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Abstract: Ontology similarity measure and ontology mapping are widely used in knowledge representation and information
processing. One method to get ontology algorithm is using graph Laplacian semi-supervised learning method, all the vertices of the
ontology graph are mapped into real numbers. Then ontology similarity measure algorithm is obtained by comparing the difference of
their corresponding values. In this paper, the stability ofontology algorithms is studied by adopting a strategy whichadjusts the sample
set by deleting one element from it. The generalized bound onsuch leave-one-out stability is given.
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1 Introduction

As the ontology has the ability to express concept
semantics through the relationship between concepts,
portray the intrinsic link between concepts, and excavate
those hidden and not clear concepts and information. So,
it can better meet user requirements in the recall and
precision aspects, and realize the retrieval intelligent.
Moreover, ontology-based retrieval methods are more in
line with the of human thought can overcome the
shortcomings of the information redundancy or
information missing caused by the traditional information
retrieval methods, and the query results can be more
reasonable. Recently, ontology similarity computation is
widely used in medical science biology science (for
instance, see [1]) and social science (for instance, see
[2]). As ontology used in information retrieval (for
instance, see [3]), every vertex can be regard as a concept
of ontology, measure the similarity of vertices using the
information of ontology graph.

The key trick for ontology similarity measure is to
find the best similarity functionf : V ×V → R

+ ∪ {0},
which maps each pair of vertices to a non-negative real
number. Gao and Liang [4] raised a ontology concept
similarity method based on proximity computation. Gao,
Gao and Liang [5] posed a ontology similarity measure
by findingε-neighborhood of vertices. Xu et. al. [6] gave
a new ontology mapping using dimensionality reduction

method. Ontology concept similarity computation
algorithm with regularization framework of hypergraph
was raised by [7]. And, new algorithm given by [8] using
vertices matching. More details can be seen in [9], [10],
[11], [12], [13], [14], [15], [16].

A ontology graphG = (V,E) is a a weighted graph
with V = {v1, · · · ,vn} is the vertex set,E is the edge set,
and a weightwi j associated with edgeei j ∈ E. Let wi j = 0
if there is no edge betweenvi andv j. Assume that there is
a subset ofV (G) whose vertices are labeled with values
yi ∈ R. For all v ∈ V (G), vector v represent the
information of vertexv. The aim of semi-supervised
learning algorithm for ontology graph is to predict the
values of the rest of the vertices. In this way, all the
vertices on ontology graph are mapped into real numbers,
and we can get a ontology similarity measure by
comparing the difference of their corresponding values.

2 Mapping Ontology Graph to the Real Line

We want to approximate a good function on a ontology
graphG, with the weight matrixWi j. A normal method is
to consider about this function with few jumps. The
standard model for seeking good functionsf is by taking
small values ofS stated as follows

S( f ) = ∑
i∼ j

wi j( fi − f j)
2.
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Let L = D − W be the graph Laplacian with
D = diag(∑i wii, · · · ,∑i wni). By spectral graph theory, we
have

∑
i∼ j

wi j( fi − f j)
2 = fT Lf.

Let G = (V,E) be a connected ontology graph with
|V (G)| = n 6= ∞ and the weight matrixWi j. The aim is to
find a function f : V → R. However, ontology graph is
changeable model and there often new vertices add to old
ontology graph. Thus, in this case, we have only partial
information for old vertices. We assume the information
for first k vertices are known, i.e.,f (vi) = yi, 1≤ i ≤ k.
The labels get form experiments on old ontology graph
and can potentially with noise. Multiplicities are also
allow for data vertices, i.e., each vertex of ontology graph
may appear more than once with differ or same valuey.

Let y = 1
k ∑yi and ỹ = (y1 − y, · · · ,yk − y). There are

two kinds of standard ontology algorithms:
Algorithm 1: (Ontology algorithm with parameter

γ ∈ R). Let S = Lp (p ∈ N) be a smoothness matrix. We
add the condition∑ fi = 0 for algorithm stability use. The
standard model is to minimize the square loss function
with smoothness penalty.

f̃ = arg min
f=( f1,··· , fn),∑ fi=0

1
k ∑

i
( fi − ỹi)

2+ γfT Lf. (1)

W.l.o.g., we always assume that the labeled vertices
on ontology graph are firstl ones. Since we allow vertices
with different labels or the same label several times, the
value of l might be distinct fromk. Let 1 = (1,1, · · · ,1),
y = (∑i y1i,∑i y2i, · · · ,∑i ymi,0, · · · ,0), ỹ be then-vector,
and the labels sum corresponding to the same vertex on
the ontology graph. By standard linear algebra, the
solution of (1) can be given as follows:

f̃ = (kγS+ Ik)
−1(ỹ+ µ1). (2)

Let ni be the occurrence number ofith labeled vertex in
the sample set andIk be a diagonal matrix of multiplicities

Ik = diag(n1,n2, · · · ,nl ,0, · · · ,0). (3)

µ is chosen in order tof ⊥ 1 (µ = 0 means this condition is
dropped). Denote linear functions( f ) ass : f → ∑i fi. We
get 0= s(f̃) = s((kγS+ Ik)

−1ỹ)+ s((kγS+ Ik)
−11). Thus,

we infer

µ =− s((kγS+ Ik)
−1ỹ)

s((kγS+ Ik)−11)
.

Algorithm 2: (Ontology algorithm with no
parameters). By assuming the valuesy1, . . . ,yk with no
noise, then multiple vertices in the sample set are not
allowed in this case, and the ontology optimization
problem is to find a smoothness function satisfying
f (vi) = ỹi, 1≤ i ≤ k:

f̃ = arg min
f=(y1,··· ,ỹk , fk+1,··· , fn),∑ fi=0

fT Lf.

S can be divided as

S =

(

S1 S2
ST

2 S3

)

where S1, S2 and S3 are k × k, k × (n − k) and
(n − k) × (n − k) matrix, respectively. Let
f̃ = ( fk+1, · · · , fn). Then, it follows that

f̃ = S−1
3 ST

2 ((y1, · · · ,yk)
T + µ1), and µ = − s(S−1

3 ST
2 ỹ)

s(S−1
3 ST

2 1)
.

Obviously, algorism 2 is the limit case of algorithm 1
when γ → 0. The conditionf ⊥ 1 is also suggested for
algorism 2 as well as algorism 1.

3 Main Results and Proof

The learning algorithm is to find a functionfT : V →R for
the given sample setT . To measure the quality of function,
we use the generalization errorR( f ) as follows

R( f ) = Eµ( f (v)− y(v))2.

However, the underlying distributionµ on V × R is
unknown, and we can not computeR( f ) directly. Instead,
we measure empirical riskRk( f ) (with the square loss
function) for our aim:

Rk( f ) =
1
k

k

∑
1

( f (vi)− yi)
2.

Let λ1 be the smallest nontrivial eigenvalue of the
smoothness matrixS. The main result in this paper states
as follows reveal the general bound for the ontology
Algorithm 1.

Theorem 3.1.Let γ be the parameter for Algorithm 1,T
be a set ofk verticesv1, · · · ,vk with labelsy1, · · · ,yk which
satisfy |yi| ≤ M, and each vertex appears no more thant
times. Assuming that∀v, | fT (v)| ≤ K. Denote fT as the
solution of (1) using the smoothness functionalS with the
smallest nontrivial eigenvalueλ1. We get with probability
1− δ :

|Rk( fT )−R( fT )| ≤ β +

√

2log(2/δ )
k

(kβ +(K +M)2),

where

β =
3M

√
tk

(kγλ1− t)2 +
3M

kγλ1− t
.

Proof. The result follows from Theorem 3.3 and
Theorem 3.4 directly. �

Our result rely heavily on following definition and
result.

Definition 3.2.A symmetric ontology algorithm is said to
be uniformly LOO (leave-one-out)β -stable, if for any two
training setsT1 andT2,

∀v, | fT1(v)− fT2(v)| ≤ β ,

c© 2015 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. Lett.3, No. 2, 57-60 (2015) /www.naturalspublishing.com/Journals.asp 59

where T2 is the training set such that last vertices is
removed formT1.

Theorem 3.3.(Bousquet and Elisseeff [17]) For aβ -stable
algorithmT → fT , we have (∀ε > 0)

P(|R( fT )−Rk( fT )|

> ε +β )≤ 2exp(− kε2

2(kβ +(k+M))2 ).

We now get the stability on ontology graph for leave-
one-out case, and this result is important to get Theorem
3.1.

Theorem 3.4. (Stability on Ontology Graph for LOO
Case). For sample set of sizek with multiplicity of at
mostt, parameterγ and smoothness functionalS. Assume
that kγλ1 − t is positive. Then, Algorithm 1 is a

( 3M
√

tk
(kγλ1−t)2

+ 3M
kγλ1−t )-stable algorithm.

Proof. Let H be the hyperplane orthogonal to the
vector1, andPH be the orthogonal projection onH. Then,
H is invariant underS. According to (2), we have

(kγS+ Ik)f = ỹ+ µ1,

whereµ is chosen andf ∈ H. The ontology graph vertices
is ordered so that the labeled vertices are in the front. Then
the diagonal matrixIk stated as (3) andni ≤ t. Obviously,
l ≤ k and the spectral radius ofIk is max(n1, · · · ,nl)≤ t.

Moreover, the smallest nontrivial eigenvalue ofS
restricted toH is λ1. According to the triangle inequality
and the fact that‖PH(v)‖ ≤ ‖v‖ for any vectorv, we infer

‖PH(kγS+ Ik)f‖ ≥ ‖PHkγSf‖−‖PHIkf‖ ≥ (λ1γk− t)‖f‖

holds for anyf ∈ H. It implies that, for restrictedH, the
inverse operator(PH(kγS+ Ik))

−1’s spectral radius can not
greater than(λ1γk− t)−1.

Let y, y′ be the vertices vectors such thaty′ is get from
y by removing one vertex. Thus, we denote

y = (∑
i

yi1,∑
i

yi2, · · · ,∑
i

yil ,yl+1,0, · · · ,0),

y′ = (∑
i

yi1,∑
i

yi2, · · · ,∑
i

yil ,0, · · · ,0).

The sums are taken over all values ofy corresponding to a
vertex on a ontology graph.

Let y andy′ be the averages ofy andy′, respectively.
Then,|y− y′| ≤ M

k and that the entries of ˜y, ỹ′ differ last
entry, which differ by at mostM+ M

k . So, we obtain

‖ỹ− ỹ′‖ ≤
√

(M+
M
k
)2+ k(

M
k
)2 < 3M,

f = (PH(γkS+ Ik))
−1ỹ,

f′ = (PH(γkS+ I
′
k))

−1ỹ′,

whereI
′
k = diag(n1, · · · ,nl−1,0,0, · · · ,0) is n× n diagonal

matrices and the operator is restricted to the hyperplaneH.

Let A = PH(γkS+ Ik), B = PH(γkS+ I
′
k) restricted to

the hyperplaneH. With fact that‖‖∞ ≤ ‖‖, we have

f − f′ = A−1ỹ−B−1ỹ′ = A−1(ỹ− ỹ′)+A−1ỹ′−B−1ỹ′.

Thus,

‖f − f′‖∞ ≤ ‖f − f′‖ ≤ |A−1(ỹ− ỹ′)‖+ ‖A−1ỹ′−B−1ỹ′‖.

Note that the spectral radius ofA−1 andB−1 are at most
1

kγλ1−t . We get‖y− y′‖ ≤ 3M and

‖A−1(y− y′)‖ ≤ 3M
kγλ1− t

.

Obviously,‖ỹ′‖ ≤ 2
√

ktM, and the spectral radius of
PH(Ik − I

′
k) smaller than 1.5, we obtain:

‖A−1ỹ′−B−1ỹ′‖ = ‖B−1(B−A)A−1ỹ′‖
= ‖B−1PH(Ik − I

′
kA−1ỹ′)‖

≤ 3M
√

tk
(kγλ1− t)2 .

Combining all the fact together, we finally get

‖f − f′‖∞ ≤ 3M
√

tk
(kγλ1− t)2 +

3M
kγλ1− t

.
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