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Abstract: In this paper, we introduce union soft subrings and uniohigefls of a ring and union soft submodules of a left module
and investigate their related properties with respect tiosed operations, anti image and lowaeiinclusion of soft sets. We also obtain
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1 Introduction strides with a wide-ranging applications especially irt sof
decision making as in the following studie$, 7,12,13,
The notion of soft set was introduced in 1999 by 14,26,29, 34].
Molodtsov P8 as a new mathematical tool for dealing In [4], Ataguin and Sezgin defined the notions of soft
with uncertainties. Since its inception, it has receivedsubrings and soft ideals of a ring, soft subfields of a field,
much attention in the mean of algebraic structures such asoft submodules of a module. They studied their
groups PJ, semirings 1], rings [1], BCK/BCl-algebras  properties especially with respect to soft set operations i
[16,17,18], d-algebras 19, ordered semigroups2{), more detail. In this paper, first we extend Atagiin and
BL-algebras 33|, BCH-algebras22] and near-rings31]. Sezgin’s study4] by focusing on soft subrings and ideals
Moreover, Xiao et al. 321 proposed the notion of of aring and soft submodules of a module with respect to
exclusive disjunctive soft sets and studied some of itsimage, preimage and upperinclusion of soft sets. We
operations and Gong et allj] studied the bijective soft then introduce union soft subrings and ideals of a ring and
set with its operations. Atagiin and Sezgin defined theunion soft submodules of a left module and investigate
concepts of soft subrings and ideals of a ring, softtheir related properties with respect to soft set operation
subfields of a field and soft submodules of a moddle [ anti image and loweor-inclusion of soft sets. Moreover,
and studied their related properties with respect to soft Ssewe obtain relations between soft subrings and union soft
operations. @man et al. defined two new soft groups, subrings, soft ideals and union soft ideals and soft
soft int-groups §] and soft uni-groups9], which are  submodules and union soft submodules. The union soft
based on the inclusion relation and the intersection of setset theory (in a few algebraic structures) is also studied in
and union of sets, respectively. the following papers31,23,24].
Algebraic structures of soft sets have been studied by
some authors. Maji et al2f] presented some definitions
on soft sets and based on the analysis of severaé liminari
operations on soft sets Ali et al3][introduced several Preliminaries
operations of soft sets and Sezgin and Atag30)] [
studied on soft set operations as well. Soft set relationd'hroughout this papeR will always denote a ring with
and functions %] and soft mappingsZ7] were proposed zero Gk, M a left R-module with identity @ andN a left
and many related concepts were discussed. Moreover, theubmodule oM. LetU be an initial universe seE be a
theory of soft set has gone through remarkably rapidset of parameter&(U) be the power set d§ andA C E.
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Definition 1.[28] If F is a mapping given by
F:A— PU), then the set = {(X,F(X)) : x € A} is
called a soft set over U.

Definition 2.[3] The relative complement of a soft sef F
over U is denoted by J where  : A— P(U) is a
mapping given asa) =U \ Fa(a) forall a € A.

Definition 3.[8,9] Let Fa and Gg be soft sets over U and
Y be a function from A to B. Image ofyfunder%¥’ and
anti image of ik under ¥ are the soft set$/(Fa) and

W (Fa), where W(Fa) B —» PU) and
W*SFA) B — P(U) are set-valued functions defined as if
(b) # 0, then
W(Fa)(b) = U{F(a) |]a€ A and ¥(a) = b}, otherwise
W(Fa)b) = 0 and if WYlb) # 0, then
W*(Fa)(b) =N{F(a) |ac A and W(a) = b}, otherwise
W*(Fa)(b) = 0 for all b € B, respectively. Preimage (or

inverse image) of @ under ¥ is the soft sew—l(GB),
where $=1(Gg) : A — P(U) is a set-valued function

defined by ~1(Gg)(a) = G(W(a)) for all a € A.

Definition 4.[3] Let Fa and Gg be two soft sets over U
such that A0B # 0. The restricted union of fFand G is
denoted by kU4 Gg, and is defined asgftJ, Gg = (H,C),
where C = AN B and for all ce C, H(c) = F(c) UG(c).

Theorem 1[9] Let Ry and Tk be soft sets over U,/F T¢
be their relative soft sets, respectively ddde a function
from H to K. Then, i —1(T{) = (W~1(Tk))", i) W(F,) =
(W*(Fw))" andW*(F)) = (W(Fu))".

Definition 5.[10] Let Fa be a soft set over U and be a
subset of U. Then, upper-inclusion of ki, denoted by
F2% and lowera-inclusion of F, denoted by £ are

defined as

FP%={X€A|F(X) 2 a},Fy% = {xc A|F(x) C a},

respectively.

Definition 6.[4] Let S be a subring of R and letBe a soft
set over R. Then,dis called a soft subring of R, denoted
by Fs<R, if for all xy € S, F(x—y) 2 F(x) NF(y) and
F(xy) 2 F(X)NF(y).

Definition 7.[4] Let | be an ideal of R and let,Fbe a soft
set over R. Then, Hs called a soft ideal of R, denoted
by simply <R, if for all xye l andre R, F(x—y) D
F(X)NF(y), F(rx) 2 F(x) and F(xr) D F(x).

Definition 8.[4] Let N be a submodule of M andyFoe
a soft set over M. ThenyHs called a soft submodule of
M, denoted by simply\< M, if for all x,y € N and re R,
F(x—y) 2 F(x)NF(y) and F(rx) 2 F(x).

3 Some characterizations for soft subrings
and soft ideals

In this section, we obtain some significant
characterizations for soft subrings and soft ideals of @ rin
with respect to image, preimage and upgeinclusion of
soft sets.

Theorem 2L et Fs be a soft set over R andl be a subset
of R such that FOR) D a. If Fsis a soft subring of R, then

F5“ is a subring of R.

ProofSinceF (0r) 2 a, then & € F$'¥ and 0# F5* CR.
Assumex,y € F9, thenF (x) O a andF (y) O a. We need
to show thak —y € F&'® andxy € Fg' for all x,y € F$.
SinceFs is a soft subring oR, it follows thatF (x—y) 2
F(X)NF(y) 2 ana = a. FurthermoreF(xy) 2 F(x)N
F(y) 2 a, which completes the proof.

Theorem 3Let Fsand Gr be soft sets over R, where S and
T are subrings of R ant be a ring isomorphism from S
to T. If Fsis a soft subring of R, then so ¥(Fs).

ProoflLet t;,t; € T. SinceW is surjective, there exists
s1,S € S such that¥(s;) =t and W(s;) = t. Then,
(W(Fs))(th —t2) = U{F(s) : s € SW(s) =t1 —to} =
U{F(s):s€Ss=W¥ 1t —t)} = U{F(s) :s€ Ss=
YWY -g) =ss-9 =U{F(a—%) : s €
SW(s)=t,i=12} DU{F(s1)NF(s) :s €S¥(s) =
ti,i=12} = (U{F(s1) -1 e S¥(s1) =t1}) N(U{F () :
b € SW(x) = b)) = (W(Fs))(t) N (W(F))(t).
Similarly, one can show that
(W(Fs))(tatz) 2 (W(Fs))(t) N (W (Fs))(t2). Hence ¥ (Fs)

is a soft subring oR.

Theorem 4Let Fsand Gr be soft sets over R, where S and
T are subrings of R ant be a ring homomorphism from

Sto T. If G is a soft subring of R, then so‘i%*l(GT).

ProofLet S, € S Then,
WG - &) = GWE - %) =
G¥W(s1) — Y() 2 GW(s1) N GW(s) =
(WYGr))(s1) N (W™ (GT))( ) and  similarly

(
(YHGr))(s1%2) 2 (W H(Gr))(s1) N (WH(Gr))(s)-

Hence W ~1(Gr) is a soft subring oR.

Theorem 5Let K be a soft set over R aralbe a subset of
R such that FOR) 2 a. If F is a soft ideal of R, then,F*
is an ideal of R.

ProofSince F(Or) 2 o, then & € F~* and
0 # F~Y C R Assumex,y € F°% andr € R Then,
F(x) 2 aandF(y) 2 a. We need to show that
x—ye R rx e F7Y andxr € 29 for all x,y € F=°.
Since F is a soft ideal of R, it follows that
Fx—y) 2 F(x)NF(y) 2 ana = a. Furthermore,
F(rx) 2 F(x) 2 o and F(xr) 2 F(x) 2 a , which
completes the proof.

Theorem 6Let F and G be soft sets over R, where | and
J are ideals of R an&’ be a ring isomorphism from | to J.
If Fy is a soft ideal of R, then so #8(F).

ProofLet j1,j € J and r € R Then,
(Y(R))(j1—2) 2 (W(R))(J1) N (¥ (FR))(]2) is satisfied
as in the case of TheoreB Now, letr c Rand j € J.
SinceY is surjective, there existsz | such that/(i) = .
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Then, H([oo)) =111 [32) p anan ([o3]) = {[ 1) [22) |21
O 1) R Bl (EH R R
I,i:.LIJ.‘.l(r')}.:Uilf(i) ieli= ‘1(rll{~(i).) = tggn,go oo ‘o o
(e 111 = 30 =) S U e (3] 28]) - ([38]) en([38)) o ([39])

r) 2 (¥(R))()

i Thus,Hs is not a union soft subring dg.
a soft ideal oR.

o= ||
=

Similarly, one can show that¥(F))(]
forallr e Randj € J. Hence W(R) is
In [4], Atagin and Sezgin showed that the restricted
intersection, the sum and the product of two soft subrings
of R is a soft subring ofR Here, we show that the

Theorem 7Let i and G be soft sets over R, where | and
J are ideals of R an&’ be a ring epimorphism from | to J.

If G; is a soft ideal of R, then so #71(G;).

ProofLet i1,ip € I then
(W(Gy))(i1 — i2) 2 (¥~2(Gy))(i) N (WH(Gy))(iz) is
satisfied as shown in TheorefnNow, letr € Randi € 1.
Since ¥ is surjective, there exist§ € J such that
W(i) = j. Then, (W XGy))(r) = GW(i)) =
GW(r)w() 2 GW() = (P Gy)(i) and
(WYH(Gy))(ir) = G(W (i) =G(¥([H)¥(r)) 2 G¥(i)) =
(W1(Gy))(i). Hence W1(G,) is a soft ideal oR.

4 Union soft subrings and union soft ideals

restricted union of two union soft subringsiis a union
soft subring oR.

Theorem 8If Fs, < R and G;,<uR, then , Uy Gs,<uR.

ProofSinceS; andS; are subrings oR, then§ NS, is a
subring of R By Definition 4, let
Fsl Uy GSZ = (F,Sl) Uy (G,Sz) = (H,Sl n Sz), where

H(x) = F(x) UG(x) for all xe NS # 0. Then, for all
X,y € S n >,
H(x—y) = F(x—y)UG(x—y) € (F(x) UF(y)) U(G(x) U
G(y)) = (F() UG(x) U (F(y) UG(Y)) = H(x) UH(y)
and similarly H(xy) C H(x) U H(y). Therefore,

Fsl Uz GSz = HSlmSZ<uR-

In this section, we introduce union soft subrings and union
soft ideals of a ring, investigate their basic properties an Theorem 9lf Fs<uR, then ROg) C F(x) forall x € S.

establish the relation between soft subrings and union sofﬁ,

subrings as well as soft ideals and union soft ideals.

Definition 9.Let S be a subring of R andsbe a soft set

over R. ks is called a union soft subring of R, denoted

Fs<uR, if F(x —y) € F(x) u F(y and
F(xy) CF(x)UF(y) forallx,y € S.
Example 1Given  the ring R = (Zg+,.),

S = {0,2,4,6} < R and the soft seFs, overR, where

F:S — P(R) is a set-valued function defined by

F(x) = {ye€ Zg:ye< x>} for all xe S;. Here,
F(O) = {0}, F(2) = F(6) {0,2,4,6} and

F(4) = {0,4}. Then one can easily show thBg <,R.

Now, the subring oR be given ass, = {0,4} and the soft
set Gs, over R, whereG : $ — P(R) is a set-valued
function defined by G(0) = {0,1,3,4,5} and

G(4) = {0,1,3}. Then,G(4-4) = G(0) = {0,1,3,4,5} ¢

G(4)UG(4) = {0,1,3}. It follows thatGs, is not a union
soft subring ofR.

Example 2Given the ringR = Mz (Ze), i.e. 2x 2 matrices

with Ze terms, with the operations addition and

S . 00| {30
multiplication of matrices. LeS= { {0 0] ) {0 3] } It

is obvious thaSSis a subring oR. Let the soft sefls over

R, whereT : S— P(R) is a set-valued function defined by

(o] = {[32)-[35]} e ([35]) - {[22] (23] [53]}
Then, one can easily show th&<,R. However, if
we define a soft sétls overR such that

roofSinceFs is a union soft subring dR, thenF (Ogr) =
F(x—x) CF(X)UF(x) =F(x) forallxe S.

Theorem 10If Fs<,R, then § = {x€ S| F(x) =
is a subring of S.

F(Or)}

Prooflt is obvious that @ € S and 0# S C S. We need
to show thatx —y € § andxy € & for all X,y € &,

which means thakF (x —y) = F(Or) and F(xy) = F(R)

have to be satisfied. Sincex,y € S, then
F(x) = F(y) = F(Or). By Theorem9, F(Or) C F(x—Y)

andF (Or) € F(xy) for all x,y € S. SinceFs is a union
soft subring ofR, thenF (x—y) C F(x) UF(y) = F(Or)

and F(xy) € F(x) UF(y) = F(Or) for all x,y € S.

Therefore St is a subring ofS.

Theorem 11Let Fs be a soft set over R aral be a subset
of R such that FOr) C a. If Fsis a union soft subring of

R, then % is a subring of R.

ProofSinceF (Or) C a, then & € F$@ and 0# FS* CR.

Letx,y € FS$Y, thenF (x) C a andF(y) C a. We need to
show thatx—y € F$® andxy € F$“ for all x,y € F$°.

Since Fs is a union soft subring oR, it follows that
Fix—y) CF(X)UF(y) € aUa = a. Furthermore,
F(xy) C F(x)UF(y) C a, which completes the proof.

The following theorem gives the relation between soft

subrings and union soft subrings of a ring.

Theorem 12Let Fsbe a soft set over R. Thens B a union
soft subring of R iff £ is a soft subring of R.

(@© 2015 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

10

N SS ¥

A. S. Sezer et. al. : Uni-soft Substructures of Rings and Neslu

ProoflLet Fs be a union soft subring dR. Then for all
X,y € R F'(x—y) = R\F(x—y) 2 R\ (F(Y UF(y)) =
R\ F®) n (R\ F(y) = F'(x) nF'(y and
Fixy) = R\ F(xy) 2 R\ (FX) UF(y) =
(R\F(x))N(R\F(y)) =F"(x)NF'(y). Thus,F¢ is a soft
subring ofR. The converse can be proved similarly.

Theorem 13Let Fs and Gy be soft sets over R, where S
and T are subrings of R an# be a ring homomorphism
from Sto T. If G is a union soft subring of R, then so is
Wﬁl(GT).

ProofLet Gt be a union soft subring d®. Then,G} is a

soft subring ofR by Theoreml12 and¥~1(G}) is a soft

subring of R by Theorem 4. Thus,

w-1(Gh) = (W 1Gr))" is a soft subring ofR by

Theoreml (i). Therefore ’"%(Gr) a union soft subring
of Rby Theoreml2.

Theorem 14Let s and Gr be soft sets over R, where S
and T are subrings of R an®# be a ring isomorphism
from S to T. If kis a union soft subring of R, then so is
Y (Fs).

ProofLetFsbe a union soft subring &. Then F{ is a soft
subring ofR by Theoreml2 and%(F{) is a soft subring
of R by Theorem3. Thus,¥(F{) = (W*(Fs))" is a soft
subring ofR by Theorentl (ii). So, ¥*(Fs) is a union soft
subring ofR by Theoreml2.

Theorem 15Let R, and R be two rings and §<NUR1,
H52<NUR2. If f:S — S is aring homomorphism, then i)
Hf(s,)<uRz and Ferf<uRy, i) If f is an epimorphism,
Fi-1(s) <uRu.

Proof.i) SinceS; < Ry, S <Ry andf : S — S is aring
homomorphism, theri(S;) < R; and asf(S) C S, the
result is obvious by Definition9. Moreover, since
Kerf < Ry andKerf C S, the rest of the proof is clear by
Definition 9. ii) SinceS; < R, S <Ryandf: S — Sis

a ring epimorphism, then it is clear that(S) < Ry.
Since Fs,<uR1 and 1) < S,
Fi(x—y) € F1(X) UFL(y) andFy(xy) € Fi(x) UFs(y) for
all x,y € f~1(S). This completes the proof.

Corollary 1.Let Fs, < Ry, Hs,< R and f: S — S is a
ring homomorphism, then{Id%}ZLRz.

Definition 10.Let | be an ideal of R and let,be a soft set
over R. Then, Fs called a union soft ideal of R, denoted
by R<R, if F(x—y) C F(x) UF(y), F(rx) C F(x) and
F(xr) CF(x) forallx,yclandreR.

Example 3onsider the rindR = (Z16,+,.), the ideal oR
asli = {0,8} and the soft seffy, overR, whereF : 1; —
P(R) is a set-valued function defined By0) = {0, 3,15}
andF(8) = {0,3,6,9,12 15}. It can be easily shown that
Fi,<uR. Now, let the ideal oRbel, = {0,4,8,12} and the
soft setGy, overR, whereG: I, — P(R) is a set-valued

function defined byG(0) = {0,4,9,12}, G(4) = G(12) =
{0,4,6,9,15} andG(8) = {0,4,6,12}. Then,G(2-8) =
G(0) = {0,4,9,12} ¢ G(8) = {0,4,6,12}. It follows that
Gy, is not a union soft ideal dR.

Theorem 16If F, <yR and G,<R, then |, Uz Gi,<uR.

ProofSincel1,l, <R, thenl; Nl <R By Definition 4,
Fi, Uz Gi, = Hijni,, whereH(x) = F(x) U G(x) for all
X € liNly # 0. Then for allx,y € 1Nl andr € R,
H(x—y) = F(x—y) UG(x—Y) C (F(x) UF(y)) U(G(X)U
G(y)) = (F(x) UG(X)) U (F(y) UG(y)) = H(x) U H(y),
H(rx) = F(rx) U G(rx) C F(x) (X) = H(x)
H(xr) = F(xr) UG(xr) C F(x) UG(x) = H(x).
completes the proof.

C
c

Theorem 17If F<R, then = {xe | | F(x) =F(0Rr)} is
an ideal of R.

ProofThe proof follows from Theorer0 and Definition
10.

Theorem 18Let F be a soft set over R amu be a subset
of R such that FOr) C a. If F; is a union soft ideal of R,
then F=% is an ideal of R.

Theorem 19Let R be a soft set over R. Then,iE a union
soft ideal of R iff [f is a soft ideal of R.

ProofLet F be a union soft ideal oR, x,y € | andr €
R. Then, for allx,y € | andr e R, F'(x—y) = R\ F(x—
y) 2R\ (F(X)UF(y)) = (R\F(x)) N (R\F(y)) =F"(x)
F'(y). Moreover,F"(xr) = R\ F(xr) 2 R\ F(x) = F"(X)
andF'"(rx) = R\ F(rx) 2 R\ F(x) = F"(x). Thus,F" is a
soft ideal ofR. The converse can be proved similarly.

Theorem 20Let F and G be soft sets over R, where | and
J are ideals of R an&’ be a ring epimorphism from | to J.
If G; is a union soft ideal of R, then so%‘l(GJ).

ProofFollows from Theoreni (i), 7 and19.

Theorem 21Let F and G be soft sets over R, where | and
J are ideals of R an& be a ring isomorphism from | to J.
If i is a union soft ideal of R, then so4s* (/).

ProofFollows from Theorend (ii), 6 and19.

5 Some characterizations for soft submodules

In this section, we obtain some characterizations for soft
submodules of a module with respect to image, preimage
and uppenr-inclusion of soft sets.

Theorem 22Let Ry be a soft set over M and be a subset
of M such that KOy ) D a. If Fy is a soft submodule of M,

then K7 is a submodule of M.

(@© 2015 NSP
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Theorem 23Let Ry and G¢ be soft sets over M, where N
and K are submodules of M an& be a module
isomorphism from N to K. If{ris a soft submodule of M,
then so is¥(Fy).

ProofLet ky,k, € K. SinceW is surjective, there exists
ng,n2 € N such that’(n;) = k; and¥(ny) = k. Thus, as
in the case of Theorem 3,
(W(AN)) (ke — ko) 2 (W(Fn))(ke) N (W(Fn))(k2) s
satisfied. Now, let € Randk € K. Since¥ is surjective,
there exists n""e N such that W(fi) = k. Then,
(W(FRn))(k) = U{F(n) : ne N,W(n) =k} = U{F(n) :
nec Nn = w1k} = U{F(n) : n € Nii
wL(re(f)} = U{F(n) :

rii} = U{F(rf) : rA
N, W(f) =
submodule oM.

Theorem 24Let Ry and G¢ be soft sets over M, where N
and K are submodules of M an& be a module
homomorphism from N to K. If Gis a soft submodule of
M, then so isP~1(Gk).

ProofLet ni,no € N. As in the case of Theorem,
(Y1(Gk)) (N —ng) 2 (W1(Gk))(m) N (¥ (G ))(n2)
is satisfied. Now letr €¢ R and n € N. Then,
(WH(G))(rm) = G(¥(m)) = G(r¥(n)) 2 G(¥(n))
(Y=1(Gk))(n). Hence,W—1(Gk) is a soft submodule of
M.

6 Union soft submodules

Theorem 25If Fy, is a union soft submodule of M and
Gn, is a union soft submodule of M, then so i B Gn, .

Theorem 26lf Fy<M, then FOy) C F(x) for all x € N.

Theorem 271f Fn<uM, then

Ne = {xe N|F(x) =F(Om)} is a submodule of N.

Theorem 28Let Ry be a soft set over M anal be a subset
of M such that KOy ) C a. If Fy is a union soft submodule
of M, then K% is a submodule of M.

Theorem 29Let Ry be a soft set over M. ThenyHRs a
union soft submodule of M if and only if{Fs a soft
submodule of M.

Theorem 30Let Ry and G¢ be soft sets over M, where N
and K are submodules of M an& be a module

homomorphism from N to K. If i5is a union soft

submodule of M, then so #&1(Gk).

Theorem 31Let Ry and G¢ be soft sets over R, where N
and K are submodules of M an& be a module
isomorphism from N to K. If§ris a union soft submodule
of M, then so isV*(Fy).

Theorem 32Let My and M, be two R-modules \F< My,
HN2<~UM2. If f : N7 — Ny is a module homomorphism, then
i) He(ny) <uM2 and Feerf <uMa, ii) If f is an epimorphism,
Fr-1(ny) <uMa.

Corollary 2.Let Ry<uMz, Hy,<uMz and f: Ny — Ny is a
module homomorphism, theqdﬂz}ZLMz.

In this section, we introduce union soft submodules of a
module, investigate its basic properties and establish the
relation between soft submodules and union soft7 Conclusion

submodules.

Definition 11.Let N be a submodule of M ang, Be a soft
set over M. Then,ris called a union soft submodule of
M, denoted byF,N)<,M or simply fy<uM, if F (x—y) C
F(x) UF(y) and F(rx) C F(x) for all x,y e N andre R.

Example 4Consider the ringR = (Z12,+,.), the left
R-moduleM = (Z12,+) with natural operation and the
submoduleN; = {0,6} of M. Let the soft seFy, overM,
whereF : Ny — P(M) is a set valued function defined by
F(0) = {0,4,9} andF(6) = {0,3,4,9,11}. Then, it can
be easily seen thaF,N;)<M. Now, let the submodule of
M be N, = {0,4,8} and the soft seGn, over M, where
G: Ny — P(M) is a set valued function defined by
G(0) = {0,3,9} and G(4) = {0,3,58,11} and
G(8) = {0,3,5,8,9,11}. Then, G(2-4) = G(8) =
{0,3,5,8,9,11} ¢ G(4) = {0,3,5,8,11}. Therefore Gy,

is not a union soft submodule M.

The following theorems are given without their proofs,

since one can easily show them in view of Secon

Ataguin and Sezgin in4] defined soft subrings and soft
ideals of a ring, soft subfields of a field and soft
submodule of a left module. In this paper, we have
introduced union soft subrings and union soft ideals of a
ring and union soft submodules of a left module and
investigate their related properties with respect to seft s
operations, anti image and lowerinclusion of soft sets.
We also obtain significant relations between soft subrings
and union soft subrings, soft ideals and union soft ideals
of a ring and soft submodules and union soft submodules
of a left module. To extend this work, one could study the
union soft substructures of different algebras.
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