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Abstract: In this paper, we present a Legendre pseudo–spectral methodbased on a Legendre–Gauss–Lobatto zeros with the aid of
tensor product formulation for solving one–dimensional parabolic advection–diffusion equation with constant parameters subject to a
given initial condition and boundary conditions. First, weintroduce an approximation to the unknown function by usingdifferentiation
matrices and its derivatives with respect tox andt. Secondly , we convert our problem to a linear system of equations to unknowns at the
collocation points, then solve it. Finally, several examples are given and the numerical results are shown to demonstrate the efficiency
of the proposed technique.
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1 Introduction

In this paper, we are concerned with an efficient
numerical approximation scheme of the mathematical
model of a physical phenomena involving the
one–dimensional time–dependent advection–diffusion
equation of the form

∂u
∂ t

+β
∂u
∂x

−α
∂ 2u
∂x2 = f (x, t), (1)

wherex ∈ (a,b) ⊆ R, t ∈ (0,T], T > 0, associated with
initial condition and Dirichlet boundary conditions,
respectively:

u(x,0) = u0(x), ∀x, (2)

u(a, t) = g1(t), u(b, t) = g2(t), ∀ t, (3)

where f (x, t), u0(x), g1(t) andg2(t) are known functions,
whereasu is the unknown function. Note thatα andβ are
considered to be positive constants quantifying the
diffusion and advection processes, respectively.

One–dimensional version of the partial differential
equations which describe advection–diffusion of
quantities such as mass, heat, energy, vorticist, etc [1,2].
Equation (1) has been used to describe heat transfer in a
draining film [3], water transfer in soils [4], dispersion of

tracers in porous media [5], the intrusion of salt water into
fresh water aquifers, the spread of pollutants in rivers and
streams [6], the dispersion of dissolved material in
estuaries and coastal seas [7], contaminant dispersion in
shallow lakes [8], the absorption of chemicals into beds
[9], the spread of solute in a liquid flowing through a tube,
long–range transport of pollutants in the atmosphere [10],
forced cooling by fluids of solid material such as
windings in turbo generators [11], thermal pollution in
river systems [12], flow in porous media [13] and
dispersion of dissolved salts in groundwater [14].

In the present contribution, we construct the solution
using the pseudo–spectral techniques [15,16] with
Legendre basis. Pseudo–spectral methods are powerful
approach for numerical solution of partial differential
equations [17,18,19], which can be traced back to 1970s
[20]. If one wants to solve an ordinary or partial
differential equation to high accuracy on a simple domain
and if the data defining the problem are smooth, then
pseudo–spectral methods are usually the best tool. They
can often achieve 10 digits of accuracy where a finite
difference scheme or a finite element method would get 3
or 4. At lower accuracies, they demand less computer
memory than the alternatives.
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In pseudo–spectral methods [21], there are basically
two steps to obtaining a numerical approximation to a
solution of differential equation. First, an appropriate
finite or discrete representation of the solution must be
chosen. This may be done by polynomial interpolation of
the solution based on some suitable nodes. However, it is
well known that the Lagrange interpolation polynomial
based on equally spaced points does not give a
satisfactory approximation to general smooth functions.
In fact, as the number of collocation points increases,
interplant polynomials typically diverge. This poor
behavior of the polynomial interpolation can be avoided
for smoothly differentiable functions by removing the
restriction to equally spaced collocation points. Good
results are obtained by relating the collocation points to
the structure of classical orthogonal polynomials, such as
the well-known Legendre-Gauss-Lobatto points. The
second step is to obtain a system of algebraic equations
from discretization of the original equation. In the case of
differential equations, this second step involves finding an
approximation for the differential operator (see [20]).

Many authors have considered this technique to solve
many problems. In [22,23], pseudospectral scheme to
approximate the optimal control problems. Also, a
Legendre pseudospectral Penalty scheme used for solving
time–domain Maxwells equations [24]. The method of
Hermite pseudospectral scheme is used for Dirac
equation [25], and nonlinear partial differential equations
[26], respectively. In [27], multidomain pseudospectral
method for nonlinear convection–diffusion equations was
presented. Finally, [28] also pseudospectral methods used
in Quantum and Statistical Mechanics.

The organization of the rest of this article is as
follows. In Section 2, we present some preliminaries and
drive some tools for discretizing the introduced problem.
Section 3 summarizes the application of pseudo–spectral
Legendre method to the solution of the problem (1)–(3).
As a result a set of algebraic linear equations are formed
and a solution of the considered problem is discussed. In
Section 4, we present some numerical examples to
demonstrate the effectiveness of the proposed method.

2 Preliminaries and Notations

The well-known Legendre polynomials [29,30] are
defined on the interval [-1,1] and can be determined with
the aid of the following recurrence formulas:

L0(z) = 1, L1(z) = z,

Li+1(z) =
2i +1
i +1

zLi(z)−
i

i +1
Li−1(z), i ≥ 1, (4)

Let LN(z) denote the Legendre polynomial of orderN,
then the Legendre–Gauss–Lobatto nodes (LGL ) nodes

will be z(N)
0 , ...,z(N)

N , where these nodes defined by

z(N)
0 = −1,z(N)

N = 1 and for{z(N)
i }N−1

i=1 are the zeros of
L′

N(z). Unfortunately, there are no explicit formulas for

the LGL nodes is known. However, they can be
computed numerically [31].

Let {φ (N)
i (z)}N

i=0 be the Lagrange polynomials based
onLGL nodes, that are expressed as [32,33]:

φ (N)
j (z) =

N

∏
i=0,i 6= j

z− z(N)
i

z(N)
j − z(N)

i

, j = 0, ...,N, (5)

with the Kronecker property

φ (N)
j (zN

k ) = δ jk =

{

0, j 6= k,
1, j = k.

It is more convenient to consider an alternative expression
[32,33], for j = 0, ...,N,

φ (N)
j (zN

k ) =
1

N(N+1)LN(z
(N)
j )

(1− z2)L′
N(z)

z− z(N)
j

(6)

Any defined functionf on the interval[−1,1] may be
approximated by Lagrange polynomials as

f (z) ≃
N

∑
i=0

ciφ
(N)
i (z), (7)

whereci = { f (z(N)
i )}N

i=0. Equation (7) will be exact when
f is a polynomial of degree at mostN. Equation (7) can be
expressed in the following matrix form

f (z) ≃ Φ(N)F,

where Φ(N) =
[

φ (N)
0 (z), ...,φ (N)

N (z)
]

and

F = [ f (z(N)
0 ), ..., f (z(N)

N )]T . The first derivative to equation
(7) can be expressed as

f ′(z)≃
N

∑
i=0

ciφ
′(N)
i (z), (8)

whereφ ′(N)
i (z) is a polynomial of degreeN−1, which can

be written as

φ ′(N)
i (z) =

N

∑
k=0

φ ′(N)
i (z(N)

k )φ (N)
k (z), i = 0, ...,N. (9)

Equation (9) can be expressed in the following matrix
form:

d
dz

Φ(N)(z) = Φ(N)(z)DN+1, (10)

whereDN+1 is the so–called differentiation matrix with
dimensionN+ 1. From the last two equations (9,10) we

get [DN+1]i,k = φ ′(N)
i (z(N)

k ). The entries of the
differentiation matrix can be defined forLGL points (cf.
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[33]) as the following

[DN+1]i,k =







































LN(z
(N)
i )

LN(z
(N)
k )

1

z(N)
i − z(N)

k

, i 6= k,

−
N(N+1)

4
, i = k= 0,

N(N+1)
4

, i = k= N,

0, otherwise.

(11)

Now, we introduce the second order differentiation matrix
asD2

N+1 which is the derivative to differentiation matrix
DN+1. The entries to the second order differentiation
matrix can be defined forLGL points (cf. [34]) as the
following

[D2
N+1]i, j =



















2[DN+1]i,k

(

[DN+1]i,i −
1

z(N)
i − z(N)

k

)

, i 6= k

−
N

∑
i=0,i 6=k

[D2
N+1]i,k, i = k.

(12)
Also, any defined functionh(x) on an arbitrary

interval [a,b] may be approximated by making
transformation fromz∈ [−1,1] to x∈ [a,b] as:

h(x)≃
N

∑
i=0

h(x(N)
i )φ (N)

i (
2

b−a
(x−a)−1), (13)

wherex(N)
i = { b−a

2 (z(N)
i +1)+a}N

i=0 are the shiftedLGL
nodes associated with interval[a,b]. Equation (13) can be
expressed in the following matrix form:

h(x)≃ Φ(N)
[a,b](x)H. (14)

In view of equations (10) and (13), we conclude that

di

dxi Φ(N)
[a,b](x) = (

2
b−a

)iΦ(N)
[a,b](x)D

i
N+1, (15)

For an arbitraryN andM, any function of two variables
u : [a,b]× [c,d]→ R may be approximated by

u(x,y)≃
N

∑
i=0

M

∑
j=0

Ui, jφ
(N)
i (

2
b−a

(x−a)−1)

.φ (M)
j (

2
d− c

(y− c)−1), (16)

where

Ui, j = u
(b−a

2
(z(N)

i +1)+a,
d− c

2
(z(M)

j +1)+ c
)

. (17)

Equation (16) can be expressed based on Kronecker
product in the following matrix form:

u(x,y)≃
(

Φ(N)
[a,b](x)⊗Φ(M)

[c,d](y)
)

U, (18)

whereU is the (N + 1)(M + 1) vector as the following
form:

U = [U0,0, ...,U0,M | ... |UN,0, ...,UN,M ]T (19)

The previous representations that are based on Kronecker
product, provide some simplification in calculations when
we deal with our original problem. Also by using first and
second differentiation matrices we can approximate
relative derivatives of any function from its expansion as
we can see next. For example letu be approximated as in
(18), now we can write the first derivative tou with
respect tox as the following:

ux(x,y) ≃
( d

dx
Φ(N)

[a,b](x)⊗Φ(M)
[c,d](y)

)

U

=
2

b−a

(

Φ(N)
[a,b](x)DN+1⊗Φ(M)

[c,d](y)
)

U

=
2

b−a

(

Φ(N)
[a,b](x)⊗Φ(M)

[c,d](y)
)

.

(

DN+1⊗ IM+1

)

U. (20)

In a similar way, we can conclude that the first derivative
to u with respect toy as the following:

uy(x,y)≃
2

d− c

(

Φ(N)
[a,b](x)⊗Φ(M)

[c,d](y)
)(

IM+1⊗DM+1

)

U.

(21)

3 Legendre Pseudo–spectral Approximation

In order to solve problem (1)–(3), we approximateu(x, t)
as:

u(x, t)≃
(

Φ(N)
[a,b](x)⊗Φ(M)

[0,T](t)
)

U, (22)

where the positive and integer numbersN and M are
discretization parameters corresponding to space and time
dimensions, respectively. Also we will consider{xi}

N
i=0

and {t j}
M
j=0 as the LGL nodes corresponding to the

intervals[a,b] and[0,T], respectively.
By using (22) and differentiation matrices, we can

write the derivatives tou(x, t) as the following

ux(x, t) ≃
2

b−a

(

Φ(N)
[a,b](x)DN+1⊗Φ(M)

[0,T](t)
)

U, (23)

uxx(x, t) ≃
4

(b−a)2

(

Φ(N)
[a,b](x)D

2
N+1⊗Φ(M)

[0,T](t)
)

U, (24)

ut(x, t) ≃
2
T

(

Φ(N)
[a,b](x)⊗Φ(M)

[0,T](t)DM+1

)

U. (25)

Now, by substituting from the previous equations in
equation (1), we obtain

[ 2
T

(

Φ(N)
[a,b](x)⊗Φ(M)

[0,T](t)DM+1

)

+
2β

b−a

(

Φ(N)
[a,b](x)DN+1⊗Φ(M)

[0,T](t)
)

−
4α

(b−a)2

(

Φ(N)
[a,b](x)D

2
N+1⊗Φ(M)

[0,T](t)
)]

U = f (x, t). (26)
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Now, for 1< i < N−1 and 1< j < M, we collocate
the above equation at the collocation points{(xi , t j)}i, j .
Note that these collocation points are the interior points
not lie in initial or boundary conditions. After collocating,
equation (26) becomes:

[ 2
T

(

eN+1
i+1 ⊗eM+1

j+1 DM+1

)

+
2β

b−a

(

eN+1
i+1 DN+1⊗eM+1

j+1

)

−
4α

(b−a)2

(

eN+1
i+1 D2

N+1⊗eM+1
j+1

)]

U1 = f (xi , t j),

i = 1, · · · ,N−1, j = 1, · · · ,M, (27)

whereep
k is thekth row of p× p identity matrix. Equation

(27) can be represented in the following matrix form using
identity matrix:

[ 2
T

(

[I ]N2 ⊗ [I ]M+1
2 DM+1

)

+
2β

b−a

(

[I ]N2 DN+1⊗ [I ]M+2
2

)

−
4α

(b−a)2

(

[I ]N2 D2
N+1⊗ [I ]M+1

2

)]

U1 = F1, (28)

which can be formed as

A1U1 = F1, (29)

whereF1 andU1 are the(N−1)(M) vectors they take the
following forms:

F1 = [ f1,1, ..., f1,M | · · · | fN−1,1, ..., fN−1,M ]T ,

U1 = [U1,1, ...,U1,M | · · · |UN−1,1, ...,UN−1,M]T ,

andA1 is a matrix of dimensionN(N−1)× (M+1)2, that
can be defined as

A1 =
[ 2

T

(

[I ]N2 ⊗ [I ]M+1
2 DM+1

)

+
2β

b−a

(

[I ]N2 DN+1⊗ [I ]M+2
2

)

−
4α

(b−a)2

(

[I ]N2 D2
N+1⊗ [I ]M+1

2

)]

.

For discretization the initial condition, we substitute (26)
in (2) getting the following

(

Φ(N)
[a,b](x)⊗Φ(M)

[0,T](0)
)

U = u0(x), a≤ x≤ b,

Now, for 0< i < N, we collocate the above equation at the
collocation points{(xi ,0)}. After collocating, the previous
equation becomes:

(

eN+1
i+1 ⊗eM+1

1

)

U2 = u0(xi), (30)

then in matrix form using identity matrix
(

[I ]N+1
1 ⊗eM+1

1

)

U2 = U0, (31)

which can be formed as

A2U2 = U0, (32)

whereU0 and U2 are the(N + 1) vectors, they can be
described as the following forms:

U0 = [u0(x0), ...,u0(xN)]
T
,

U2 = [U0,0, ...,UN,0]
T
,

andA2 is a matrix of dimension(N+1)× (N+1)2, that
has the following form

A2 =
(

[I ]N+1
1 ⊗eM+1

1

)

.

Finally, to discrete the boundary conditions, we
substitute (26) in (3). First, we deal with the left boundary
to find the reduced form, then doing the same with the
right boundary. Equation (3) will be

(

Φ(N)
[a,b](a)⊗Φ(M)

[0,T](t)
)

U = g1(t), (33)

Now, for 1< j < M, we collocate the above equation at
the collocation points{(a, t j)} for the first boundary
condition. After collocating, the previous equation
becomes:

(

eN+1
1 ⊗eM+1

j+1

)

U3 = g1(t j), (34)

then in matrix form using identity matrix
(

eN+1
1 ⊗ [I ]M+1

2

)

U3 = G1, (35)

which can be formed as

A3U3 = G1, (36)

where G1 and U3 are the (M) vectors, they can be
described as the following forms:

G1 = [g1(t1), ...,g1(tM)]T ,

U3 = [U0,1, ...,U0,M]T ,

andA3 is a matrix of dimension(M)× (M +1)2, that has
the following form

A3 =
(

eN+1
1 ⊗ [I ]M+1

2

)

.

Similarly, we can write the equation of the second
boundary condition as the following form

(

eN+1
N+1⊗ [I ]M+1

2

)

U4 = G2, (37)

which can be formed as

A4U4 = G2, (38)

where G2 and U4 are the (M) vectors, they can be
described as the following forms:

G2 = [g2(t1), ...,g2(tM)]T ,

U4 = [UN,1, ...,UN,M]T ,
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andA4 is a matrix of dimension(M)× (M +1)2, that has
the following form

A4 =
(

eN+1
N+1⊗ [I ]M+1

2

)

.

The resulting system of equations can be described,
from collecting equations (29), (32), (36) and (38), as the
following

AU = F, (39)

whereA is a matrix of dimension(N+ 1)2 × (M + 1)2,
that has the formA = [A1 | A2 | A3 | A4]. For U andF,
each one is a vector with dimension(M+1)2, and take the
following form

U = [U1 | U2 | U3 | U4]
T
,

F = [F1 | U0 | G1 | G2]
T
.

After solving the linear system described in (39), we can
find the approximated solution to our problem (1).

4 Numerical Examples

In order to test the utility of the proposed method, we
apply the new scheme to the following examples whose
exact solutions are provided in each case. For both
examples, we takeN = M and to show the efficiency of
the present method for our problem in comparison with
the exact solution, we calculate for different values of N
the maximum error defined by

‖E‖∞ = max
1≤i≤N−1
1≤ j≤M−1

∣

∣Ui, j −u(xi, t j)
∣

∣ .

All the computations are carried out in double precision
arithmetic using Matlab 7.9.0 (R2009b). To obtain
sufficient accurate calculations, variable arithmetic
precision (vpa) is employed with digit being assigned to
be 32. The code was executed on a second generation
Intel Core i52410M, 2.3 Ghz Laptop.

Example 1.[1] Consider the problem (1)–(3) with the
initial condition u(x,0) = x2, 0 ≤ x ≤ 1, and the
boundary conditions are given as

{

u(0, t) = 0,
u(1, t) = exp(t), 0≤ t ≤ 1,

and the exact solutionu(x, t) = x2exp(t), in this case the
forcing function will be f (x, t) = (x2+2βx−2α)exp(t).

Example 2.[1] Consider the problem (1)–(3) with the
initial condition u(x,0) = sin(x), 0 ≤ x ≤ π , and the
boundary conditions are given as

{

u(0, t) = 0,
u(π , t) = 0, 0≤ t ≤ 2,

and the exact solutionu(x, t) = sin(x)exp(−t), in this case
the forcing function will bef (x, t) = sin(x)exp(−t)(α −
1)+β cos(x)exp(−t).

Table 1: Max. ‖E‖∞ errors with different values ofN for
Example1.

N α = 0.01,β = 1 α = 0.001,β = 2
4 8.60778E-05 6.71352E-05
5 3.21083E-06 1.64713E-06
6 9.85131E-08 6.13779E-08
7 2.48358E-09 8.80885E-10
8 5.24851E-11 1.45741E-11
9 8.31335E-13 8.13571E-13

10 3.39551E-12 3.62599E-12

(a) Exact solution

(b) Numerical solution

Fig. 1: Exact and Numerical solutions forα = 0.02, β = 2
with x∈ [0,1] andt ∈ [0,1] at N = 10 for Example1.

Table 2: Max. ‖E‖∞ errors with different values ofN for
Example2.

N α = 0.01,β = 1 α = 0.05,β = 2
5 2.9530E-03 3.83772E-03
6 2.5459E-05 1.77285E-05
7 4.1972E-05 3.85403E-05
8 1.5390E-07 5.90046E-08
9 2.6529E-07 2.07852E-07

10 4.4326E-10 2.93808E-10
11 1.2614E-09 6.88776E-10
12 9.1676E-12 8.81836E-13

Example 3.[1] Consider the problem (1)–(3) with the
initial condition u(x,0) = 0, 0 ≤ x ≤ 1, and the
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(a) Exact solution

(b) Numerical solution

Fig. 2: Exact and Numerical solutions forα = 0.05, β = 2
with x∈ [0,π ] andt ∈ [0,2] at N = 12 for Example2.

boundary conditions are given as
{

u(0, t) = 0,
u(π , t) = 0, 0≤ t ≤ 2,

and the exact solutionu(x, t) = t2sin(πx), in this case the
forcing function will be f (x, t) = sin(πx)(2t +απ2t2) +
β πt2cos(πx).

Table 3: Max. ‖E‖∞ errors with different values ofN for
Example3.

N α = 0.01,β = 1 α = 0.09,β = 2
5 1.9751E-02 1.15358E-02
6 1.0610E-04 1.20062E-04
7 2.2929E-04 8.19062E-05
8 7.8112E-07 5.90329E-07
9 1.4869E-06 3.50475E-07

10 3.1482E-09 1.71858E-09
11 6.0382E-09 1.30315E-09
12 2.1069E-11 1.94014E-11

5 Conclusion

In this work, we apply Legendre Pseudo–spectral method
for one-dimensional advection–diffusion equation with

(a) Exact solution

(b) Numerical solution

Fig. 3: Exact and Numerical solutions forα = 0.09, β = 2
with x∈ [0,1] andt ∈ [0,2] at N = 12 for Example3.

Legendre–Gauss–Lobatto nodes. The differentiation
matrices are used to represent the unknown functions.
Several examples are introduced in this article show that
the proposed numerical procedure is efficient and
provides very accurate results even with using a small
number of collocation points. The Pseudo–spectral
scheme is a powerful approach for the numerical solution
of parabolic advection–diffusion equation.
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