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1 Introduction

Soft sets was introduced by Molodtsov [19] for modeling
vagueness and uncertainty in 1999. Many related
concepts with soft sets, especially soft set operations [18,
4,24,5] have recently undergone tremendous studies. Soft
set theory have found its wide-ranging applications in the
mean of algebraic structures such as groups [3,25],
semirings [10], rings [1,26], BCK/BCI-algebras [13,14,
15], BL-algebras [31], near-rings [23], and soft
substructures and union soft substructures [6,27].

In [28], Sezgin et al. defined soft union semigroups,
soft union left (right, two-sided) ideals and bi-ideals and
soft semiprime ideals of semigroups and obtained their
basic properties. And in [28], Sezgin et al. [29] defined
soft union interior ideals, quasi-ideals, generalized
bi-ideals and investigate the interrelations of them.
Moreover, they characterized regular, intra-regular,
completely regular, weakly regular and quasi-regular
semigroups by the properties of these ideals in [28,29].
Thus, they made a new approach to the classical
semigroup theory via soft set theory with these concepts.

In this paper, we characterize certain classes of
semigroups, such as semisimple semigroups, duo
semigroups, right (left) zero semigroups, right (left)
simple semigroups, semilattice of left (right) simple

semigroups, semilattice of left (right) groups and
semilattice of groups in terms of soft union ideals,
bi-ideals, interior ideals, quasi-ideals, generalized
bi-ideals. Furthermore, we define soft union normal
semigroups and discuss on the relation of this concept
with semigroups.

2 Preliminaries

In this section, we recall some notions relevant to
semigroups and soft sets. Asemigroup Sis a nonempty
set with an associative binary operation. Throughout this
paper,S denotes a semigroup. A nonempty subsetA of S
is called aright ideal of S if AS⊆ A and is called aleft
idealof S if SA⊆ A. By two-sided ideal(or simply ideal),
we mean a subset ofS, which is both a left and right ideal
of S. A subsemigroupX of S is called abi-ideal of S if
XSX⊆ X. A nonempty subsetA of S is called aninterior
ideal of S if SAS⊆ A. A nonempty subsetQ of S is called
aquasi-idealof S if QS∩SQ⊆ Q.

We denote by L[a](R[a],J[a],B[a]Q[a], I [a]), the
principal left (right, two-sided, bi-ideal, quasi-ideal,
interior ideal) of a semigroupS generated bya ∈ S, that
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is,
L[a] = {a}∪Sa,
R[a] = {a}∪aS,
J[a] = {a}∪Sa∪aS∪SaS
Q[a] = {a}∪ (aS∩Sa)
I [a] = {a}∪{a2}∪SaS.

A semigroupS is calledregular if for every elementa of
S, there exists an elementx in S such thata = axa or
equivalently a ∈ aSa. An elementa of S is called a
completely regularif there exists an elementx ∈ S such
that a = axa and ax = xa. A semigroup S is called
completely regularif every element ofS is completely
regular. A semigroupS is calledleft (right) regular if for
each elementa of S, there exists an elementx ∈ S such
thata = xa2 (a = a2x). A semigroup is calledleft (right)
regular if for each elementa of S, there exists an element
x∈ Ssuch that

a= xa2 (a= a2x).

A semilatticeis a structureS= (S, .), where “.” is an infix
binary operation, called thesemilattice operation, such
that “.” is associative, commutative and idempotent. For
all undefined concepts and notions about semigroups, we
refer to [11,21].

Definition 1.([7,19]) A soft set fA over U is a set defined
by

fA : E → P(U) such that fA(x) = /0 if x /∈ A.

Here fA is also called an approximate function. A soft set
over U can be represented by the set of ordered pairs

fA = {(x, fA(x)) : x∈ E, fA(x) ∈ P(U)}.

Definition 2.[7] Let fA, fB ∈S(U). Then, fA is called a soft
subset of fB and denoted by fA⊆̃ fB, if fA(x)⊆ fB(x) for all
x∈ E.

Definition 3.[7] Let fA, fB ∈ S(U). Then, union of fA and
fB, denoted by fA∪̃ fB, is defined as fA∪̃ fB = fA∪̃B, where
fA∪̃B(x) = fA(x)∪ fB(x) for all x ∈ E.

Definition 4.[7] Let fA, fB ∈ S(U). Then, intersection of
fA and fB, denoted by fA∩̃ fB, is defined as fA∩̃ fB = fA∩̃B,
where fA∩̃B(x) = fA(x)∩ fB(x) for all x ∈ E.

Definition 5.Let S be a semigroup and fS and gS be soft
sets over the common universe U. Then, soft union product
fS∗gS is defined by

( fS∗gS)(x)=

{⋂
x=yz{ fS(y)∪gS(z)}, if ∃y,z∈ S such that x= yz,

/0, otherwise

for all x ∈ S.

Theorem 1.[28] Let fS,gS,hS∈ S(U). Then,

i)( fS∗gS)∗hS= fS∗ (gS∗hS).
ii) f S∗ (gS∪̃hS) = ( fS∗gS)∪̃( fS∗hS) and ( fS∪̃gS) ∗hS =
( fS∗hS)∪̃(gS∗hS).

iii) f S∗ (gS∩̃hS) = ( fS∗gS)∩̃( fS∗hS) and ( fS∩̃gS) ∗hS =
( fS∗hS)∩̃(gS∗hS).

iv)If fS⊆̃gS, then fS∗hS⊆̃gS∗hS and hS∗ fS⊆̃hS∗gS.
v)If tS, lS ∈ S(U) such that tS⊆̃ fS and lS⊆̃gS, then

tS∗ lS⊆̃ fS∗gS.

Definition 6.[28] Let X be a subset of S. We denote by
SXc the soft characteristic function of the complement X
and define as

SXc(x) =

{
/0, if x∈ X,
U, if x∈ S\X

Definition 7.[28] Let S be a semigroup and fS be a soft set
over U. Then, fS is called a soft union semigroup of S, if

fS(xy)⊆ fS(x)∪ fS(y)

for all x,y∈ S.

Definition 8.[28] A soft set over U is called a soft union
left (right) ideal of S over U if

fS(ab)⊆ fS(b) ( fS(ab)⊆ fS(a))

for all a,b∈ S. A soft set over U is called a soft union two-
sided ideal (soft union ideal) of S if it is both soft union left
and soft union right ideal of S over U.

Definition 9.[28] A soft union semigroup fS over U is
called a soft union bi-ideal of S over U if

fS(xyz)⊆ fS(x)∪ fS(z)

for all x,y,z∈ S.

Definition 10.[29] A soft set over U is called a soft union
interior of S over U if

fS(xyz)⊆ fS(y)

for all x,y,z∈ S.

Definition 11.[29] A soft set over U is called a soft union
quasi-ideal of S over U if

( fS∗ θ̃)∪̃(θ̃ ∗ fS)⊇̃ fS.

Definition 12.[29] A soft set over U is called a soft union
generalized bi-ideal of S over U if

fS(xyz)⊆ fS(x)∪ fS(z)

for all x,y,z∈ S.

For the sake of brevity, soft union semigroup, soft union
right (left, two-sided, interior, quasi, generalized bi-)ideal
are abbreviated bySU-semigroup, SU-right (left,
two-sided, interior, quasi, generalized bi-) ideal,
respectively.

It is easy to see that iffS(x) = /0 for all x ∈ S, then fS
is anSU-semigroup (right ideal, left ideal, ideal, bi-ideal,
interior ideal, quasi-ideal, generalized bi-ideal) ofS over
U . We denote such a kind ofSU-semigroup (right ideal,
left ideal, ideal, bi-ideal) bỹθ [28].
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Lemma 1.Let fS be any SU-semigroup over U. Then, we
have the followings:

i)θ̃ ∗ θ̃⊇̃θ̃ . (If S is regular,θ̃ ∗ θ̃ = θ̃ .)
ii) f S∗ θ̃⊇̃θ̃ andθ̃ ∗ fS⊇̃θ̃ .
iii) f S∩̃θ̃ = θ̃ and fS∪̃θ̃ = fS.

Definition 13.[28] A soft set fS over U is called soft union
semiprime if for all a∈ S,

fS(a)⊆ fS(a
2).

Theorem 2.[28,29] Let X be a nonempty subset of a
semigroup S. Then, X is a subsemigroup (left, right,
two-sided ideal, bi-ideal, interior ideal, quasi-ideal,
generalized bi-ideal) of S if and only ifSXc is an
SU-semigroup (left, right, two-sided ideal, bi-ideal,
interior ideal, quasi-ideal, generalized bi-ideal) of S.

Proposition 1.[28,29] Let fS be a soft set over U. Then,

i) fS is an SU-semigroup over U if and only if fS∗ fS⊇̃ fS.
ii) f S is an SU-left (right) ideal of S over U if and only if

θ̃ ∗ fS⊇̃ fS ( fS∗ θ̃⊇̃ fS).
iii) f S is an SU-bi-ideal of S over U if and only if fS∗ fS⊆̃ fS

and fS∗ θ̃ ∗ fS⊇̃ fS.
iv) fS is an SU-interior ideal of S over U if and only if

θ̃ ∗ fS∗ θ̃⊇̃ fS.
v) fS is an SU-generalized bi-ideal of S over U if and only

if fS∗ θ̃ ∗ fS⊇̃ fS.

Theorem 3.[28] Every SU-left (right, two sided) ideal of
a semigroup S over U is an SU-bi-ideal of S over U.

Proposition 2.[29] For a semigroup S, the following
conditions are equivalent:
1)Every SU-ideal of a semigroup S over U is an

SU-interior ideal of S over U.
2)Every SU-quasi ideal of S is an SU-semigroup of S.
3)Every one-sided SU-ideal of S is an SU-quasi-ideal of S.
4)Every SU-quasi-ideal of S is an SU-bi-ideal of S.

Theorem 4.[28] For a semigroup S the following
conditions are equivalent:
1)S is regular.
2) fS∗gS= fS∪̃gS for every SU-right ideal fS of S over U

and SU-left ideal gS of S over U.

Theorem 5.[28] For a semigroup S the following
conditions are equivalent:
1)S is regular.
2)For every SU-quasi-ideal of S, fS= fS∗ θ̃ ∗ fS.

Theorem 6.[29] Let fS be a soft set over U, where S is
a regular semigroup. Then, the following conditions are
equivalent:
1) fS is an SU-ideal of S over U.
2) fS is an SU-interior ideal of S over U.

Theorem 7.[28] For a left regular semigroup S, the
following conditions are equivalent:
1)Every left ideal of S is a two-sided ideal of S.
2)Every SU-left ideal of S is an SU-ideal of S.

3 Semisimple semigroups

In this section, we characterize semisimple semigroups
with respect toSU-ideals of semigroups. A semigroupS
is calledsemisimpleif J2 = J holds for every idealJ of S,
that is, every ideal ofS is idempotent.

Proposition 3.[30] For a semigroup S, the following
conditions are equivalent:

1)S is semisimple.
2)a∈ (SaS)(SaS) for every element a of S, that is, there

exist elements x,y,z∈ S such that a= xayaz.

Proposition 4.Every SU-interior ideal of a semisimple
semigroup S is an SU-ideal of S.

Proof.Let fS be anSU-interior ideal ofS. Let a andb be
any elements ofS. Then, sinceS is semisimple, there exist
elementsx,y,z∈ Ssuch that

a= xayaz.

Thus, we have

fS(ab) = fS((xayaz)b) = fS(xay)a(zb))⊆ fS(a)

Hence, fS is an SU-right ideal of S. Similarly, one can
prove that fS is an SU-left ideal of S. Thus, fS is an
SU-ideal ofS.

Now we shall give a characterization of a semisimple
semigroup bySU-ideals.

Theorem 8.For a semigroup S, the following conditions
are equivalent:

1)S is semisimple.
2) fS∗ fS = fS for every SU-ideal fS of S. (That is, every

SU-ideal is idempotent).
3) fS∗ fS= fS for every SU-interior fS of S. (That is, every

SU-interior ideal is idempotent).
4) fS∪̃gS= fS∗gS for every SU-ideals fS and gS of S.
5) fS∪̃gS = fS∗ gS for every SU-ideal fS and every SU-

interior ideal gS of S.
6) fS∪̃gS= fS∗gS for every SU-interior ideal fS and every

SU-ideal gS of S.
7) fS∪̃gS= fS∗gS for every SU-interior ideals fS and gS of

S.
8)The set of all SU-ideals of a semisimple semigroup S is a

semilattice under the soft union product, that is, fS∗(gS∗
hS) = fS∗ (gS∗hS), fS∗gS= gS∗ fS and fS∗ fS= fS for
all SU-ideals fS and gS of S.

9)The set of all SU-interior ideals of a semisimple
semigroup S is a semilattice under the soft union
product.

Proof.First assume that (1) holds. LetfS andgS be anySU-
interior ideals ofS. Since,θ̃ itself is anSU-interior ideal
of Sand sincefS is anSU-ideal ofSby Proposition4, we
have:

fS∗gS⊇̃ fS∗ θ̃⊇̃ fS and fS∗gS⊇̃θ̃ ∗gS⊇̃gS.
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Thus, fS∗gS⊇̃ fS∪̃gS.
Now, let a be any element ofS. Since there exist

elementsx,y,z,w∈ Ssuch that

a= (xay)(zaw),

and sincefS andgS areSU-interior ideals ofS, we have

( fS∗gS)(a) =
⋂

a=pq

( fS(p)∪gS(q))

⊆ fS(xay)∪gS(zaw)

⊆ fS(a)∪gS(a)

= ( fS∪̃gS)(a)

and so we havefS∗gS⊆̃ fS∪̃gS. Hence,

fS∗gS= fS∪̃gS.

So, (1) implies (7). (7) implies (6), (6) implies (4), (7)
implies (5), (5) implies (4), (4) implies (2), (7) implies
(3), (3) implies (2) and (7) implies (9), (9) implies (8), (8)
implies (2).

Assume that (2) holds. Leta be any element ofS. Since
the soft characteristic functionS(J[a])c of S is anSU-ideal
of Sand sincea∈ J[a], we have

S(J[a])c(a) = /0

Now, let a /∈ J[a]J[a]. Thus, there do not existb,c ∈ J[a]
such thata= J[a]J[a]. Hence,

(S(J[a])c ∗S(J[a])c)(a)=
⋂

a=bc

(S(J[a])c(b)∪S(J[a])c(c))=U

But this is a contradiction and thus,

a∈ J[a]J[a] = ({a}∪aS∪Sa∪SaS)({a}∪aS∪Sa∪
SaS) = {a2}∪a2S∪aSa∪aSaS∪aSa∪aSaS∪aSSa∪
aSSaS∪Sa2∪Sa2S∪SaSa∪SaSaS∪SaSa∪SaSaS∪

SaSSa∪SaSSaS⊆ (SaS)(SaS)

Hence,S is semisimple and so, (2) implies (1).

4 Regular duo semigroups

In this section, we characterize a left (right) duo semigroup
in terms ofSU-ideals. A semigroupS is calledleft (right)
duoif every left (right) ideal ofS is a two-sided ideal ofS.
A semigroupS is duoif it is both left and right duo.

Definition 14.A semigroup S is called soft union left
(right) duo if every SU-left (right) ideal of S is an
SU-ideal of S and is called soft union duo, if it is both soft
left and soft right duo.

Theorem 9.For a regular semigroup S, the following
conditions are equivalent:

1)S is left (right) duo.
2)S is soft union left (right) duo.

Proof.First assume thatS is left duo. LetfS be anySU-left
ideal of S anda andb be any elements ofS. It is known
that Sa is a left-ideal ofS. And so, by hypothesis, it is a
two-sided ideal ofS. SinceS is regular, we have

ab∈ (aSa)b⊆ (Sa)S⊆ Sa

This implies that there exists an elementx∈ Ssuch that

ab= xa.

Thus, sincefS is anSU-left ideal ofS, we have

fS(ab) = fS(xa)⊆ fS(a)

This means thatfS is anSU-right ideal ofSand sofS is an
SU-ideal ofS. Thus,Sis soft union left duo and (1) implies
(2).

Conversely, assume thatS is soft union left duo. LetA
be any left ideal ofS. Then, the soft characteristic function
SAc of A is anSU-left ideal ofS. By assumption,SAc is
anSU-ideal ofSand soA is a two-sided ideal ofS. Thus,S
is left duo and (2) implies (1). The right dual of the proof
can be seen similarly. So, the proof is completed.

Theorem 10.For a regular semigroup S, the following
conditions are equivalent:

1)S is duo.
2)S is soft union duo.

Every SU-right (left) ideal of S is an SU-bi-ideal of S
([28]). Moreover, we have the following:

Theorem 11.Let S be a regular duo semigroup. Then,
every SU-bi-ideal of S is an SU-ideal of S.

Proof.Let fS be any SU-bi-ideal of S and a,b be any
elements ofS. It is known thatSais a left ideal ofS. Since
S is a duo semigroup,Sais a right ideal ofS. And sinceS
is regular, we have

ab∈ (aSa)b⊆ a((Sa)S)⊆ aSa

This implies that there exists an elementx∈ Ssuch that

ab= axa.

Then, sincefS is anSU-bi-ideal ofS, we have

fS(ab) = fS(axa)⊆ fS(a)∪ fS(a) = fS(a).

This means thatfS is anSU-right ideal ofS. It can be seen
in a similar way thatfS is anSU-left ideal ofS. Therefore,
fS is anSU-ideal ofS. This completes the proof.

Theorem 12.[9,20] For a semigroup S, the following
conditions are equivalent:

1)S is a regular duo semigroup.
2)A∩B= AB for every left ideal A and every right ideal B

of S.
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3)Q2 = Q for every quasi-ideal of S. (That is, every quasi-
ideal is idempotent.)

4)EQE= E ∩Q∩E for every ideal E and every quasi-
ideal Q of S.

Theorem 13.For a semigroup S, the following conditions
are equivalent:

1)S is a regular duo semigroup.
2)S is a regular soft union duo semigroup.
3) fS∗gS= fS∪̃gS for all SU-bi-ideals fS and gS of S.
4) fS∗ gS = fS∪̃gS for all SU-bi-ideal fS and for all SU-

quasi-ideal gS of S.
5) fS∗ gS = fS∪̃gS for all SU-bi-ideal fS and and for all

SU-right ideal gS of S
6) fS∗gS= fS∪̃gS for all SU-quasi-ideal fS and for all SU-

bi-ideal gS of S.
7) fS∗gS= fS∪̃gS for all SU-quasi-ideals fS and gS of S.
8) fS∗gS= fS∪̃gS for all SU-quasi-ideal fS and for all SU-

right ideal gS of S.
9) fS∗gS= fS∪̃gS for all SU-left ideal fS and for all SU-

bi-ideal gS of S.
10) fS∗gS= fS∪̃gS for all SU-left ideal fS and for all SU-

right ideal gS of S.
11) fS∗ gS = fS∪̃gS and hS∗ kS = hS∪̃kS for all SU-right

ideals fS and gS of S and for all SU-left ideal hS and kS
of S.

12)Every SU-quasi-ideal of S is idempotent.

Proof.The equivalence of (1) and (2) follows from
Theorem10. Assume that (2) holds. LetfS andgS be any
SU-bi-ideals ofS. Then, by Theorem11, fS is anSU-right
ideal of S and gS is an SU-left ideal of S. Since S is
regular, it follows by Theorem4 that

fS∗gS= fS∪̃gS

Thus, (2) implies (3). It is clear that (3) implies (4), (4)
implies (5), (5) implies (8), (8) implies (11), (11) implies
(3), (3) implies (6), (6) implies (7), (7) implies (8) and (6)
implies (9), (9) implies (10), (10) implies (11).

Assume that (11) holds. LetA andB be any left ideal
and right ideal ofS, respectively. Leta be any element of
A∩B anda /∈ AB. Then,a∈ A anda∈ B and there do not
existx∈ A andy∈ B such thata= xy. SinceSAc andSBc

is anSU-left ideal andSU-right ideal ofS, respectively, we
have

SAc(a) = SBc(a) = /0.

and
(SAc ∗SBc)(a) =U

But this is a contradiction, soa ∈ AB. Thus,A∩B ⊆ AB.
For the converse inclusion, leta be any element ofABand
a /∈A∩B. Then, there existy∈Aandz∈B such thata= yz.
Thus,

(SAc∪̃SBc)(a) =U

and

(SAc∗SBc)(a)=
⋂

a=mn

(SAc(m)∪SBc(n))⊆ (SAc(y)∪SBc(z))= /0

Hence,(SAc ∗SBc)(a) = /0. But this is a contradiction.
This implies thata∈ A∩B and thatAB⊆ A∩B. Thus, we
haveAB= A∩B. It follows by Theorem12 that S is a
regular duo semigroup. Thus (11) implies (1). It is clear
that (7) implies (12) by takinggS= fS.

Conversely, assume that (12) holds. LetQ be any
quasi-ideal ofS anda be any element ofQ anda /∈ QQ.
Then, SQc is an SU-quasi-ideal ofS. Thus, we have
SQc(a) = /0 and since there do not existy,z∈ Q such that
a= yz,

(SQc ∗SQc)(a) =U

But this is a contradiction. Hence, we havea∈Q2 andQ⊆
Q2. Since the converse inclusion always holds,Q= Q2. It
follows by Theorem12 thatS is a regular duo semigroup
and that (12) implies (1). This completes the proof.

Theorem 14.For a semigroup S, the following conditions
are equivalent:

1)S is a regular duo semigroup.
2) fS∗gS∗ fS= fS∪̃gS for every SU-ideal fS and every SU-

bi-ideal gS of S.
3) fS∗gS∗ fS= fS∪̃gS for every SU-ideal fS and every SU-

quasi-ideal gS of S.

Proof.First assume that (1) holds. LetfS and gS be any
SU-bi-ideal and anySU-ideal ofS, respectively. Then, we
have

fS∗gS∗ fS⊇̃( fS∗ θ̃)∗ θ̃ = fS∗ (θ̃ ∗ θ̃)⊇̃ fS∗ θ̃⊇̃ fS

On the other hand, sinceS is regular and duo,fS is anSU-
ideal ofSby Theorem11. Hence, we have

fS∗gS∗ fS⊇̃(θ̃ ∗gS)∗ θ̃⊇̃gS∗ θ̃⊇̃gS

and so
( fS∗gS∗ fS)⊇̃ fS∪̃gS

In order to show the converse inclusion, leta be any
element ofS. Then, sinceS is regular, there exists an
elementx in Ssuch that

a= axa= (axa)xa

Thus, we have

( fS∗gS∗ fS)(a) = [ fS∗ (gS∗ fS)](a)

=
⋂

a=pq

[ fS(a)∪ (gS∗ fS)(q)]

⊆ fS(ax)∪ (gS∗ fS)(axa)

= fS(ax)∪{
⋂

axa=bc

[gS(b)∪ fS(c)]}

⊆ fS(ax)∪ (gS(a)∪ fS(xa))

⊆ fS(a)∪ (gS(a)∪ fS(a))

= fS(a)∪gS(a)

= ( fS∪̃gS)(a)
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and sofS∗gS∗ fS⊆̃ fS∪̃gS Thus, we obtain that

fS∗gS∗ fS= fS∪̃gS.

Hence, (1) implies (2). It is clear that (2) implies (3).
Assume that (3) holds. LetE and Q any two-sided

ideal and quasi-ideal ofS, respectively anda be any
element ofE∩Q anda /∈ EQE. Then,a ∈ E anda ∈ Q
and there do not existx,z ∈ E and y ∈ Q such that
a = xyz. Since SEc and SQc is an SU-ideal and
SU-quasi-ideal ofS, respectively, we have

SEc(a) = SQc(a) = /0.

and
(SEc ∗SQc ∗SEc)(a) =U

But, this is a contradiction and soa∈EQE. Thus,E∩Q⊆
EQE. For the converse inclusion, leta be any element of
EQE anda /∈ E∩Q. Then, there existx,z∈ E andy∈ Q
such thata= xyz. Thus,

(SEc∪̃SQc)(a) =U

and
(SEc ∗SQc ∗SEc)(a) = /0

But this is a contradiction and soa ∈ E ∩ Q. Thus,
EQE ⊆ E ∩ Q and soEQE = E ∩ Q. It follows from
Proposition12 that S is regular duo. Hence, (3) implies
(1). This completes the proof.

5 Right (left) zero semigroup

In this section, we characterize right (left) zero semigroups
in terms ofSU-ideals ofS. A semigroupS is calledright
(left) zeroif xy= y (xy= x) for all x,y∈ S.

Proposition 5.For a semigroup S, the following conditions
are equivalent:

1)The set of all idempotent elements of S forms a left
(right) zero subsemigroup of S.

2)For every SU-left (right) ideal fS of S, fS(e) = fS( f ) for
all idempotent elements e and f of S.

Proof.First assume that the setIS of all idempotent
elements ofS is a left zero subsemigroup ofS. Let
e, f ∈ IS and fS be anSU-left ideal ofS. Then, since

e f = e and f e= f

we have

fS(e) = fS(e f)⊆ fS( f ) = fS( f e)⊆ fS(e)

and so
fS(e) = fS( f ).

Thus, (1) implies (2).

Conversely, assume that (2) holds. SinceS is regular,
it is obvious thatIS 6= /0. Moreover, the soft characteristic
function S(L[ f ])c is an SU-left ideal of S. Thus, by
assumption, we have

S(L[ f ])c(e) = S(L[ f ])c( f ) = /0

and soe∈ L[ f ] = S f. (Here note that, ifS is a regular
semigroup,L[a] = Safor everya∈ S([9]). Thus, for some
x∈ S, we have

e= x f = x( f f ) = (x f) f = e f

This means thatIS is a left zero semigroup. Thus (2)
implies (1). The case whenS is right zero, the proof can
be seen similarly. This completes the proof.

Corollary 1.For an idempotent semigroup S, the following
conditions are equivalent:
1)S is left (right) zero.
2)For every SU-left (right) ideal fS of S, fS(e) = fS( f ) for

all elements e, f ∈ S.

Proposition 6.Let S be a group. Then, every SU-bi-ideal
of S is a constant function.

Proof.Let S be a group with identitye and fS be anySU-
bi-ideal ofSanda be any element ofS. Then,

fS(a) = fS(eae)⊆ fS(e)∪ fS(e) = fS(e) = fS(ee) =
fS((aa−1)(a−1a)) = fS(a(a−1a−1)a)⊆ fS(a)∪ fS(a) =

fS(a)

and so fS(e) = fS(a). This implies thatfS is a constant
function.

Proposition 7.For a regular semigroup S, the following
conditions are equivalent:
1)S is a group.
2)For every SU-bi-ideal fS of S, fS(e) = fS( f ) for all

idempotent elements e, f ∈ S.

Proof.Assume that (1) holds. LetfS be anySU-bi-ideal of
S. Then, it follows from Proposition6 that fS is a constant
function. This implies that

fS(e) = fS( f )

for all idempotent elementse, f ∈ S. Thus (1) implies (2).
Conversely, assume that (2) holds. Lete and f be any

idempotent elements ofS. As is well-known, if S is a
regular semigroup,B[x], the principal ideal ofSgenerated
by x ∈ S is B[x] = xSx ([9]). Moreover, since the soft
characteristic functionS(B[ f ])c is anSU-bi-ideal ofS and
since f ∈ B[ f ], we have

S(B[ f ])c(e) = S(B[ f ])c( f ) = /0

and soe∈B[ f ] = f s f, which means thate= f x f for some
x∈S. One can similarly obtain thatf = eyefor somey∈S.
Thus, we have

e= f x f = f x( f f ) = ( f x f) f = e f = e(eye) = (ee)ye= eye= f

Since S is regular, IS 6= /0 and S contains exactly one
idempotent. Thus, it follows from ([9], p.33) thatS is a
group. Thus (2) implies (1). This completes the proof.
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6 Right (left) simple semigroups

In this section, we define soft union simple semigroup
and give the relation of soft union simple semigroup with
simple semigroup. A semigroupS is called left (right)
simpleif it contains no proper left (right) ideal ofSand is
calledsimpleif it contains no proper ideal.

Definition 15.A semigroup S is called soft union left
(right) simple if every SU-left (right) ideal of S is a
constant function and is called soft union simple if every
SU-ideal of S is a constant function.

Theorem 15.For a semigroup S, the following conditions
are equivalent:

1)S is left (right) simple.
2)S is soft union left (right) simple.

Proof.First assume thatS is left simple. LetfS be anySU-
left ideal of S anda andb be any element ofS. Then, it
follows from ([9], p. 6) that there exist elementsx,y ∈ S
such thatb= xa anda= yb. Hence, sinceS is anSU-left
ideal ofS,

fS(a) = fS(yb)⊆ fS(b) = fS(xa)⊆ fS(a)

and sofS(a) = fS(b). Sincea andb be any elements ofS,
this means thatfS is a constant function. Thus, we obtain
thatS is soft union left simple and (1) implies (2).

Conversely, assume that (2) holds. LetA be any left
ideal of S. Then, SAc is an SU-left ideal of S. By
assumption,SAc is a constant function. Letx be any
element ofS. Then, sinceA 6= /0,

SAc(x) = /0

and sox∈A. This implies thatS⊆A, and soS=A. Hence,
S is left simple and (2) implies (1). In the case, whenS is
soft union right simple, the proof follows similarly.

Theorem 16.For a semigroup S, the following conditions
are equivalent:

1)S is simple.
2)S is soft union simple.

As is well-known, a semigroupS is a group if it is left and
right simple. From this, we have the following theorem:

Proposition 8.For a semigroup S, the following conditions
are equivalent:

1)S is a group.
2)S is both soft union left and soft union right simple.

Proposition 9.Let S be a left simple semigroup. Then,
every SU-bi-ideal of S is an SU-right ideal of S.

Proof.Let fS be anSU-bi-ideal of S anda andb be any
elements ofS. Then, sinceS is left simple, there exists an
elementx in Ssuch that

b= xa.

Then, sincefS is anSU-bi-ideal ofS, we have

fS(ab) = fS(a(xa)) = fS(a)∪ fS(a) = fS(a)

which means thatfS is an SU-right ideal of S. This
completes the proof.

7 Semilattices of left (right) simple
semigroups

In this section, we characterize a semigroup that is a
semilattice of left (right) simple semigroups bySU-ideals.
A semigroupS is asemilattice of left simple semigroupsif
it is the set-theoretical intersection of the family of left
simple semigroupsSi (i ∈ M) such that,

S=
⋂

i∈M

Si

such that the productsSiSj andSjSi are both contained in
the sameSk (k∈ M).

Theorem 17.[9,22] For a semigroup S, the following
conditions are equivalent:

1)S is a semilattice of left simple semigroups.
2)S is left regular and every left ideal of S is two-sided.
3)S is left regular and AB= BA for any left ideals A and B

of S.

Theorem 18.[28] For a left regular semigroup S, the
following conditions are equivalent:

1)Every left ideal of S is a two-sided ideal of S.
2)Every SU-left ideal of S is an SU-ideal of S.

Theorem 19.For a semigroup S, the following conditions
are equivalent:

1)S is a semilattice of left simple semigroups.
2)S is left regular and every SU-left ideal of S is an SU-

ideal of S.
3) fS∗gS= fS∪̃gS for every SU-left ideals of S.
4)The set of all SU-left ideals of S is a semilattice under

the soft union product.
5)The set of all left ideals of S is a semilattice under the

multiplication of subsets.

Proof.The equivalence of (1) and (2) follows from
Theorem17 and Theorem18. Assume that (2) holds. Let
fS andgS be anySU-left ideals ofSanda be any element
of S. Then, sinceS is left regular, there exists an element
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x ∈ S such thata = xa2. By assumption,fS is also an
SU-right ideal ofS. So, we have

( fS∗gS)(a) =
⋂

a=yz

( fS(y)∪gS(z))

⊆ ( fS(xa)∪gS(a))

⊆ ( fS(a)∪gS(a))

= ( fS∪̃gS)(a)

Thus, fS∗ gS⊆̃ fS∪̃gS. On the other hand, by assumption,
gS is SU-right ideal ofS, and so

( fS∗gS)(a) =
⋂

a=yz

( fS(y)∪gS(z))

⊇ ( fS(yz)∪gS(yz))

= fS(a)∪gS(a)

= ( fS∪̃gS)(a)

Thus, fS∗ gS⊇̃ fS∪̃gS. Thus, fS∗ gS = fS∪̃gS and so (2)
implies (3).

(3) implies (4) is clear. Assume that (4) holds. LetA
andB be any left ideals ofS anda be any element ofBA
anda /∈ AB. Then, there existy ∈ B andz∈ A such that
a = yz and there do not existm∈ A andn ∈ B such that
a = mn. Then, since the soft characteristic functionSAc

andSBc areSU-left ideals ofS, we have

(SBc ∗SAc)(a) = /0

and

(SAc ∗SBc)(a) =U .

But this is a contradiction. Hence,a∈AB. Thus,BA⊆ AB.
Similarly, we haveAB⊆ BA. Thus,AB= BA.

In order to see that any left idealA of S is idempotent,
let a be any element ofA and a /∈ AA. SinceSAc is an
SU-left ideal ofS, we have

(SAc ∗SAc)(a) =U

and
SAc(a) = /0.

But this is a contradiction and soa∈ A2. Thus,A⊆ A2 and
soA= A2. Therefore (4) implies (5).

Finally, assume that (5) holds. LetA be any left ideal
of Sanda be any element ofS. Then, sinceS itself is a left
ideal, by assumption we have

AS= SA⊆ A

Thus,A is a right ideal ofS, and soA is a two-sided ideal
of S.

Let a be any element ofS. Then, since the left ideal
L[a] of S is idempotent by assumption and sincea∈ L[a],
we have

a∈ L[a]L[a] = ({a}∪Sa)({a}∪Sa)=
{a2}∪aSa∪Sa2∪SaSa⊆ {a2}∪ (aS)aSa∪Sa2∪SaSa⊆

{a2}∪SaSa∪Sa2⊆ {a2}∪Sa2

which implies thatS is left-regular. Thus, it follows by
Theorem17-(2) that S is a semilattice of left simple
groups. That is to say (5) implies (1). This completes the
proof.

The left-right dual of Theorem19reads as follows:

Theorem 20.For a semigroup S, the following conditions
are equivalent:

1)S is a semilattice of right simple semigroups.
2)S is right regular and every SU-right ideal of S is an

SU-ideal of S.
3) fS∗gS= fS∪̃gS for every SU-right ideals of S.
4)The set of all SU-right ideals of S is a semilattice under

the soft union product.
5)The set of all right ideals of S is a semilattice under the

multiplication of subsets.

Theorem 21.[28] For a semigroup S, the following
conditions are equivalent:

1)S is left regular.
2)For every SU-left ideal fS of S, fS(a) = fS(a2) for all

a∈ S.

Theorem 22.For a semigroup S, the following conditions
are equivalent:

1)S is a semilattice of left simple semigroups.
2)For every SU-left ideal fS of S,

fS(a) = fS(a2) and fS(ab) = fS(ba) for all a,b∈ S.

Proof.Assume thatS is a semilattice of left simple
semigroups. LetfS be anySU-left ideal of S. Then, by
Theorem17-(2), S is left regular andfS is anSU-ideal of
S. Let a be any element ofS. Thus, by Theorem21, we
have

fS(ab) = fS((ab)2) = fS(a(ba)b)⊆ fS(ba).

Similarly, we havefS(ba)⊆ fS(ab). Hence, we obtain that

fS(ab) = fS(ba).

Thus, (1) implies (2).
Conversely, assume that (2) holds. LetfS be anySU-

ideal of S. Since fS(a) = fS(a2) for all a ∈ S, it follows
from Theorem21 thatS is left regular. LetA andB be any
left ideal ofSandabbe any element ofAB. Since the soft
characteristic functionS(L[ba])c is anSU-left ideal ofSand
sinceba∈ L[ba], we have

S(L[ba])c(ab) = S(L[ba])c(ba) = /0

This implies that

ab∈ L[ba] = {ba}∪Sba⊆ BA∪SBA⊆ BA

and so we haveAB⊆ BA. Similarly, it can be seen that the
converse inclusion holds. Thus, we obtain that

AB= BA

Then, it follows by Theorem17-(3) thatS is a semilattice
of left simple semigroups. Therefore (3) implies (1). This
completes the proof.
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The right dual of Theorem22reads as follows:

Theorem 23.For a semigroup S, the following conditions
are equivalent:

1)S is a semilattice of right simple semigroups.
2)For every SU-right ideal fS of S,

fS(a) = fS(a2) and fS(ab) = fS(ba) for all a,b∈ S.

8 A semilattice of left (right) groups

In this section, we characterize a semigroup that is a
semilattice of left (right) simple groups bySU-ideals. An
elementa of S is said to beleft (right) cancellableif, for
anyx,y∈ S ax= ay (xa= ya) impliesx= y. A semigroup
S is calledleft (right) cancellativeif every element ofS is
left (right) cancellative. A semigroupS is called a left
groupif it is left simple and right cancellable ([9]), that is,
for all a∈ S, there exists a unique elementx∈ Ssuch that
xa2 = a ([21]). Dually, a semigroupS is called aright
groupif it is right simple and left cancellable.

Theorem 24.[21] For a semigroup S, the following
conditions are equivalent:

1)S is a semilattice of left groups.
2)S is regular and aS⊆ Sa for every a∈ S.

Theorem 25.Let S be a semigroup that is a semilattice of
left groups. Then, every SU-(generalized) bi-ideal of S is
an SU-right ideal of S.

Proof.Let fS be anySU-bi-ideal of S, and a and b any
elements ofS. Then, it follows from Theorem24 that
there exist elementsx,y∈ Ssuch that

a= axaandab= ya.

Thus,

ab= (axa)b= (ax)(ab) = (ax)(ya) = a(xy)a.

Since fS is anSU-bi-ideal ofS,

fS(ab) = fS(a(xy)a)⊆ fS(a)∪ fS(a) = fS(a).

Hence,fS is anSU-right ideal ofS.

Corollary 2.Let S be a semigroup that is a semilattice of
left groups. Then, every SU-left ideal of S is an SU-right
ideal of S, that is to say, S is soft union left duo.

Theorem 26.Let S be a semigroup that is a semilattice of
left groups. Then, every SU-interior ideal of S is an SU-left
ideal of S.

Proof.Let fS be anySU-interior ideal ofS, anda andb any
elements ofS. Then, it follows from Theorem24that there
exist elementz∈ Ssuch that

b= bzb.

Thus,

ab= (axa)b= (ax)(ab) = (ax)(ya) = a(xy)a.

Since fS is anSU-bi-ideal ofS,

fS(ab) = fS(a(bzb)) = fS((a)b(zb))⊆ fS(b).

Hence,fS is anSU-left ideal ofS.

Theorem 27.[29] For a semigroup S the following
conditions are equivalent:

1)S is regular.
2) fS∪̃gS= fS∗gS∗ fS for every SU-quasi-ideal fS of S and

SU-ideal gS of S over U.

Theorem 28.For a semigroup S, the following conditions
are equivalent:

1)S is a semilattice of left groups.
2) fS∪̃gS= fS∗gS for every SU-quasi-ideal fS and SU-left

ideal gS of S.
3) fS∪̃gS = fS ∗ gS for every SU-quasi-ideal fS and

SU-ideal gS of S.
4) fS∪̃gS = fS ∗ gS for every SU-quasi-ideal fS and

SU-interior ideal gS of S.
5) fS∪̃gS = fS∗ gS for every SU-bi-ideal fS and SU-left

ideal gS of S.
6) fS∪̃gS = fS∗ gS for every SU-bi-ideal fS and SU-ideal

gS of S.
7) fS∪̃gS= fS∗gS for every SU-bi-ideal fS and SU-interior

ideal gS of S.
8) fS∪̃gS = fS∗ gS for every SU-bi-ideal fS and SU-left

ideal gS of S.
9) fS∪̃gS= fS∗gS for every SU-generalized bi-ideal fS and

SU-left ideal gS of S.
10) fS∪̃gS= fS∗gS for every SU-generalized bi-ideal fS and

SU-ideal gS of S.
11) fS∪̃gS= fS∗gS for every SU-generalized bi-ideal fS and

SU-interior ideal gS of S.
12) fS∪̃gS= fS∗gS for every SU-one-sided ideal fS and SU-

ideal gS of S.
13) fS∪̃gS= fS∗gS for every SU-one-sided ideal fS and SU-

interior ideal gS of S.
14)S is regular left duo.

Proof.First assume that (1) holds. LetfS and gS be any
SU-generalize bi-ideal ofS and SU-interior ideal of S,
respectively anda be any element ofS. Then, sinceS is
regular by Theorem24, there exists an elementx∈ Ssuch
that

a= axa(= axaxa).

SincegS is anSU-interior ideal ofS, gS((x)a(xa))⊆ gS(a).
Thus, we have

( fS∗gS)(a) =
⋂

a=pq

( fS(p)∪gS(q))

⊆ fS(a)∪gS((x)a(xa))

⊆ fS(a)∪gS(a)

= ( fS∪̃gS)(a)
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and so fS∗ gS⊆̃ fS∪̃gS. Moreover, it follows by Theorem
25 that fS is anSU-right ideal ofS. Thus, we have

( fS∗gS)(a) =
⋂

a=pq

( fS(p)∪gS(q))

⊇
⋂

a=pq

( fS(pq)∪gS(pq))

=
⋂

a=pq

( fS(a)∪gS(a))

= fS(a)∪gS(a)

= ( fS∪̃gS)(a)

and so fS ∗ gS⊇̃ fS∪̃gS. Therefore, we obtain that
fS∗ gS = fS∪̃gS and that (1) implies (10). It is clear that
(10) implies (9), (9) implies (8), (8) implies (5), (5)
implies (2), (10) implies (7), (7) implies (6), (6) implies
(5), (5) implies (2), (7) implies (4), (4) implies (3), (3)
implies (2) and (4) implies (12), (12) implies (11).

Assume that (2) holds. Then, it follows by Theorem27
thatS is regular. LetQ be any quasi-ideal ofS. Then, the
soft characteristic functionSQc is anSU-quasi-ideal ofS.
Sinceθ̃ itself is anSU-left ideal ofSand so by assumption,
we have

SQc = SQc∪̃θ̃ = SQc ∗ θ̃ .

Thus,SQ is an SU-right ideal of S, and soQ is a right
ideal ofS. Thus, any quasi-ideal ofS is a right ideal ofS.
Let a ∈ S. Then, the quasi-idealSa is a right ideal ofS.
SinceS is regular, we have

aS⊆ (aSa)S= ((aS)a)S⊆ (Sa)S⊆ Sa.

Thus,aS⊆ Saand sinceS is regular,S is a semilattice of
left groups by Theorem24. Thus, (2) implies (1).

Assume that (11) holds. LetfS andgS be anySU-right
ideal and anySU-left ideal ofS, respectively. Then, since
θ̃ itself is anSU-ideal ofSand so by assumption, we have

gS= gS∪̃θ̃ = gS∗ θ̃

Thus,gS is anSU-right ideal ofS, that is,gS is anSU-ideal
of S. Thus, by assumption,fS∗gS= fS∪̃gS for everySU-
right ideal fS of SoverU andSU-left idealgS of SoverU .
It follows by Theorem4 thatS is regular. As is proved in
(2) implies (1), we haveaS⊆ Sa. Thus,S is a semilattice
of left groups, so (11) implies (1).

Assume that (1) holds. Then, it follows by Theorem24
thatS is regular. Moreover, it follows by Corollary2 that
S is soft union left duo and so by Theorem9, S is left duo.
Thus (1) implies (13).

Conversely assume that (13) holds. Then, it follows by
Theorem9 thatSis left duo, that is, every left ideal ofSis a
right ideal ofS. In order to prove thatSis semilattice of left
groups, by Theorem24, it suffices to show thataS⊆Safor
all a∈ S. As is proved in (2) implies (1), we haveaS⊆ Sa.
Thus,S is a semilattice of left groups, so (13) implies (1).
This completes the proof.

The left-right dual of Theorem29reads as follows:

Theorem 29.For a semigroup S, the following conditions
are equivalent:

1)S is a semilattice of right groups.
2) fS∪̃gS = fS ∗ gS for every SU-quasi-ideal fS and

SU-right ideal gS of S.
3) fS∪̃gS = fS ∗ gS for every SU-quasi-ideal fS and

SU-ideal gS of S.
4) fS∪̃gS = fS ∗ gS for every SU-quasi-ideal fS and

SU-interior ideal gS of S.
5) fS∪̃gS = fS∗ gS for every SU-bi-ideal fS and SU-right

ideal gS of S.
6) fS∪̃gS = fS∗ gS for every SU-bi-ideal fS and SU-ideal

gS of S.
7) fS∪̃gS= fS∗gS for every SU-bi-ideal fS and SU-interior

ideal gS of S.
8) fS∪̃gS = fS∗ gS for every SU-bi-ideal fS and SU-right

ideal gS of S.
9) fS∪̃gS= fS∗gS for every SU-generalized bi-ideal fS and

SU-right ideal gS of S.
10) fS∪̃gS= fS∗gS for every SU-generalized bi-ideal fS and

SU-ideal gS of S.
11) fS∪̃gS= fS∗gS for every SU-generalized bi-ideal fS and

SU-interior ideal gS of S.
12) fS∪̃gS= fS∗gS for every SU-one-sided ideal fS and SU-

ideal gS of S.
13) fS∪̃gS= fS∗gS for every SU-one-sided ideal fS and SU-

interior ideal gS of S.
14)S is regular right duo.

Theorem 30.For a semigroup S, the following conditions
are equivalent:

1)S is a semilattice of left groups.
2) fS∪̃gS= fS∗gS∗ fS for every SU-quasi-ideal fS and SU-

left ideal gS of S.
3) fS∪̃gS= fS∗gS∗ fS for every SU-bi-ideal fS and SU-left

ideal gS of S.
4) fS∪̃gS= fS∗gS∗ fS for every SU-generalized bi-ideal fS

and SU-left ideal gS of S.

Proof.First assume that (1) holds. LetfS andgS be anySU-
generalized bi-ideal ofS. Then, we have

fS∗gS∗ fS⊇̃ fS∗ θ̃ ∗ fS⊇̃ fS

On the other hand, since theSU-left idealgS is anSU-bi-
ideal ofS, we have

fS∗gS∗ fS⊇̃(θ̃ ∗gS)∗ θ̃⊇̃gS∗ θ̃⊇̃gS

Therefore, we have

fS∗gS∗ fS⊇̃ fS∪̃gS.

Let a be any element ofS. Then, it follows by Theorem
24 that there exist elementsx,y∈ Ssuch thata= axaand
ax= ya. Hence,

ax= axaxax= axax(ya) = (axa)(xya).
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Thus,

( fS∗gS∗ fS)(a) = [( fS∗gS)∗ fS](a)

=
⋂

a=pq

[( fS∗gS)(p)∗ fS(q)]

⊆ ( fS∗gS)(ax)∪ fS(a)

= {
⋂

ax=pq

( fS(p)∪gS(q))∪ fS(a)

⊆ ( fS(axa)∪gS(xya))∪ fS(a)

⊆ ( fS(a)∪gS(a))∪ fS(a)

= ( fS∪̃gS)(a)

and so,fS∗gS∗ fS⊆̃ fS∪̃gS. Thus, fS∗gS∗ fS= fS∪̃gS and
(1) implies (4). It is clear that (4) implies (3) and (3)
implies (2).

Assume that (2) holds. LetfS be anySU-quasi ideal of
S. Then,θ̃ is anSU-left ideal ofSand so by assumption,

fS= fS∪̃θ̃ = fS∗ θ̃ ∗ fS

Thus,it follows by Theorem5 thatSis regular. On the other
hand, letgS be anySU-left ideal ofS. then, by assumption,

gS= θ̃ ∪̃gS= θ̃ ∗gS∗ θ̃

Thus,gS is anSU-interior ideal ofS. SinceS is regular,gS
is anSU-ideal of S by Theorem6. Therefore, we obtain
that everySU-left ideal ofS is an ideal ofS. It follows by
Theorem7 that everySU-left ideal ofS is anSU-ideal of
S. Let a∈ S. SinceS is regular, the left idealSais an ideal
of S. Thus, we have

aS⊆ (aSa)S⊆ a((Sa)S)⊆ a(Sa) = (aS)a⊆ Sa.

Thus,aS⊆ Saand sinceS is regular,S is a semilattice of
left groups by Theorem24. Thus (2) implies (1).

The left-right dual of Theorem30reads as follows:

Theorem 31.For a semigroup S, the following conditions
are equivalent:

1)S is a semilattice of right groups.
2) fS∪̃gS= fS∗gS∗ fS for every SU-quasi-ideal fS and SU-

right ideal gS of S.
3) fS∪̃gS = fS∗ gS∗ fS for every SU-bi-ideal fS and SU-

right ideal gS of S.
4) fS∪̃gS= fS∗gS∗ fS for every SU-generalized bi-ideal fS

and SU-right ideal gS of S.

Theorem 32.For a semigroup S, the following conditions
are equivalent:

1)S is a semilattice of left groups.
2) fS∪̃gS= fS∗ θ̃ ∗gS for every SU-quasi-ideal fS and SU-

left ideal gS of S.
3) fS∪̃gS= fS∗ θ̃ ∗gS for every SU-bi-ideal fS and SU-left

ideal gS of S.

4) fS∪̃gS= fS∗ θ̃ ∗gS for every SU-generalized bi-ideal fS
and SU-left ideal gS of S.

Proof.First assume that (1) holds. LetfS andgS be anySU-
generalized bi-ideal andSU-left ideal of S, respectively.
Then, we have

fS∗ θ̃ ∗gS= fS∗ (θ̃ ∗gS)⊇̃ fS∗gS⊇̃θ̃ ∗gS⊇̃gS.

Moreover, by Theorem25that fS is anSU-right ideal ofS.
Thus,

fS∗ θ̃ ∗gS= ( fS∗ θ̃)∗gS⊇̃ fS∗gS⊇̃ fS∗ θ̃⊇̃ fS.

Thus, we havefS∗ θ̃ ∗gS⊇̃ fS∪̃gS.
Let a be any element ofS. Then, it follows by Theorem

24 that there exist elementsx,y∈ Ssuch thata= axaand
ax= ya. Hence,

ax= axaxax= axax(ya) = (axa)(xya).

Thus, we have

( fS∗ θ̃ ∗gS)(a) = [( fS∗ θ̃)∗gS](a)

= [
⋂

a=pq

( fS∗ θ̃)(p)]∗gS(q)

⊆ ( fS∗ θ̃)(ax)∪gS(a)

= {
⋂

ax=pq

( fS(p)∪ θ̃(q))}∪gS(a)

⊆ ( fS(axa)∪ θ̃(aya))∪gS(a)

= ( fS(a)∪ /0)∪gS(a)

⊆ fS(a)∪gS(a)

= ( fS∪̃gS)(a)

and so, fS∗ θ̃ ∗ gS⊆̃ fS∪̃gS. And so, fS∗ θ̃ ∗ gS = fS∪̃gS.
Thus, (1) implies (4).

It is clear that (4) implies (3) and (3) implies (2).
Assume that (2) holds. LetfS and gS be any

SU-quasi-ideal andSU-left ideal ofS, respectively. Then,
by assumption, we have

fS∪̃gS= fS∗ θ̃ ∗gS= fS∗ (θ̃ ∗gS)⊇̃ fS̃∗gS.

Hence, it follows by Theorem4 thatS is regular. LetgS be
anySU-left ideal ofS. Then, sincegS is anSU-quasi-ideal
of Sand sincẽθ itself is anSU-left ideal ofS, we have

gS= gS∪̃θ̃ = gS∗ θ̃ ∗ θ̃ .

Let L be any left ideal ofS, a∈ L anda /∈ LSS. Then, the
soft characteristic functionSLc is an SU-left ideal of S.
Thus,

SLc(a) = /0

and
(SLc ∗SSc ∗SSc)(a) =U
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which is a contradiction, and soa ∈ LSS. Thus,L ⊆ LSS.
Moreover, leta∈ LSSanda /∈ L. Then,

SLc(a) =U

and
(SLc ∗SSc ∗SSc)(a) = /0

which is a contradiction, and soa∈ L. Thus,LSS⊆ L, and
soLSS= L. SinceSais a left ideal ofS, we have(Sa)SS=
Saand so,

aS⊆ (aSa)S= a(Sa)S= a((Sa)SS)S⊆ a((Sa)SS)⊆ a(Sa) = (aS)a⊆ Sa.

It follows by Theorem24 that S is a semilattice of left
groups and so (2) implies (1).

The left-right dual of Theorem32reads as follows:

Theorem 33.For a semigroup S, the following conditions
are equivalent:

1)S is a semilattice of right groups.
2) fS∪̃gS= fS∗ θ̃ ∗gS for every SU-quasi-ideal fS and SU-

right ideal gS of S.
3) fS∪̃gS = fS∗ θ̃ ∗ gS for every SU-bi-ideal fS and SU-

right ideal gS of S.
4) fS∪̃gS= fS∗ θ̃ ∗gS for every SU-generalized bi-ideal fS

and SU-right ideal gS of S.

Theorem 34.For a semigroup S, the following conditions
are equivalent:

1)S is a semilattice of left groups.
2) fS∪̃hS∪̃gS= fS∗hS∗gS for every SU-quasi-ideal fS, for

every SU-ideal hS and every SU-left ideal gS of S.
3) fS∪̃hS∪̃gS = fS∗ hS∗ gS for every SU-bi-ideal fS, for

every SU-ideal hS and every SU-left ideal gS of S.
4) fS∪̃hS∪̃gS = fS ∗ hS ∗ gS for every SU-generalized

bi-ideal fS, for every SU-ideal hS and every SU-left
ideal gS of S.

Proof.First assume that (1) holds. LetfS be any
SU-generalized bi-ideal ofS, hS be anySU-ideal ofSand
gS be anySU-left ideal ofS. Then, we have

fS∗hS∗gS⊇̃θ̃ ∗ (θ̃ ∗gS)⊇̃θ̃ ∗gS⊇̃gS

and
fS∗hS∗gS⊇̃θ̃ ∗hS∗ θ̃⊇̃hS.

Moreover, by Theorem25, sinceSU-generalized bi-ideal
fS of S is anSU-right ideal ofS, we have

fS∗hS∗gS⊇̃( fS∗ θ̃)∗ θ̃⊇̃ fS∗ θ̃⊇̃ fS.

Hence, we have

fS∗hS∗gS⊇̃ fS∪̃hS∪̃gS.

Let a∈ S. Then, by Theorem24, a= axaandax= ya for
somex,y∈ S. Then,

ax= axaxax= axax(ya) = (axa)(xya).

Hence, we have

( fS∗hS∗gS)(a) = [( fS∗hS)∗gS](a)

= [
⋂

a=pq

( fS∗hS)(p)]∗gS(q)

⊆ ( fS∗hS)(ax)∪gS(a)

= {
⋂

ax=pq

( fS(p)∪hS(q))}∪gS(a)

⊆ ( fS(axa)∪hS(xya))∪gS(a)

⊆ ( fS(a)∪hS(a))∪gS(a)

= ( fS∪̃hS∪̃gS)(a)

and so, fS ∗ hS ∗ gS⊆̃ fS∪̃hS∪̃gS. Thus,
fS∗hS∗gS= fS∪̃hS∪̃gS and (1) implies (4).

It is clear that (4) implies (3) and (3) implies (2).
Conversely, assume that (2) holds. LetfS be anySU-

quasi-ideal andgS be anySU-left ideal ofS. Then, sincẽθ
itself is anSU-ideal ofS, we have by assumption that

fS∪̃gS= fS∪̃θ̃ ∪̃gS= fS∗ θ̃ ∗gS= fS∗ (θ̃ ∗gS)⊇̃ fS∗gS.

It follows by Theorem4 thatS is regular. As in the above
Theorem, one can easily show thataS⊆ Sa. Thus,S is a
semilattice of left groups. Thus, (2) implies (1). This
completes the proof.

The left-right dual of Theorem34reads as follows:

Theorem 35.For a semigroup S, the following conditions
are equivalent:

1)S is a semilattice of right groups.
2) fS∪̃hS∪̃gS= fS∗hS∗gS for every SU-quasi-ideal fS, for

every SU-ideal hS and every SU-right ideal gS of S.
3) fS∪̃hS∪̃gS = fS∗ hS∗ gS for every SU-bi-ideal fS, for

every SU-ideal hS and every SU-right ideal gS of S.
4) fS∪̃hS∪̃gS = fS ∗ hS ∗ gS for every SU-generalized

bi-ideal fS, for every SU-ideal hS and every SU-right
ideal gS of S.

9 A semilattice of groups

Let S be a semigroup. We shall say thatS is asemilattice
of groupsif it is the set-theoretical union of a family of
mutually disjoint subgroupsGi (i ∈ M) such that, for any
pair i, j in M, the productsGiG j and G jGi are both
contained in the same subgroupsGk (k ∈ M). The
following is due to [9,17,21].

Proposition 10.[9,17,21] For a semigroup S, the
following conditions are equivalent:

1)S is a semilattice of groups.
2)S is regular and aS= Sa for all a∈ S.
3)LR= L∩R for every left ideal L and every right ideal R

of S.
4)LB= L∩B for every left ideal L and every bi-ideal B of

S.
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5)BR= B∩R for every bi-ideal B and every right ideal R
of S.

6)S is regular and every one-sided ideal of S is two-sided.

Proposition 11.Let S be a semigroup that is a semilattice
of groups. Then, every SU-(generalized) bi-ideal of S is an
SU-ideal of S.

Proof.Let fS be anySU-bi-ideal of S anda andb be any
elements ofS. Then, it follows by Proposition10that

ab∈ (aSa)S= (aS)(aS) = (aS)(Sa) = a(SS)a⊆ aSa

Thus, there exists an elementx ∈ S such thatab= axa.
Hence,

fS(ab) = fS(axa)⊆ fS(a)∪ fS(a) = fS(a).

Hence,fS is anSU-right ideal ofS. Similarly,

ab∈ S(bSb) = (Sb)(Sb) = (bS)(Sb) = b(SS)b⊆ bSb

Thus, there exists an elementx ∈ S such thatab= bxb.
Hence,

fS(ab) = fS(bxb)⊆ fS(b)∪ fS(a) = fS(b).

Therefore,fS is anSU-left ideal ofS. That is to say,fS is
anSU-ideal ofS.

Proposition 12.[17] For a semigroup S, the following
conditions are equivalent:

1)S is a semilattice of groups.
2)The set of all (generalized) bi-ideals of S is a semilattice

under the multiplication of subsets.

Now, we shall give a characterization of a semigroup
which s a semilattice of groups in terms ofSU-ideals of
semigroups.

Theorem 36.For a semigroup S, the following conditions
are equivalent:

1)S is a semilattice of groups.
2) fS∗gS= fS∪̃gS for every SU-left ideal fS and every SU-

right ideal gS of S.
3) fS∗gS= fS∪̃gS for every SU-left ideal fS and every SU-

quasi ideal gS of S.
4) fS∗gS= fS∪̃gS for every SU-left ideal fS and every SU-

bi-ideal gS of S.
5) fS∗gS= fS∪̃gS for every SU-left ideal fS and every SU-

generalized bi-ideal gS of S.
6) fS∗ gS = fS∪̃gS for every SU-quasi-ideal fS and every

SU-right ideal gS of S.
7) fS∗gS= fS∪̃gS for all SU-quasi-ideals fS and gS of S.
8) fS∗ gS = fS∪̃gS for every SU-quasi-ideal fS and every

SU-bi-ideal gS of S.
9) fS∗ gS = fS∪̃gS for every SU-quasi-ideal fS and every

SU-generalized bi-ideal gS of S.
10) fS∗gS= fS∪̃gS for every SU-bi-ideal fS and every SU-

right ideal gS of S.

11) fS∗gS= fS∪̃gS for every SU-bi-ideal fS and every SU-
quasi-ideal gS of S.

12) fS∗gS= fS∪̃gS for all SU-bi-ideals fS and gS of S.
13) fS∗gS= fS∪̃gS for every SU-bi-ideal fS and every SU-

generalized bi-ideal gS of S.
14) fS∗gS= fS∪̃gS for every SU-generalized bi-ideal fS and

every SU-right ideal gS of S.
15) fS∗gS= fS∪̃gS for every SU-generalized bi-ideal fS and

every SU-quasi-ideal gS of S.
16) fS∗gS= fS∪̃gS for every SU-generalized bi-ideal fS and

every SU-bi-ideal gS of S.
17) fS∗gS= fS∪̃gS for all SU-generalized bi-ideals fS and

gS of S.
18)S is regular and every SU-one-sided ideal of S is an SU-

ideal of S.
19)The set of all SU-quasi-ideals of S is a semilattice under

the multiplication of soft union product.
20)The set of all SU-bi-ideals of S is a semilattice under the

multiplication of soft union product.
21)The set of all SU-generalized-bi-ideals of S is a

semilattice under the multiplication of soft union
product.

Proof.First assume that (1) holds. In order to prove that
(17) holds, letfS andgS be anySU-generalized bi-ideals
of S. Then, it follows by Proposition11 that fS andgS are
SU-ideals ofS. SinceS is regular by Proposition10, it
follows from Theorem4 that fS∗gS= fS∪̃gS. Hence, we
obtain that (1) implies (17). It is clear that (17) implies
(16), (16) implies (15), (15) implies (14), (14) implies
(10), (10) implies (6), (6) implies (2), (17) implies (13),
(13) implies (12), (12) implies (11), (11) implies (10),
(13) implies (9), (9) implies (8), (8) implies (7), (7)
implies (6) and (9) implies (5), (5) implies (4), (4) implies
(3) and (3) implies (2).

Assume that (2) holds. LetL and R be any left and
right ideal ofS, respectively. Leta be any element ofL∩R
anda /∈ LR. Then,a∈ L anda∈ R and there do not exist
x ∈ L andy ∈ R such thata = xy. SinceSLc andSRc is
anSU-left ideal andSU-right ideal ofS, respectively, we
have

SLc(a) = SRc(a) = /0.

and
(SLc ∗SRc)(a) =U

But this is a contradiction, soa ∈ LR. Thus,L∩R⊆ LR.
For the converse inclusion, leta be any element ofLR and
a /∈L∩R. Then, there existy∈ L andz∈Rsuch thata= yz.
Thus,

(SLc∪̃SLc)(a) =U

and

(SLc ∗SRc)(a)=
⋂

a=mn
(SLc(m)∪SRc(n))⊆ (SLc(y)∪SRc(z))= /0

Hence,(SLc ∗SRc)(a) = /0. But this is a contradiction.
This implies thata∈ L∩R and thatLR⊆ L∩R. Thus, we
haveLR= L∩R. It follows by Proposition10 that S is a
semilattice of groups and so (2) implies (1).
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Assume that (1) holds. Then, as shown above, (17)
holds and (21) holds. It is obvious that (21) implies (20)
and (20) implies (19). Assume that (19) holds. Then,
since everySU-quasi-ideal ofS is idempotent, it follows
that S is regular ([29]. Let L andR be any left and right
ideal of S, respectively. Then, sinceL and R are
quasi-ideal ofS, soft characteristic functionsSLc and
SRc are SU-quasi-ideal of S. Thus, by assumption
SLc ∗SRc = SRc ∗SLc. Let a∈ LR anda /∈ RL. Then,

(SLc ∗SRc)(a) = /0

and
(SRc ∗SLc)(a) =U.

But this is a contradiction, henceLR ⊆ RL. One can
similarly show thatRL⊆ LR and soLR= L∪R. Then,
sinceS is regular, we have

R∩L = RL= LR.

It follows by Proposition12 that S is a semilattice of
groups. Thus (19) implies (1).

Now assume that (2) holds. To see that (18) holds, let
fS be anySU-left ideal ofS. Sinceθ̃ is anSU-right ideal
of S, we have

fS= fS∪̃θ̃ = fS∗ θ̃

Thus, fS is anSU-right ideal ofS. One can similarly show
that everySU-right ideal ofS is anSU-left ideal ofS. As
shown above,S is regular. Thus, (2) implies (18). Assume
that (17) holds. In order to show that (1) holds, letA andB
be any generalized bi-ideals ofSanda be any element of
ABanda /∈ BA. Then, the soft characteristic functionsSAc

andSBc areSU-generalized bi-ideals ofS. Thus,

(SBc ∗SAc)(a) =U

and
SAc ∗SBc)(a) = /0.

But this is a contradiction and soa∈ BA. Thus,AB⊆ BA.
It can be seen in a similar way that the converse inclusion
holds. Thus, we obtain thatAB = BA. Now, we shall
prove that any generalized bi-ideal ofS is idempotent. Let
B be any generalized bi-ideal ofSanda∈ B anda /∈ BB.
Then, since the soft characteristic functionSBc is an
SU-generalized bi-ideal ofS, we have

(SBc ∗SBc)(a) =U

and
SBc(a) = /0

which is a contradiction and soa ∈ BB. Thus,B ⊆ BB.
Similarly, one can show thatBB ⊆ B. Hence,B = BB.
This means that the set of all generalized bi-ideals ofS is
a semilattice under the multiplication of subsets. It
follows by Proposition12 that S is a semilattice of
groups. Thus (2) implies (1). This completes the proof.

Theorem 37.[28] For a semigroup S the following
conditions are equivalent:

1)S is completely regular.
2)Every bi-ideal of S is semiprime.
3)Every SU-bi-ideal of S is soft union semiprime.
4) fS(a) = fS(a2) for every SU-bi-ideal fS of S and for all

a∈ S.

Theorem 38.For a semigroup S, the following conditions
are equivalent:

1)S is a semilattice of groups.
2)For every SU-quasi-ideal fS of S, fS(a) = fS(a2) and

fS(ab) = fS(ba) for all a,b∈ S.
3)For every SU-bi-ideal fS of S, fS(a) = fS(a2) and

fS(ab) = fS(ba) for all a,b∈ S.
4)For every SU-generalized bi-ideal fS of S,

fS(a) = fS(a2) and fS(ab) = fS(ba) for all a,b∈ S.

Proof.First assume that (1) holds. LetfS be any
SU-generalized bi-ideal ofSanda andb be any elements
of S. Then, sinceS is regular by Proposition10, there
exists an elementx in S such thata = axa= axaxaxa.
Since aS⊆ Sa by Proposition10, there exist elements
y,z∈ Ssuch thatxa= yaandax= za. Thus, we have

a= axa= a(xaxaxa) = a(xa)x(ax)a= a(ya)x(za)a= a2(yxz)a2.

Hence, sincefS is anSU-generalized bi-ideal ofS, we have

fS(a) = fS(a2(yxz)a2)⊆ fS(a2)∪ fS(a2) = fS(a2) =
fS(a(axa)) = fS(a(ax)a)⊆ fS(a)∪ fS(a) = fS(a)

and so fS(a) = fS(a2). Moreover, by Proposition10, we
have

(ab)4 = a(ba)ba(ba)b∈ (Sba)S(baS)= (baS)S(Sba).

Hence, there exists an elementu ∈ S such that(ab)4 =
bauba. Thus,

fS(ab) = fS((ab)2) = fS((ab)4) = fS((ba)u(ba))⊆ fS(ba)∪ fS(ba) = fS(ba).

Similarly, we have fS(ba) ⊆ fS(ab) and so
fS(ab) = fS(ba). Thus, (1) implies (4).

It is clear that (4) implies (3) and (3) implies (2).
Conversely, assume that (2) holds. Then, it follows by

Theorem37 that S is completely regular and so regular.
Let a be any element ofS. To see thataS= Sa, let ax be
any element ofaS. Since the soft characteristic function
S(B[xa])c is anSU-bi-ideal ofS, by assumption, we have

S(B[xa])c(ax) = S(B[xa])c(xa) = /0

and soax∈ B[xa] = {xa}∪ (xa)2∪ (xa)S(xa). If ax= xa,
then ax= xa ∈ Sa, and soaS⊆ Sa. If ax= (xa)2, then
ax= (xax)a∈ Sa. Hence,aS⊆ Sa. If ax∈ (xa)S(xa), then

ax∈ (xa)S(xa) = (xaSx)a∈ Sa

and soaS⊆ Sa. In any case,aS⊆ Sa. Similarly, Sa⊆ aS.
Thus,aS= Sa. Hence, it follows by Proposition10 that
S is a semilattice of groups. Thus, (2) implies (1). This
completes the proof.
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Theorem 39.For a semigroup S, the following conditions
are equivalent:

1)S is a semilattice of groups.
2) fS∪̃gS= gS∗ fS∗gS for every SU-quasi-ideal fS of S and

for all SU-ideal gS of S.
3) fS∪̃gS= gS∗ fS∗gS for every SU-quasi-ideal fS of S and

for all SU-interior ideal gS of S.
4) fS∪̃gS= gS∗ fS∗gS for every SU-bi-ideal fS of S and for

all SU-ideal gS of S.
5) fS∪̃gS= gS∗ fS∗gS for every SU-bi-ideal fS of S and for

all SU-interior ideal gS of S.
6) fS∪̃gS= gS∗ fS∗gS for every SU-generalized bi-ideal fS

of S and for all SU-ideal gS of S.
7) fS∪̃gS= gS∗ fS∗gS for every SU-generalized bi-ideal fS

of S and for all SU-interior ideal gS of S.

Proof.First assume that (1) holds. LetfS be any
SU-generalized bi-ideal andgS be anySU-interior ideal
of S. It follows by Proposition11 that fS is anSU-ideal of
S. Thus,

gS∗ fS∗gS⊇̃θ̃ ∗ fS∗ θ̃⊇̃ fS.

Moreover,gS∗ fS∗ gS⊇̃gS∗ (θ̃ ∗gS)⊇̃gS∗ gS⊇̃gS∗ θ̃ ⊇̃gS.
Therefore, we have

gS∗ fS∗gS⊇̃ fS∪̃gS.

Now, let a be any element ofS. SinceS is regular by
Proposition10, there exists an elementx ∈ S such that
a= axa. Hence

(gS∗ fS∗gS)(a) = [(gS∗ fS)∗gS](a)

= [
⋂

a=pq

(gS∗ fS)(p)]∗gS(q)

⊆ (gS∗ fS)(a)∪gS(xa)

= {
⋂

a=uv

(gS(u)∪ fS(v))}∪gS(a)

⊆ (gS(ax)∪ fS(a))∪gS(a)

⊆ fS(a)∪gS(a)

= ( fS∪̃gS)(a)

and so,gS∗ fS∗gS⊆̃ fS∪̃gS. Thus,gS∗ fS∗gS= fS∪̃gS, so,
(1) implies (7). It is clear that (7) implies (6), (6) implies
(4), (4) implies (2) and (7) implies (5), (5) implies (3) and
(3) implies (2).

Assume that (2) holds. LetQ andJ be any quasi-ideal
and ideal ofS, respectively. Leta ∈ JQJ anda /∈ J∩Q.
Since the soft characteristic functionSQc andSJc areSU-
quasi-ideal andSU-ideal ofS, respectively, we have

(SJc∪̃SQc)(a) =U

and
(SJc ∗SQc ∗SJc)(a) = /0

which is a contradiction and soa ∈ JQJ. Thus,J∩Q ⊆
JQJ. Similarly, one can show thatJQJ⊆ J∪Q. Therefore,
we have thatJQJ= J∩Q for every quasi-idealQ and ideal
J of S, which implies thatS is regular and (2) implies (1).
This completes the proof.

10 Soft normal semigroups

In this section, we introduce the concepts of soft normality
in a semigroup. It is known that a semigroupS is called
normalif aS= Safor all a∈ S.

Definition 16.An SU-quasi-ideal fS of S is called union
Q−normal if fS(ab) = fS(ba) for all a,b∈ S.

Definition 17.An SU-bi-ideal fS of S is called union B−
normal if fS(ab) = fS(ba) for all a,b∈ S.

Definition 18.A semigroup S is called soft union
B⋆−normal if every SU-bi ideal of S is unionB−normal.

Definition 19.A semigroup S is called soft union
Q⋆ − normal if every SU-quasi-ideal of S is
unionQ−normal.

Theorem 40.Any soft union Q⋆ − normal semigroup is
normal.

Proof.Let fS be anSU-quasi-ideal of a soft unionQ⋆ −
normalsemigroup ofS. Let a be any element ofS. To see
that aS= Sa, let ax be any element ofaS. Since the soft
characteristic functionS(Q[xa])c is anSU-quasi-ideal ofS,
by assumption, we have

S(Q[xa])c(ax) = S(Q[xa])c(xa) = /0

which implies that

ax∈ Q[xa] = {xa}∪ (xaS∪Sxa)⊆ Sa

Thus, we haveaS⊆ Sa. Similarly, Sa⊆ aSholds. Thus,
aS= SaandS is normal. This completes the proof.

The following theorem shows that the converse of
Theorem40holds for a regular semigroup.

Theorem 41.For a regular semigroup S, the following
conditions are equivalent:

1)S is soft union Q⋆−normal.
2)S is normal.

Proof.It suffices to prove that (2) implies (1). Assume that
(2) holds. LetfS be anySU-quasi-ideal ofSanda andb be
any elements ofS. SinceS is regular and normal, we have

ab∈ (aSa)(bSb) = (aS)(ab)(Sb)⊆ (aS)(abSab)(Sb) =
(aSa)b(Sa)(bSb)⊆ (Sb)(Sa)S= (Sb)(aS)S= S(ba)SS=

(ba)SSS⊆ baS

This implies that there exists an elementx ∈ S such that
ab= bax. Thus, sincefS is anSU-bi-ideal ofS, we have

( fS∗ θ̃)(ab)=
⋂

ab=pq

{( fS(p)∪ θ̃ (q)}⊆ fS(ba)∪ θ̃(x)= fS(ba).

One can similarly show that

(θ̃ ∗ fS)(ab)⊆ fS(ba)

Since,fS is anSU-quasi-ideal ofS,
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fS(ab)⊆ (( fS∗ θ̃)∪̃(θ̃ ∗ fS))(ab) =
( fS∗ θ̃)(ab)∪ (θ̃ ∗ fS)(ab)⊆ fS(ba)∪ fS(ba) = fS(ba)

Similarly, it can be proved thatfS(ba) ⊆ fS(ab). Thus,
fS(ba) = fS(ab), and soS is soft unionQ⋆−normal and
that (2) implies (1). This completes the proof.

Theorem 42.Any soft union B⋆ − normal semigroup is
normal.

Proof.Let fS be an SU-bi-ideal of a softB⋆ − normal
semigroup ofS. Let a be any element ofS andax be any
element of aS. Since the soft characteristic function
S(B[xa])c is anSU-bi-ideal ofS, by assumption, we have

S(B[xa])c(ax) = S(B[xa])c(xa) = /0

which implies that

ax∈ B[xa] = {xa}∪{xaxa}∪ (xa)S(xa)⊆ Sa

Thus, we haveaS⊆ Sa. Similarly, Sa⊆ aSholds. Thus,
aS= SaandS is normal. This completes the proof.

The following theorem shows that the converse of
Theorem42holds for a regular semigroup.

Theorem 43.For a regular semigroup S, the following
conditions are equivalent:

1)S is soft B⋆−normal.
2)S is normal.

Proof.It suffices to prove that (2) implies (1). Assume that
(2) holds. Let fS be anySU-bi-ideal of S anda andb be
any elements ofS. SinceS is regular, we have

ab∈ (aSa)(bSb) = (aS)(ab)(Sb)⊆ (aS)(abSab)(Sb) =
(aSa)b(Sa)(bSb)⊆ (Sb)(aS)S= S(ba)SS= (ba)SSS⊆
baS= (baSba)S= (baS)(Sba) = ba(SS)ba⊆ baSba.

This implies that there exists an elementx ∈ S such that
a= baxba. Thus, sincefS is anSU-bi-ideal ofS, we have

fS(ab) = fS((ba)x(ba))⊆ fS(ba)∪ fS(ba) = fS(ba).

One can similarly show thatfS(ba) ⊆ fS(ab). Hence
fS(ab) = fS(ba) which implies that S is soft union
B⋆− normal and that (2) implies (1). This completes the
proof.

Proposition 13.For an idempotent semigroup S, the
following conditions are equivalent:

1)S is commutative.
2)S is soft union Q⋆−normal.
3)S is soft union B⋆−normal.

Proof.(1) implies (3) and (3) implies (2) is obvious.
Assume that (2) holds. Then,S is normal. Leta,b ∈ S.
Then,ab∈ Sb= bS. Thus, there exists an elementx in S
such thatab= bx. Similarly, we haveba= yb for some
b∈ S. Hence, sinceS is idempotent, we have

ab= bx=(bb)x= b(bx)= b(ab)= (ba)b=(yb)b= yb= ba

which implies thatS is commutative. Hence (2) implies
(1).

Definition 20.[21] A semigroup S is called archimedean if
for all a,b ∈ S, there exists a positive integer n such that
an ∈ SbS.

Definition 21.[21] A semigroup S is called weakly
commutative if for all a,b ∈ S, there exists a positive
integer n such that(ab)n ∈ bSa.

Proposition 14.[21] Every weakly commutative
semigroup is a semilattice of archimedean semigroups.

Proposition 15.Any soft union B⋆− normal semigroup is
a semilattice of archimedean semigroups.

Proof.Let Sbe any soft unionB⋆−normalsemigroup. Let
a andb be any elements ofS, and fS be anySU-bi-ideal
of S. Since the soft characteristic functionS(B[ba])c is an
SU-bi-ideal ofS, by assumption, we have

S(B[ba])c(ab) = S(B[ba])c(ba) = /0

and so

ab∈ B[ba] = {ba}∪{baba}∪ (baSba)⊆ Sa

Thus, we have(ab)2 ∈ baSba⊆ bSa. Therefore,S is
weakly commutative. Hence by Proposition14, S is a
semilattice of archimedean semigroups.

One can similarly prove the following proposition.

Proposition 16.Any soft union Q⋆−normal semigroup is
a semilattice of archimedean semigroups.

Theorem 44.For a completely regular semigroup S, the
following conditions are equivalent:

1)S is soft union Q⋆−normal.
2)S is soft union B⋆−normal.
3)For each elements a and b of S, there exists a positive

integer n such that(ab)n ∈ baSba.

Proof.It is obvious that (2) implies (1). Assume that (1)
holds. Then,S is normal. Leta andb be any elements ofS.
Thus, we have

(ab)3 = ababab= a(ba)bab⊆ (Sba)(baS) = (baS)(Sba) = (ba)SS(ba)⊆ baSba

which shows that (1) implies (3).
Conversely, assume that (3) holds. To see that (2)

holds, l et fS be anySU-bi-ideal ofS anda andb be any
elements of S. Then, by assumption, there exists a
positive integern such that(ab)n = baxba. Since S is
completely regular, for this positive integer, there exists
an elementy∈ Ssuch thatab= (ab)ny(ab)n. Then, since
fS is anSU-bi-ideal ofS, we have

fS(ab) = fS((ab)ny(ab)n)⊆ fS((ab)n)∪ fS((ab)n) =
fS((ab)n)) = fS(baxba)⊆ fS(ba)∪ fS(ba) = fS(ba).

One can similarly show thatfS(ba) ⊆ fS(ab). Hence,
fS(ab) = fS(ba) which implies that fS is soft
B⋆−normal. Thus, (3) implies (2).
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11 Conclusion

In this paper, we characterize certain classes of
semigroups such as semisimple semigroups, duo
semigroups, right (left) zero semigroups, right (left)
simple semigroups, semilattice of left (right) simple
semigroups, semilattice of left (right) groups and
semilattice of groups via different soft union ideals of
semigroups. Also, we define soft union normal
semigroups and study on the relation of this concept with
semigroups. In order to be useful to characterize the
classical semigroups, some further work can be done on
the properties of soft union semigroups and different
classes of soft union ideals.
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substructures of near-rings and N-groups, Neural Comput.
Appl., 21 (1), 133-143, (2012).
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