that

and give the relation of soft union simple semigroup with

simple semigroup. A semigrou$ is called left (right)
simpleif it contains no proper left (right) ideal @and is
calledsimpleif it contains no proper ideal.

Definition 15.A semigroup S is called soft union left
(right) simple if every SU-left (right) ideal of S is a

constant function and is called soft union simple if every

SU-ideal of S is a constant function.

Theorem 15For a semigroup S, the following conditions
are equivalent:

1)S is left (right) simple.
2)S is soft union left (right) simple.

ProofFirst assume thais left simple. Letfs be anySU-
left ideal of Sanda andb be any element o8. Then, it
follows from ([9], p. 6) that there exist elementsy € S
such thab = xaanda = yb. Hence, sinc&is anSU-left
ideal of S,

fs(a) = fs(yb) C fs(b) = fs(xa) C fg(a)

and sofg(a) = fg(b). Sincea andb be any elements &,
this means thafs is a constant function. Thus, we obtain
thatSis soft union left simple and (1) implies (2).

Conversely, assume that (2) holds. llebe any left
ideal of S. Then, ¥ac is an SU-left ideal of S. By
assumption,.“ac is a constant function. Lex be any
element ofS. Then, sincéA # 0,

<yp\c(X) =0

and sax € A. This implies thaSC A, and scS= A. Hence,
Sis left simple and (2) implies (1). In the case, wieis
soft union right simple, the proof follows similarly.

Theorem 16For a semigroup S, the following conditions
are equivalent:

1)S is simple.
2)S is soft union simple.

As is well-known, a semigrougis a group if it is left and
right simple. From this, we have the following theorem:

Proposition 8 For a semigroup S, the following conditions
are equivalent:

1)S is a group.
2)S is both soft union left and soft union right simple.

Proposition9Let S be a left simple semigroup. Then,

every SU-bi-ideal of S is an SU-right ideal of S.

b=xa
Then, sincefs is anSU-bi-ideal of S, we have
fs(ab) = fs(a(xa)) = fs(a) U fs(a) = fs(a)

which means thatfs is an SU-right ideal of S. This
completes the proof.

7 Semilattices of left (right) simple
semigroups

In this section, we characterize a semigroup that is a
semilattice of left (right) simple semigroups BY-ideals.

A semigroupSis asemilattice of left simple semigrouis

it is the set-theoretical intersection of the family of left
simple semigroup$§ (i € M) such that,

S=(S

ieM

such that the produc8S; andS;S are both contained in
the sames (k € M).

Theorem 17[9,22] For a semigroup S, the following
conditions are equivalent:

1)S is a semilattice of left simple semigroups.

2)S is left regular and every left ideal of S is two-sided.

3)S is left regular and AB- BA for any left ideals A and B
of S.

Theorem 18[28] For a left regular semigroup S, the
following conditions are equivalent:

1)Every leftideal of S is a two-sided ideal of S.
2)Every SU-left ideal of S is an SU-ideal of S.

Theorem 19For a semigroup S, the following conditions
are equivalent:

1)S is a semilattice of left simple semigroups.

2)S is left regular and every SU-left ideal of S is an SU-
ideal of S.

3)fs* gs = fsUgs for every SU-left ideals of S.

4)The set of all SU-left ideals of S is a semilattice under
the soft union product.

5)The set of all left ideals of S is a semilattice under the
multiplication of subsets.

ProofThe equivalence of (1) and (2) follows from
Theoreml7 and Theoreni8. Assume that (2) holds. Let
fs andgs be anySU-left ideals ofSanda be any element
of S. Then, sinceSis left regular, there exists an element
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x € S such thata = xa®. By assumption,fs is also an
SU-rightideal ofS. So, we have

(fsxgs)(a) = [ (fs(y)Ugs(2))
a=yz
C (fs(xa)Ugs(a))
C (fs(@)ugs(a))
= (fsUgs)(a)

Thus, fs* gsC fsJgs. On the other hand, by assumption,
gs is SU-right ideal ofS, and so

(fsxgs)(a) = [ (fs(y)Ugs(2))
a=yz
2 (fs(y2 Ugs(y2)
= fs(a)Ugs(a)
= (fsUgs)(a)

Thus, fg* gsi stgs. Thus, fgx* Os = fSOgS and so (2)
implies (3).

(3) implies (4) is clear. Assume that (4) holds. LAt
andB be any left ideals oS anda be any element 0BA
anda ¢ AB. Then, there exisy € B andz € A such that
a = yzand there do not exish € A andn € B such that
a = mn Then, since the soft characteristic functicfic
and.“ge areSU-left ideals ofS, we have

(’SﬂBC *,SﬂAc)(a) =0
and
(jﬂAc * YBC)(a) =U.

But this is a contradiction. Hencagc AB. Thus,BAC AB.
Similarly, we haveAB C BA. Thus,AB= BA

In order to see that any left ideAlof Sis idempotent,
let a be any element oA anda ¢ AA Since.xc is an
SU-left ideal of S, we have

(yAc*yAc)(a) =U

and
Iac(@) =0.

But this is a contradiction and soc A%. Thus,A C A% and
SOA = A%, Therefore (4) implies (5).

Finally, assume that (5) holds. LAtbe any left ideal
of Sanda be any element d&. Then, since&itself is a left
ideal, by assumption we have

AS=SACA

Thus,Ais a right ideal ofS, and soA is a two-sided ideal
of S.

Let a be any element o§. Then, since the left ideal
L[a] of Sis idempotent by assumption and sirece L[a,
we have

acLlalla = ({a}USa({a}jusa =
{a&?} uaSauS&USaSac {a’} U(aSaSaJS&uUSaSa
{&?} uSaSaJS& C {a?} US&

which implies thatS is left-regular. Thus, it follows by
Theorem17-(2) that S is a semilattice of left simple
groups. That is to say (5) implies (1). This completes the
proof.

The left-right dual of Theorer9reads as follows:

Theorem 20For a semigroup S, the following conditions
are equivalent:

1)S is a semilattice of right simple semigroups.

2)S is right regular and every SU-right ideal of S is an
SU-ideal of S.

3)fs* gs = fsUgs for every SU-right ideals of S.

4)The set of all SU-right ideals of S is a semilattice under
the soft union product.

5)The set of all right ideals of S is a semilattice under the
multiplication of subsets.

Theorem 21[28] For a semigroup S, the following
conditions are equivalent:

1)S is left regular.
2)For every SU-left ideal fof S, §(a) = fs(a?) for all
acs.

Theorem 22For a semigroup S, the following conditions
are equivalent:

1)S is a semilattice of left simple semigroups.
2)For every SU-left ideal & of
fs(a) = fs(a®) and f(ab) = fs(ba) foralla,be S.

ProofAssume thatS is a semilattice of left simple
semigroups. Letfs be anySU-left ideal of S. Then, by

Theoreml7-(2), Sis left regular andfs is anSU-ideal of

S. Let a be any element 08. Thus, by Theoren21, we

have

S;

fs(ab) = fs((ab)?) = fs(a(ba)b) C f5(ba).
Similarly, we havefs(ba) C fs(ab). Hence, we obtain that
fs(ab) = fs(ba).

Thus, (1) implies (2).

Conversely, assume that (2) holds. lfgtbe anySU-
ideal of S. Since fs(a) = fs(a?) for all a < S, it follows
from TheorenR1thatSis left regular. LetA andB be any
left ideal of Sandab be any element oAB. Since the soft
characteristic functio”| pg)c is anSU-leftideal ofSand
sincebac L[ba], we have

Lipa)e(@b) = S pg)e(ba) =0
This implies that
abe L[ba = {ba} USbaC BAUSBAC BA

and so we havAB C BA. Similarly, it can be seen that the
converse inclusion holds. Thus, we obtain that

AB=BA

Then, it follows by Theoremi 7-(3) thatSis a semilattice
of left simple semigroups. Therefore (3) implies (1). This
completes the proof.

(@© 2015 NSP
Natural Sciences Publishing Cor.



Inf. Sci. Lett.4, No. 1, 13-30 (2015) www.naturalspublishing.com/Journals.asp

21

N SS 7=

The right dual of Theoreri2 reads as follows:

Theorem 23For a semigroup S, the following conditions
are equivalent:

1)S is a semilattice of right simple semigroups.
2)For every  SU-right ideal & of
fs(a) = fs(a?) and f(ab) = fs(ba) foralla,be S.

Sy

8 A semilattice of left (right) groups

In this section, we characterize a semigroup that is
semilattice of left (right) simple groups §U-ideals. An
elementa of Sis said to bdeft (right) cancellablef, for
anyx,y € S ax= ay (xa= ya) impliesx=y. A semigroup
Sis calledleft (right) cancellativaf every element oSis
left (right) cancellative. A semigrouf is called aleft
groupif it is left simple and right cancellableq]), that is,
for all a € S, there exists a unique elemen¢ Ssuch that
xa® = a ([21]). Dually, a semigrougs is called aright
groupif it is right simple and left cancellable.

Theorem 24[21] For a semigroup S, the following
conditions are equivalent:

1)S is a semilattice of left groups.
2)S is regular and a§ Sa for every & S.

Theorem 25Let S be a semigroup that is a semilattice of

Thus,

ab= (axa)b = (ax)(ab) = (ax)(ya) = a(xy)a.
Sincefsis anSU-bi-ideal of S,

fs(ab) = fs(a(bzh) = fs((a)b(zb)) < fs(b).
Hence,fs is anSU-left ideal ofS.

Theorem 27[29] For a semigroup S the following
conditions are equivalent:

1)S is regular.
a2) fsugs = fs*gs* fsfor every SU-quasi-ideakfof S and
SU-ideal g; of S over U.

Theorem 28For a semigroup S, the following conditions
are equivalent:

1)S is a semilattice of left groups.

2)fsUgs = fs* gs for every SU-quasi-ideakfand SU-left
ideal gsof S.

3)fsUgs = fs* gs for every SU-quasi-ideal sf and
SU-ideal g of S.

4)fdJgs = fs* gs for every SU-quasi-ideal sf and
SU-interior ideal g; of S.

5)fsUgs = fs* gs for every SU-bi-ideal § and SU-left
ideal gsof S.

6)fsUgs = fs* gs for every SU-bi-ideal § and SU-ideal
gsof S.

left groups. Then, every SU-(generalized) bi-ideal of S is?) fsJgs = fs*gsfor every SU-bi-idealdand SU-interior

an SU-rightideal of S.

ProofLet fs be anySU-bi-ideal of S, anda and b any
elements ofS. Then, it follows from Theoren4 that
there exist elementsy € Ssuch that

a=axaandab=ya
Thus,
ab= (axab = (ax)(ab) = (ax)(ya) = a(xy)a.
Sincefsis anSU-bi-ideal of S,
fs(ab) = fs(a(xy)a) C fs(a)U fs(a) = fs(a).

Hence,fsis anSU-right ideal ofS.

ideal gsof S.
8)fsUgs = fs* gs for every SU-bi-ideal § and SU-left
ideal gsof S.
9)fsUgs = fsxgsfor every SU-generalized bi-idead &nd
SU-leftideal g of S.
10)fsUgs = fs* gsfor every SU-generalized bi-idead &nd
SU-ideal g of S.
11)fsUgs = fs* gsfor every SU-generalized bi-idead &nd
SU-interior ideal g; of S.
12)fsUgs = fs*gs for every SU-one-sided idead &and SU -
ideal gsof S.
13) fsUgs = fs* gs for every SU-one-sided idead &nd SU -
interior ideal gs of S.
14)S is regular left duo.

ProofFirst assume that (1) holds. L& and gs be any
SU-generalize bi-ideal ofs and SU-interior ideal of S,

Corollary 2.Let S be a semigroup that is a semilattice of fespectively anda be any element of. Then, sinceSis
left groups. Then, every SU-left ideal of S is an SU-rightJ[re]g;“ar by Theorer@4, there exists an elemext Ssuch
a

ideal of S, that is to say, S is soft union left duo.

Theorem 26Let S be a semigroup that is a semilattice of
left groups. Then, every SU-interior ideal of S is an SU -left

ideal of S.

ProofLet fs be anySU-interior ideal ofS, anda andb any
elements of. Then, it follows from Theorer@4 that there
exist element € Ssuch that

b=bzh

a= axa(= axaxg.
Sincegsis anSU-interior ideal ofS, gs((x)a(xa)) C gs(a).
Thus, we have
(fsxgs)(@) = () (fs(p)Ugs())
a=pq
fs(a) Ugs((x)a(xa))
fs(a) Ugs(a)
(fsUgs)(a)

1NN
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and sofgx* gsi fsUgs. Moreover, it follows by Theorem
25that fsis anSU-right ideal ofS. Thus, we have

(fsxgs)(a) = [ (fs(p)Ugs(q))

a=pq

2 ) (fs(pa)Ugs(pa))
a=pq

) (fs(a)Ugs(a))
a=pq

fs(a) Ugs(a)

= (fsUgs)(a)

and so fg x gsi fsUgs. Therefore, we obtain that
fsx gs = fsUgs and that (1) implies (10). It is clear that
(10) implies (9), (9) implies (8), (8) implies (5), (5)
implies (2), (10) implies (7), (7) implies (6), (6) implies
(5), (5) implies (2), (7) implies (4), (4) implies (3), (3)
implies (2) and (4) implies (12), (12) implies (11).

Assume that (2) holds. Then, it follows by Theor&ih
thatSis regular. LetQ be any quasi-ideal db. Then, the
soft characteristic functiot¥qe is anSU-quasi-ideal oS,
Sincef itself is anSU-left ideal ofSand so by assumption,
we have

S = yQCOé = S * 0.

Thus, g is an SU-right ideal of S, and soQ is a right
ideal of S. Thus, any quasi-ideal @is a right ideal ofS.
Let a € S Then, the quasi-ide&@ais a right ideal ofS.
SinceSis regular, we have

aScC (aSgS=((a9a)SC (SgScC Sa

Thus,aSC Saand sinceSis regular,Sis a semilattice of
left groups by Theorer4. Thus, (2) implies (1).

Assume that (11) holds. Lég andgs be anySU-right
ideal and anySU-left ideal of S, respectively. Then, since

6 itself is anSU-ideal of Sand so by assumption, we have

Os= 9505 = Qs* 6

Thus,gs is anSU-rightideal ofS, that is,gs is anSU-ideal
of S. Thus, by assumptiorfg x gs = fsUgs for everySU-
right ideal fs of SoverU andSU-left idealgs of SoverU.
It follows by Theoremd thatSis regular. As is proved in
(2) implies (1), we havaSC Sa Thus,Sis a semilattice
of left groups, so (11) implies (1).

Assume that (1) holds. Then, it follows by Theorgr
thatSis regular. Moreover, it follows by Corollar® that
Sis soft union left duo and so by TheoréSis left duo.
Thus (1) implies (13).

Conversely assume that (13) holds. Then, it follows by

Theoren® thatSis left duo, that is, every left ideal &is a
rightideal ofS. In order to prove thabis semilattice of left
groups, by Theorer24, it suffices to show thatSC Safor
allae S Asis provedin (2) implies (1), we haaSC Sa
Thus,Sis a semilattice of left groups, so (13) implies (1).
This completes the proof.

The left-right dual of Theorer29reads as follows:

Theorem 29For a semigroup S, the following conditions
are equivalent:

1)S is a semilattice of right groups.

2)fsJUgs = fs* gs for every SU-quasi-ideal sf and
SU-right ideal g; of S.

3)fsUgs = fs* gs for every SU-quasi-ideal sf and
SU-ideal g of S.

4)fsJgs = fs* gs for every SU-quasi-ideal sf and
SU-interior ideal g of S.

5)fsUgs = fs* gs for every SU-bi-ideal § and SU-right
ideal gsof S.

6)fsUgs = fs* gs for every SU-bi-ideal § and SU-ideal

gsof S.

7)fsUgs = fs*gsfor every SU-bi-idealdand SU-interior
ideal gs of S.

8)fsUgs = fs* gs for every SU-bi-ideal § and SU-right
ideal gsof S.

9)fsUgs = fs* gs for every SU-generalized bi-idead &nd
SU-right ideal g; of S.

10) fsUgs = fs*gs for every SU-generalized bi-idead &nd

SU-ideal g of S.

11)fsUgs = fs* gsfor every SU-generalized bi-idead &nd

SU-interior ideal g of S.

12)fsUgs = fs* gs for every SU-one-sided idead &nd SU -

ideal gsof S.

13)fsUgs = fs* gs for every SU-one-sided idead &ind SU -

interior ideal gs of S.

14)S is regular right duo.

Theorem 30For a semigroup S, the following conditions
are equivalent:

1)S is a semilattice of left groups.

2)fsUgs = fsxgs fsfor every SU-quasi-ideakfand SU -
left ideal g5 of S.

3)fsUgs = fs*gs* fsfor every SU-bi-ideal§and SU-left
ideal gsof S.

4)fsUgs = fs* gs* fsfor every SU-generalized bi-idead f
and SU-leftideal gof S.

ProofFirst assume that (1) holds. L& andgs be anySU-
generalized bi-ideal db. Then, we have

fs* Os* fsi fs* 5* fsi fs

On the other hand, since ti8J-left ideal gs is anSU-bi-
ideal of S, we have

fs* gs* fsi(g* gs) * éigs* 5595
Therefore, we have
fs* gs* fs2 fsUgs.

Let a be any element 08. Then, it follows by Theorem
24 that there exist elemenxsy € Ssuch thata = axaand
ax=ya. Hence,

ax= axaxax= axaxya) = (axa)(xya).
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Thus,

(fs*0sx fs)(a) = [(fs*gs) * fs](a)

() [(fsxgs)(p) * fs(q)]
a=pq
C (fsxgs)(a U fs(a)
={ ) (fs(p)Ugs(q
ax=pq
(fs(axa) Ugs(xya)) U fs(a)
(fs(a)ugs(a)) U fs(a)
= (fsJgs)(a)
and so,fs* gs* fsC fsUgs. Thus, fs* gs* fs = fsUgs and
(1) implies (4). It is clear that (4) implies (3) and (3)
implies (2).
Assume that (2) holds. Ldt be anySU-quasi ideal of

S. Then,0 is anSU-left ideal of Sand so by assumption,

)) U fs(a)

<
<

fs= fsU = fs* O fs
Thus,it follows by Theorerb thatSis regular. On the other
hand, letgs be anySU-left ideal ofS. then, by assumption,

Os= éGgs: é*gs*é

Thus,gs is anSU-interior ideal ofS. SinceSis regulargs
is an SU-ideal of S by Theorem6. Therefore, we obtain
that everySU-left ideal of Sis an ideal ofS. It follows by
Theorem? that everySU-left ideal of Sis anSU-ideal of
S. Leta € S SinceSis regular, the left idegbais an ideal
of S. Thus, we have

aSC (aSgSC a((SasS) Ca(sa = (aSac Sa
Thus,aSC Saand sinceSis regular,Sis a semilattice of
left groups by Theorer@4. Thus (2) implies (1).

The left-right dual of TheorerB0reads as follows:

Theorem 31For a semigroup S, the following conditions
are equivalent:

1)S is a semilattice of right groups.

2)fsUgs = fsxgsx fsfor every SU-quasi-ideakfand SU -
rightideal gs of S.

3)fsUgs = fs*gs* fs for every SU-bi-ideal § and SU-
rightideal gs of S.

4)fd0gs = fs* gs* fs for every SU-generalized bi-idead f
and SU-rightideal g of S.

Theorem 32For a semigroup S, the following conditions
are equivalent:

1)S is a semilattice of left groups.

2)fsUgs = fs* 6 * g for every SU-quasi-ideakfand SU-
left ideal g5 of S.

3)fsUgs = fs* B x gs for every SU-bi-idealfand SU-left
ideal gs of S.

4)fsUgs = fgx 0 « gs for every SU-generalized bi-idead f
and SU-leftideal gof S.

Proof First assume that (1) holds. L& andgs be anySU-
generalized bi-ideal an8U-left ideal of S, respectively.
Then, we have

fs* O gs= fs* (8+gs)Dfs* s 0 * gsOFs.

Moreover, by Theorerd5that fsis anSU-right ideal ofS.
Thus,

fox* é*gsz (fsx é) 5 gsD fg* ggD fg* 6> fs.

Thus, we havésx 0 % gsD fsUgs.

Letabe any element d&. Then, it follows by Theorem
24 that there exist elementsy € Ssuch thata = axaand
ax=ya. Hence,

ax= axaxax= axaxya) = (axa)(xya).

Thus, we have

(fsxB+gs)(a) = [(fs*6) +gg(a)

[ (fs*6)(p)] *gs(a)

a=pq

(fsx 9)(ax) Ugs(a)

{ N (fs(pub(a)}Ugs(a)
ax=pq
(fs(axa)ue(aya))ugs( a)
(fs(a)ud)Ugs(a)
f
(

N

s(a)ugs(a)
fsUgs)(a)

1N 1N

and so,fg* 0 * gsi fsUgs. And so, fs* 8 * gs = fsUgs.
Thus, (1) implies (4).
Itis clear that (4) implies (3) and (3) implies (2).
Assume that (2) holds. Letfs and gs be any
SU-quasi-ideal an®U-left ideal of S, respectively. Then,
by assumption, we have

stgsz fox é*gsz fox (5* gs)ifs:kigs.

Hence, it follows by Theorermi thatSis regular. Legs be
anySU-left ideal of S. Then, sinceays is anSU-quasi-ideal

of Sand sinced itself is anSU-left ideal ofS, we have
Os= 9505 =(0s* 6+6.

LetL be any left ideal of5, a € L anda ¢ LSS Then, the
soft characteristic functioo” ¢ is an SU-left ideal of S,
Thus,

Ac(a)=0

and
(Ae*x Se*xSs)(@)=U
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which is a contradiction, and soc LSS Thus,L C LSS
Moreover, leta € LSSanda ¢ L. Then,

ch (a) =U

and
(ch * ,5”56 * yg)(a) =0
which is a contradiction, and soc L. Thus,LSSC L, and

SOLSS=L. SinceSais a left ideal ofS, we have(Sg)SS=
Saand so,

aSC (aSgS=a(SaS=a((SaS9SC a((SaSg C a(Sa = (a9acC Sa

It follows by Theorem24 that Sis a semilattice of left
groups and so (2) implies (1).

The left-right dual of TheorerB2 reads as follows:

Theorem 33For a semigroup S, the following conditions
are equivalent:

1)S is a semilattice of right groups.

2)fsUgs = fs* 6 * gs for every SU-quasi-ideakfand SU-
right ideal gs of S.

3)fsUgs = fs* 6 = gs for every SU-bi-ideal § and SU-
right ideal gs of S.

4)fs0gs = fsx 0+ gs for every SU-generalized bi-idead
and SU-right ideal g of S.

Theorem 34For a semigroup S, the following conditions
are equivalent:

1)S is a semilattice of left groups.

2)fsUhsUgs = fs* hg* gs for every SU-quasi-ideakf for
every SU-ideal gand every SU-left idealgpf S.

3)fsUhsUgs = fs* hs x gs for every SU-bi-ideal 4, for
every SU-ideal gand every SU-left idealqpf S.

4)fd0hsUgs = fs* hg x gs for every SU-generalized
bi-ideal fs, for every SU-ideal § and every SU-left
ideal gs of S.

ProofFirst assume that (1) holds. Lefs be any
SU-generalized bi-ideal o8, hs be anySU-ideal of Sand
gs be anySU-left ideal of S. Then, we have

fo* Ng# gsD 0 + (8 + gs) D0 * gsD0s

and e .
fs* hs* 9529 * hs* G;Dhs

Moreover, by Theoren25, sinceSU-generalized bi-ideal
fs of Sis anSU-right ideal ofS, we have

fs* hs* gSé(fS* é) * éi fs* Aéi fS-
Hence, we have
fs* hs* gsi sthsOgs.

Leta € S Then, by Theoren24, a= axaandax= yafor
somex,y € S. Then,

ax= axaxax= axaxya) = (axa)(xya).

Hence, we have
(fsxhsxgs)(a) = [(fsxhs)=gd(a)
[ [ (fsxhs)(p)] *gs(q)
a=pq
€ (fsxhs)(ax)Ugs(a)
{ N (fs(p)Uhs(a))} Ugs(a)
ax=pq
(fs(axa) Uhg(xya)) Ugs(a)
(fs(a)Uhs(a)) Ugs(a)
(fsghsogs) (a)
and so, fs * hs % gsCfsUhsUgs.
fs* hgx gs = fsUhsUgs and (1) implies (4).
Itis clear that (4) implies (3) and (3) implies (2).
Conversely, assume that (2) holds. lfetbe anySU-

guasi-ideal ands be anySU-left ideal ofS. Then, sinced
itself is anSU-ideal of S, we have by assumption that

N

1NN

Thus,

fsUgs = fsgéggs: fox é*gsz fs*(é* gs)ifs* Os.

It follows by Theoremd thatSis regular. As in the above
Theorem, one can easily show tle8C Sa Thus,Sis a
semilattice of left groups. Thus, (2) implies (1). This
completes the proof.

The left-right dual of TheorerB4 reads as follows:

Theorem 35For a semigroup S, the following conditions
are equivalent:

1)S is a semilattice of right groups.

2)fsUhgUgs = fs* hg* gs for every SU-quasi-ideakf for
every SU-ideal gand every SU-right idealgof S.

3)fsUhsUgs = fs* hs x gs for every SU-bi-ideal 4, for
every SU-ideal gand every SU-right idealgof S.

4)fs0hsUgs = fs* hs * gs for every SU-generalized
bi-ideal fs, for every SU-ideal § and every SU-right
ideal gsof S.

9 A semilattice of groups

Let Sbe a semigroup. We shall say ttats asemilattice
of groupsif it is the set-theoretical union of a family of
mutually disjoint subgroup&; (i € M) such that, for any
pair i,j in M, the productsGiG; and G;G; are both
contained in the same subgrou@ (k € M). The
following is due to P,17,21].

Proposition 10[9,17,21] For a semigroup S,
following conditions are equivalent:

the

1)S is a semilattice of groups.

2)Sisregular and a& Sa for all ac S.

3)LR=LNR for every left ideal L and every right ideal R
of S.

4)LB=LNB for every left ideal L and every bi-ideal B of
S.
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5)BR= BNR for every bi-ideal B and every right ideal R 11)fs* gs = fsUgs for every SU-bi-ideal § and every SU-

of S.

quasi-ideal g of S.

6)S is regular and every one-sided ideal of S is two-sidedL2) fsx gs = fsggs for all SU-bi-ideals § and g5 of S.

13)fs* gs = fsUgs for every SU-bi-ideal §and every SU-

Proposition 11Let S be a semigroup that is a semilattice “generalized bi-ideal gof S.
of groups. Then, every SU-(generalized) bi-ideal of S is &{y) fs« g5 = f5Ugs for every SU-generalized bi-ideat &nd

SU-ideal of S.

ProofLet fs be anySU-bi-ideal of Sanda andb be any
elements ofs. Then, it follows by Propositiod0 that

abe (aSgsS= (a9 (a9 = (aS)(Sa = a(SgacC aSa

Thus, there exists an elemexnt S such thatab = axa
Hence,

fs(ab) = fs(axa) C fs(a) U fs(a) = fs(a).
Hence,fsis anSU-right ideal ofS. Similarly,
abe S(bSh = (Sb(Sb = (bS)(Sh = b(SSb C bSb

Thus, there exists an element S such thatab = bxb.
Hence,

fs(ab) = fs(bxb) C fs(b) U fs(@) = fs(b).

Therefore,fs is anSU-left ideal of S. That is to sayfs is
anSU-ideal ofS.

every SU-rightideal gof S.

15) fs* gs = fsUgs for every SU-generalized bi-idead 4nd

every SU-quasi-idealqpf S.

16) fs* gs = fsUgs for every SU-generalized bi-idead 4nd

every SU-bi-ideal gof S.

17)fs* gs = fsUgs for all SU-generalized bi-idealssfand

gsof S.

18)S is regular and every SU-one-sided ideal of S is an SU -

ideal of S.

19)The set of all SU-quasi-ideals of S is a semilattice under

the multiplication of soft union product.

20)The set of all SU-bi-ideals of S is a semilattice under the

multiplication of soft union product.

21)The set of all SU-generalized-bi-ideals of S is a

semilattice under the multiplication of soft union
product.

ProofFirst assume that (1) holds. In order to prove that
(17) holds, letfs andgs be anySU-generalized bi-ideals
of S. Then, it follows by Propositiod 1 that fs andgs are
SU-ideals ofS. SinceS is regular by Propositiord0, it

follows from Theorem# that fs+ gs = fsUgs. Hence, we

Proposition 12[17] For a semigroup S, the following obtain that (1) implies (17). It is clear that (17) implies

conditions are equivalent:
1)S is a semilattice of groups.

2)The set of all (generalized) bi-ideals of S is a semilattic

under the multiplication of subsets.

(16), (16) implies (15), (15) implies (14), (14) implies
(10), (10) implies (6), (6) implies (2), (17) implies (13),
(13) implies (12), (12) implies (11), (11) implies (10),
(23) implies (9), (9) implies (8), (8) implies (7), (7)
implies (6) and (9) implies (5), (5) implies (4), (4) implies

Now, we shall give a characterization of a semigroup(3) and (3) implies (2).

which s a semilattice of groups in terms $b-ideals of
semigroups.

Theorem 36For a semigroup S, the following conditions

are equivalent:

1)S is a semilattice of groups.

2)fsxgs = fsUgs for every SU-left idealdand every SU-
right ideal gs of S.

3)fs* gs = fsUgs for every SU-leftidealdand every SU-
quasiideal g of S.

4)fsxgs = fsUgs for every SU-left idealdand every SU-
bi-ideal gs of S.

5)fs*gs = fsUgs for every SU-left idealdand every SU-
generalized bi-ideal gof S.

6)fs* gs = fsUgs for every SU-quasi-idealsfand every
SU-right ideal g; of S.

7)fs* gs = fsUgs for all SU-quasi-idealsfand gs of S.

8)fs* gs = fsUgs for every SU-quasi-idealsfand every
SU-hi-ideal g of S.

9)fsx gs = fsUgs for every SU-quasi-idealsfand every
SU-generalized bi-idealgpf S.

10) fs* gs = fsUgs for every SU-bi-ideal § and every SU-

rightideal gs of S.

Assume that (2) holds. Ldt andR be any left and
right ideal ofS, respectively. Lea be any elementdfNR
anda ¢ LR. Then,a e L anda € Rand there do not exist
x € L andy € R such thata = xy. Since.#{c and .Y is
an SU-left ideal andSU-right ideal of S, respectively, we
have

Ac(a) = Sre(a) =0.

and
(ch * YRc)(a) =U

But this is a contradiction, sac LR. Thus,LNRC LR.
For the converse inclusion, latbe any element dfR and
a¢ LNR Then, there existe L andze Rsuchthaa=yz
Thus,

(AcUAc) () =U

and

(AexIR)(@) = [ (S(MUIRe(N)) C (Ae(y)UTRe(2) =0
a=mn

Hence,(.71c x Yre)(a) = 0. But this is a contradiction.

This implies thata € LN R and thaLR C LNR. Thus, we

haveLR = LNR. It follows by PropositionlO thatSis a

semilattice of groups and so (2) implies (1).
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Assume that (1) holds. Then, as shown above, (17)Theorem 37[28] For a semigroup S the following
holds and (21) holds. It is obvious that (21) implies (20) conditions are equivalent:

and (20) implies (19). Assume that (19) holds. Then
since everySU-quasi-ideal ofSis idempotent, it follows
thatSis regular (R9. Let L andR be any left and right
ideal of S, respectively. Then, sincd and R are
quasi-ideal ofS, soft characteristic functions” ¢ and
Yre are SU-quasi-ideal of S. Thus, by assumption
Aex Sre = Sre*x Ae. Letae LRanda ¢ RL Then,

(ch * <EﬁRC)(a.) =0

and
(yRc * ch)(a) =U.

But this is a contradiction, henceR C RL One can
similarly show thatRL C LR and soLR = LUR. Then,
sinceSis regular, we have

RNL=RL=LR

It follows by Proposition12 that S is a semilattice of
groups. Thus (19) implies (1).

Now assume that (2) holds. To see that (18) holds, le

fs be anySU-left ideal of S. Sinced is an SU-right ideal
of S, we have _ _
fsz stG = fs* 0

Thus, fsis anSU-right ideal ofS. One can similarly show
that everySU-right ideal of Sis anSU-left ideal of S. As
shown aboveSis regular. Thus, (2) implies (18). Assume
that (17) holds. In order to show that (1) holds,AeandB
be any generalized bi-ideals 8fanda be any element of
ABanda ¢ BA. Then, the soft characteristic functiofe
and.”gc areSU-generalized bi-ideals &. Thus,

(ygc*yAc)(a) =U

and
Ipex Spe)(a) =0.

But this is a contradiction and soc BA. Thus,AB C BA.

It can be seen in a similar way that the converse inclusion

holds. Thus, we obtain thaAB = BA. Now, we shall
prove that any generalized bi-ideal ®fs idempotent. Let
B be any generalized bi-ideal &anda € B anda ¢ BB.
Then, since the soft characteristic functiofge is an
SU-generalized bi-ideal d§, we have

(Spex Spe)(@) =U

and
See(a) =0

which is a contradiction and sa € BB. Thus,B C BB.
Similarly, one can show thaBB C B. Hence,B = BB.
This means that the set of all generalized bi-idealS isf

'1)S is completely regular.

2)Every bi-ideal of S is semiprime.

3)Every SU-bi-ideal of S is soft union semiprime.

4)fs(a) = fs(a?) for every SU-bi-ideal § of S and for all
acS.

Theorem 38For a semigroup S, the following conditions
are equivalent:

1)S is a semilattice of groups.

2)For every SU-quasi-idealsfof S, §(a) = fs(a?) and
fs(ab) = fg(ba) foralla,b € S.

3)For every SU-bi-ideal § of S, &(a) = fs(a®) and
fs(ab) = fg(ba) foralla,b € S.

4)For every SU-generalized bi-ideal sf of
fs(a) = fs(@?) and fs(ab) = fg(ba) foralla,b € S.

ProofFirst assume that (1) holds. Lefs be any
SU-generalized bi-ideal db anda andb be any elements
of S Then, sinceS is regular by Propositiori0, there
exists an elememnt in S such thata = axa= axaxaxa
Since aSC Sa by Proposition10, there exist elements

S,

El,ze Ssuch thaka= yaandax= za Thus, we have

a=axa=a(xaxaxd = a(xa)x(ax)a = a(ya)x(za)a = a’(yxz)a’.
Hence, sincdsis anSU-generalized bi-ideal d§, we have

fs(a) = fs(a®(yxga®) C fs(a®) U fs(@?) = fs(a®) =
fs(a(axa)) = fs(a(ax)a) C fs(a) U fs(a) = fs(a)

and sofs(a) = fs(a?). Moreover, by Propositiod0, we
have

(ab)* = a(ba)ba(ba)b € (SbgS(baS = (baSS(Sbg.

Hence, there exists an elemant S such that(ab)* =
bauba Thus,

fs(ab) = fs((ab)?) = fs((ab)*) = fs((ba)u(ba)) C fs(ba) U fs(ba) = fs(ba).

Similarly, we have fg(ba) C fg(ab)
fs(ab) = fs(ba). Thus, (1) implies (4).

Itis clear that (4) implies (3) and (3) implies (2).

Conversely, assume that (2) holds. Then, it follows by
Theorem37 that S is completely regular and so regular.
Let a be any element of. To see thahS= Sg let ax be
any element oS Since the soft characteristic function
<(Blxa)c IS anSU-bi-ideal of S, by assumption, we have

and so

(Blxd)c(aX) = S (Bxa)c(xa) =0
and soax € Blxal = {xa} U (xa)? U (xa)S(xa). If ax= xa,
thenax = xa € Sg and soaSC Sa If ax = (xa)?, then
ax= (xax)a € Sa HenceaSC Sa If axe (xa)S(xa), then
axe (xa)S(xa) = (xaSxa € Sa

and soaSC Sa In any caseaSC Sa Similarly, SaC aS

a semilattice under the multiplication of subsets. It Thus,aS= Sa Hence, it follows by Propositiof0 that

follows by Proposition12 that S is a semilattice of
groups. Thus (2) implies (1). This completes the proof.

Sis a semilattice of groups. Thus, (2) implies (1). This
completes the proof.

(@© 2015 NSP
Natural Sciences Publishing Cor.



Inf. Sci. Lett.4, No. 1, 13-30 (2015) www.naturalspublishing.com/Journals.asp

N SS ¥

27

Theorem 39For a semigroup S, the following conditions
are equivalent:

1)S is a semilattice of groups.

2)fsUgs = gs* fs* gs for every SU-quasi-ideakfof S and
for all SU-ideal g; of S.

3)fsUgs = gs* fs* gs for every SU-quasi-ideakfof S and
for all SU-interior ideal g of S.

4)fsUgs = gs* fs* gs for every SU-bi-idealdof S and for
all SU-ideal gs of S.

5)fsUgs = gs* fs*gs for every SU-bi-idealdof S and for
all SU-interior ideal g; of S.

6) fsUgs = gs* fs* gs for every SU-generalized bi-ideas f
of S and for all SU-ideal gof S.

7)fsUgs = gs* fsx gs for every SU-generalized bi-idead f
of S and for all SU-interior ideal gof S.

ProofFirst assume that (1) holds. Lefs be any
SU-generalized bi-ideal ands be anySU-interior ideal
of S. It follows by PropositioriL1 that fs is anSU-ideal of
S Thus, . .

Os* fsxgsD 0 x fgx 6D fs.

Moreover,gs * fs* gsO0s* (6 +gs) Dgs* gsOgs * 6 0s.
Therefore, we have

gs* fs+ gs0 fsUgs.

Now, let a be any element 0o85. SinceS is regular by
Proposition10, there exists an elemente S such that
a=axa Hence

(gs* fsxgs)(a) = [(gs* fs) * gs|(a)

[ (gs* fs)(p)] *gs(q)
a=pq
(gs* fs)(a) U

gs(xa)
{ O (gs(u) U fs(v))} Ugs(a)
(gs(ax) U fs(a)) Ugs(a)
C fs(a)ugs(a)
= (fsUgs)(a)

and sogsx fs*gsC fsUgs. Thus,gss* fs* gs = fsUgs, SO,
(1) implies (7). It is clear that (7) implies (6), (6) implies
(4), (4) implies (2) and (7) implies (5), (5) implies (3) and
(3) implies (2).

Assume that (2) holds. L& andJ be any quasi-ideal
and ideal ofS, respectively. Lek € JQJanda ¢ JNQ.
Since the soft characteristic functioric and.#sc areSU-
quasi-ideal an@®U-ideal of S, respectively, we have

(#%0.7c¢) (8) =U

N

N

and

(S Sgex Sx)(2) = 0
which is a contradiction and s@e JQJ. Thus,JNQ C
JQJ. Similarly, one can show thdQJC JuQ. Therefore,
we have thalQJ= JNQ for every quasi-idedd and ideal
J of S, which implies thaSis regular and (2) implies (1).
This completes the proof.

10 Soft normal semigroups

In this section, we introduce the concepts of soft normality
in a semigroup. It is known that a semigroS8ps called
normalif aS= Saforallac S

Definition 16.An SU-quasi-ideal § of S is called union
Q—normal if fs(ab) = fg(ba) foralla,be S.

Definition 17.An SU-bi-ideal § of S is called union B-
normal if fs(ab) = fg(ba) for alla,b € S.

Definition 18 A semigroup S is called soft union
B* —normal if every SU-bi ideal of S is unionBnormal.

is called soft union
of S is

Definition 19.A semigroup S
Q* — normal if every SU-quasi-ideal
unionQ— normal.

Theorem 40Any soft union @ — normal semigroup is
normal.

ProofLet fs be anSU-quasi-ideal of a soft unio®@* —
normal semigroup ofS. Leta be any element d6. To see
thataS= Sa let ax be any element cdS Since the soft
characteristic functior(qjxq)c iIs anSU-quasi-ideal ofS,
by assumption, we have

Z(Qixa)c(@X) =

which implies that

Z(Qixal)e(x@) =0

axe Q[xa = {xa} U(xaSJUSxg C Sa

Thus, we haveaSC Sa Similarly, SaC aSholds. Thus,
aS= SaandSis normal. This completes the proof.

The following theorem shows that the converse of
Theorem40 holds for a regular semigroup.

Theorem 41For a regular semigroup S, the following
conditions are equivalent:

1)S is soft union @— normal.
2)S is normal.

Prooflt suffices to prove that (2) implies (1). Assume that
(2) holds. Letfs be anySU-quasi-ideal oSanda andb be
any elements o8. SinceSis regular and normal, we have

abe (aSg(bSh = (aS)(ab)(Sh) C (aS)(abSah(Sb =
(aSab(Sa)(bSh C (Sh)(SaS= (Sh(aSS= S(ba)SS=
(ba)SSSC baS
This implies that there exists an elemerd S such that
ab= bax Thus, sincefg is anSU-bi-ideal of S, we have

M {(ts(p)

ab=pq

(fs+B)(ab) = 8(q)} C fs(ba)UB(x) = fs(ba).

One can similarly show that
(6+ fs)(ab) C fs(ba)

Since,fsis anSU-quasi-ideal ofS,
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 fg(ab) C ((fs+0)U(8 « fs))(ab) =
(fsx 0)(ab) U (6« fs)(ab) C fs(ba) U fs(ba) = fs(ba)
Similarly, it can be proved thafs(ba) C fs(ab). Thus,

fs(ba) = fs(ab), and soSis soft unionQ* — normal and
that (2) implies (1). This completes the proof.

Theorem 42Any soft union B— normal semigroup is
normal.

ProoflLet fg be an SU-bi-ideal of a softB* — normal
semigroup ofS. Let a be any element o6 andax be any
element ofaS Since the soft characteristic function
Blxa)c IS anSU-bi-ideal of S, by assumption, we have

7 Bixal)e(8X) = 7 (gxaye (Xa) = 0
which implies that
ax e B[xa) = {xa} U {xaxa} U (xa)S(xa) C Sa

Thus, we haveaSC Sa Similarly, SaC aSholds. Thus,
aS= SaandSis normal. This completes the proof.

The following theorem shows that the converse of

Theoremd2 holds for a regular semigroup.

Theorem 43For a regular semigroup S, the following
conditions are equivalent:

1)S is soft B—normal.
2)S is normal.

Prooflt suffices to prove that (2) implies (1). Assume that
(2) holds. Letfs be anySU-bi-ideal of Sanda andb be
any elements o$. SinceSis regular, we have

abe (aSg(bSh = (aS)(ab)(Sh) C (a9 (abSah(Sh =
(aSab(Sa (bSh C (Sh(aSS= S(ba)SS= (ha)SSSC
baS= (baSbhaS= (baS(Sbhg = ba(SSbaC baSbha

This implies that there exists an elemerg S such that
a = baxba Thus, sincefgis anSU-bi-ideal of S, we have

fs(ab) = fs((ba)x(ba)) C fs(ba) U fs(ba) = fs(ba).

One can similarly show thafs(ba) C fs(ab). Hence
fs(ab) = fg(ba) which implies thatS is soft union
B* — normal and that (2) implies (1). This completes the
proof.

Proposition 13For an idempotent semigroup S, the
following conditions are equivalent:

1)S is commutative.

2)S is soft union @— normal.

3)S is soft union B—normal.

Proof(1) implies (3) and (3) implies (2) is obvious.
Assume that (2) holds. Theig is normal. Leta,b € S.
Then,ab € Sb= bS Thus, there exists an elemenin S
such thatab = bx. Similarly, we haveba = yb for some
b € S Hence, sinc&is idempotent, we have

ab= bx= (bb)x=b(bx) = b(ab) = (ba)b= (yb)b=yb=ba

which implies thatS is commutative. Hence (2) implies

().

Definition 20[21] A semigroup S is called archimedean if
for all a,b € S, there exists a positive integer n such that
a" € Sbs.

Definition 21[21] A semigroup S is called weakly
commutative if for all ab € S, there exists a positive
integer n such thatab)" € bSa.

Proposition 14[21] Every weakly = commutative
semigroup is a semilattice of archimedean semigroups.

Proposition 15Any soft union B— normal semigroup is
a semilattice of archimedean semigroups.

ProofLet Sbe any soft unioB* — normal semigroup. Let
a andb be any elements d§, and fs be anySU-bi-ideal
of S. Since the soft characteristic functiofig|py)c is an
SU-bi-ideal of S, by assumption, we have

< (Blba))c(@b) = Z(B|ba)c(Pa) = 0
and so
ab e Blba] = {ba} U{baba} U (baSha C Sa

Thus, we have(ab)? € baSbaC bSa Therefore,S is
weakly commutative. Hence by Propositidd, Sis a
semilattice of archimedean semigroups.

One can similarly prove the following proposition.

Proposition 16 Any soft union @ — normal semigroup is
a semilattice of archimedean semigroups.

Theorem 44For a completely regular semigroup S, the
following conditions are equivalent:

1)S is soft union @— normal.

2)S is soft union B—normal.

3)For each elements a and b of S, there exists a positive
integer n such thatab)" € baSba.

Prooflt is obvious that (2) implies (1). Assume that (1)
holds. ThenSis normal. Leta andb be any elements @&.
Thus, we have

(ab)® = ababab= a(ba)babC (Sbg(bag = (baS(Shg = (ba)SSba) C baSba

which shows that (1) implies (3).

Conversely, assume that (3) holds. To see that (2)
holds, | etfs be anySU-bi-ideal of Sanda andb be any
elements ofS. Then, by assumption, there exists a
positive integemn such that(ab)" = baxba Since S is
completely regular, for this positive integer, there exist
an elemeny € Ssuch thaab= (ab)"y(ab)". Then, since
fsis anSU-bi-ideal of S, we have

fs(ab) = fs((ab)"y(ab)") C fs((ab)") U fs((ab)") =
fs((ab)")) = fs(baxbg C fg(ba) U fs(ba) = fs(ba).
One can similarly show thafs(ba) C fs(ab). Hence,

fs(ab) fs(ba) which implies that fs is soft
B* —normal. Thus, (3) implies (2).
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