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Abstract: In this paper, we first introduce two kinds of subspaces of @ovespace with respect to soft structures, which are
intersection-soft subspacéS{subspace) and union-soft subspad&subspace). These new concepts shows how a soft set affects
on a subspace of a vector space in the mean of intersecti@n and inclusion of sets and thus, they can be regarded asigebr
among classical sets, soft sets and vector spaces. We trestigate their related properties with respect to sofoperations, soft
image, soft preimage, soft anti imageinclusion of soft sets and linear transformations of thet@espaces. Furthermore, we obtain
the relation betweels-subspaces andS-subspaces and give the applications of these new subspasestor spaces.
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1 Introduction spaces in the mean ¢8-subspaces. Then, we introduce
union soft subspace of a vector space that is abbreviated

Soft set theory was introduced by Molodtso6] for by US-subspace and investigate its related properties and

modeling vagueness and uncertainty and it has receivedbtain a significant relation betwed®-subspaces and

much attention since Maiji et al2f], Ali et al. [6] and  US-subspaces. Moreover, we apply soft preimage, soft

Sezgin and Atagun 29 introduced and studied anti-image, lower a-inclusion of soft sets, linear

operations of soft sets. Soft set theory has also potentidransformations of vector spaces on this soft subspace.

applications especially in decision making as I,[L1, This study is of great importance sin&&subspaces and

24,32]. This theory has started to progress in the mean ofSU-subspaces show how a soft set affect on a subspace of

algebraic structures, since Aktas and Cagn®m¢fined a vector space in the mean of intersection, union and

and studied soft groups. Since then, soft semiriridgs, [  inclusion of sets, so it functions as a bridge among

soft BCK/BCl-algebras 18], soft p-ideals [L9], soft classical sets, soft sets and vector spaces.

BCH-algebras 0], soft rings H], soft near-rings 30,

soft set relations and function8][ soft mappings 25|,

soft substructures of rings, fields and modul@ls {inion 2 Preliminaries

soft substructures of near-rings and near-ring modules

[28], normalistic soft groups7] are defined and studied LetU be a universe seE be a set of parametei®(U ) be

in detailed.Soft set has also been studied in the followingthe power set o) andA C E.

papers1,2,3,21,22 31]. o ) )

In this paper, we first introduce intersection soft Definition 1.[26] A pair (F,A) is called asoft setover U,

subspace of a vector space that is abbreviated byvhere F isamapping given by

IS-subspace and investigate its related properties with F:A—P(U)

respect to soft set operations. We then give the application ' '

of soft image, soft preimage, upperinclusion of soft  In other words, a soft set overis a parameterized family

sets, linear transformations of vector spaces on vectoof subsets of the univergé.
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Note that a soft setF,A) can be denoted bfa. In

this case, when we define more then one soft set in some

subsetsA, B, C of parametersE, the soft sets will be
denoted byFa, Fg, Fc, respectively. On the other case,
when we define more then one soft set in a subswtthe
set of parameterg, the soft sets will be denoted ta,
Ga, Ha, respectively. For more details, we refer 1d [16,
17,23,26,7].

Definition 2.[6] The relative complement of the soft set
Fa over U is denoted by & where  : A— P(U) is a
mapping given asfa) =U \ Fa(a), for all a € A.

Definition 3.[6] Let Fa and Gg be two soft sets over U
such that A0B # 0. The restricted intersection ofaFand
Gg is denoted by km Gg, and is defined asfm Gg =
(H,C), where C = ANB and for all ce C, H(c) = F(c)N
G(c).

Definition 4.[6] Let Fa and Gg be two soft sets over U
such that A0B # 0. The restricted union of fFand G is
denoted by kU4 Gg, and is defined asgftJ, Gg = (H,C),
where C = AN B and for all ce C, H(c) = F(c) UG(c).

Definition 5.[12] Let Fao and Gs be soft sets over the
common universe U an® be a function from A to B.
Then we can define the soft Séf{Fa) over U, where

W(Fa) : B— P(U) is a set valued function defined by

wrae = { $1F

for all b € B. Here,W(Fa) is called the soft image ofaF
under¥. Moreover we can define a soft $ét1(Gg) over

U, where1(Gg) : A— P(U) is a set-valued function
defined by ~1(Gg)(a) = G(W¥(a)) for all a € A. Then,
w~1(Gpg) is called the soft preimage (or inverse image) of
Gg under¥.

(a) |lac AandW(a) = b}, if ¥~1(b) #0,
otherwise

Definition 6.[13] Let Fa and Gs be soft sets over the
common universe U an® be a function from A to B.
Then we can define the soft $¢t(Fa) over U, where
W*(Fa) : B— P(U) is a set-valued function defined by

W (Fp) (b) = { Q{F(a) lac AandW(a) =b}, if ¥1(b)#£0,

otherwise

for all b € B. Here,W*(Fa) is called the soft anti image of
Fa undery.

Theorem 2113] Let Ry and Tk be soft sets over U | T¢
be their relative soft sets, respectively ddde a function
from H to K. Then,

DWLTE) = (Y~ H(Tk))"

i) W(R) = (W (Fu))" andW*(F) = (W(FW))".

Definition 7.[14] Let Fa be a soft set over U and be
a subset of U. Then uppe@r-inclusion of i, denoted by
FLY, is defined as

FP%={xeA|F(X) 2 a}.

Similarly,
Fr¥ = {X€A|F(x) C a}

is called the lowerr-inclusion of .

A nonempty subset) of a vector spacé/ is called a
subspacef V if U is a vector space oR. From now on,
V denotes a vector space oerland ifU is a subspace of
V, then it is denoted by < V.

3 IS-subspaces

In this section, we first define intersection-soft subspace
of a vector space, abbreviated Esubspace. We then
investigate its related properties with respect to soft set
operations.

Definition 8.Let U be a subspace of V and,®e a soft set
overV. Then G is called an IS-subspace of V, denoted by
Gy <V, if the following properties are satisfied:

s1)Gx+Y) 2 G(x) NG(y) and
s2)Gax) 2 G(x)

forallx,yeU anda € F.

Example 3.1 et the vector space ové&h, be
V— 00| [01] [01] [0O
~1100|’|10|’|00|"(10

and the subspace U of V be V itself.

Let the soft set G over V, where GU — P(V) is a set-
valued function defined by

10| [

0
0

=l Ol
ol ol

1
0

O O o

G

| Ol Ol Ol | Ol Ol Al
Ol Ol Ol | Ol | Ol Ol

Ol Ol Ol Ol Ol Ol Ol Ol
Ol Ol Ol Ol Ol Ol Ol Ol

|00

Then, one can show thaty&;V
the soft set J over V such that

. However, if we define

H [00]\ [[01] [0T]
00|/ ||10]’|00] "
H [01]\ _[[00] [01]
110)) 1100]"|10]J"
[01] [00]
H(ﬁq)—{jq}
H [00]\ [[00] [01]
10|/ 1[10]’|10)
then, o L .
=100 00 00
+(0[30]) -+ ([53]) 24 ([1] )
Thus, H; is not an I1S-subspace of V.
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It is easy to see that if we take the subspac¥ a@isU =
{Ov}, where § is the zero element &f, then it is obvious
thatGy is anlS-subspace of no matter hows is defined.
Thus, every vector space has at least k@isubspace.

Proposition 3.2f Gy <;V, then GOy) 2 G(x) for all x €
U.

ProofSinceGy is anlS-subspace d¥, then
G(x+Yy) 2 G(X)NG(y).

for all x,y € U and sincgU,
—xthen, forallxe U,

G(0v) 2 G NG(X) =
Theorem 31f Gy, <V and H;,<;V, then G, M Hy,<iV.

+) is a group, if we takg =

G(x—x) = G(X).

ProofSinceU; andU, are subspaces df, thenU; NU5 is
asubspace of. By Definition3, let Gy, mHu, = (G,U1)M
(H,Up) = (T,U1NUy), whereT (x) = G(x) "H(x) for all
xeUiNU, #£ 0. Then for allx,y € UyNU, anda € F,

sSITx +y) = Gx +y) N Hx + vy 2
(G n Gly) n (HX 0 Hy) =
(G MH X)) N(G(y) NH(y)) =T(X)NT(y),

S2)T (ax) = G(ax)NH(ax) 2 G(x) NH(X) = T (x).

ThereforeGy, M Hy, = Tu,nu, <iV.

Definition 9.Let (G,U;) and (H,Uz) be two |S-subspaces
of Vp and \4, respectively. The product of IS-subspaces .

(G,Uy) and (H,Uy) is defined as
(GU1) x (HUz) = (QUi x Uy), where
Q(x,y) = G(x) x H(y) for all (x,y) € U1 x Ua.

Theorem 32f  Guy,<iVi and  H,<Ve, then

GU1 X HUZZVl X V2.

ProofSince U; and U, are subspaces o¥; and Vs,
respectively, thetJ; x Uy is a subspace o¥; x V,. By
Definition 9, let
Gu, x Hy, = (G,U1) x (H,Uz) = (Q,Uy x Uz), where
Q(x,y) = G(x) x H(y) for all (x,y) € U1 x Uz, Then for
all (x1,y1), (X2,¥2) € Uy x Uy and(a1,02) € F x F,

SIR((X1,y1) + (X2,¥2)) = QX1 + X2,Y1 + Y2)
G(X1—|-X2) X H(y1+y2) D) (G(Xl) ﬂG(Xz)) X (H (yl)
y2)) = (G(x1) x H(y1)) N (G(x2) x H(y2))
(X1,Y1) NQ(x2,¥2),
s2QQ((a1, az2)(x1,y1)) = Q(ayxy, azy1)
G(a1xq) x H(azy1) 2 G(x1) x H(y1) = Q(X1,Y1)-

HenceGu, x Hu, = Qu, xu,<iV1 x Va.

o

Definition 10.Let Gy, and H,, be two IS-subspaces of V.

If UpNUs = {Ov}, then the sum of IS-subspaces, @nd
Hu, is defined as G + Hu, = Tu,+u,, Where Tix+y) =
G(x)+H(y) forall x+y e U+ Uy.

Theorem 33f  Gy,<iV  and
UiNUy = {0y}, then G, + HU2/<viV.

where

Hy, <V

ProofSinceU; andU, are subspaces ®f, thenU; + U, is
a subspace of V. By Definition 10, let
Gy, +Huy, = (G,Uy) + (H,Up) = (T,U1 + Uy), where
T(x+y) = G(x)+H(y) for all x+yeU;+U,. Itis
obvious that sincel; "U, = {0y }, then the sum

is well defined. Then for alkky +y1,%2 +Y, € U1 +Up and
ackF,

T((xa+y1)+ (e +y2) = T((Xa+X2) + (Y1 +Y2))
= G(x1+%2) +H(y1 +Y2)
2 (G(x1) NG(x2)) + (H(y1) NH(y2))
= (G(x1) +H(y1)) N (G(x2) +H(y2))
=T +y)NT (X2 +Y2),
T(a(x1+y1)) = T(axg+ayi)
= G(axy)+H(ays)
2 G(x1) +H(y1)
= (x1+y1).
Thus,Gy, + Hu,<iV.

Definition 11.Let Gy be an IS-subspace of V. Then,

a)Gy is said to be trivial if Gx) = {Oy } forall x € U.
b)Gy is said to be whole if &) =V forall xe U.

Proposition 3.3.et Gy, and Hj, be IS-subspaces of V.
Then,

DIf Gu, and Hy, are trivial 1S-subspaces of V, then

Gy, MHy, is a trivial IS-subspace of V.

iiif Gy, and H,, are whole 1S-subspaces of V, then
Gu, MHy, is a whole I1S-subspace of V.

ilf Gy, is a trivial IS-subspace of V andJ;lis a whole
IS-subspace of V, then ¢Gm Hy, is a trivial
IS-subspace of V.

iv)If Gy, and H,, are trivial IS-subspaces of V where
Uy nU; = {Ov}, then G, + Hy, is a trivial
IS-subspace of V.

v)If Gy, and H,, are whole IS-subspaces of V wherg
Uz = {Ov}, then G, + Hu, is a whole 1S-subspace of

vi)lf Cul is a trivial IS-subspace of V andyis a whole
IS-subspace of V where;d\U; = {0y}, then Gy, +
Hy, is a whole IS-subspace of V.

ProofThe proof is easily seen by Definitid®) Definition
10, Definition11, Theoren31 and Theoren33.

Proposition 3.4 et Gy, and Hy, be two IS-subspaces of
V1 and 5, respectively. Then,

DIf Gy, and Hy, are trivial IS-subspaces ofj\and \4,
respectively, then G x Hy, is a trivial IS-subspace of
V1 X V2.

iiif Gy, and Hy, are whole I1S-subspaces of ®¥nd \5,
respectively, then & x Hy, is a whole IS-subspace of
V1 X V2.

ProofThe proof is easily seen by Definitich, Definition
11and Theoren3.
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4 Applications of IS-subspaces

Now, leta € F andw € W. SinceW is a surjective linear

In this section, we give the applications of softimage, soft Then,

preimage, uppera-inclusion of soft sets and linear

transformation of vector spaces on vector space with

respect tdS-subspaces.

Theorem 41f Gy <V, then W = {x€ U | G(x)
is a subspace of U.

=G(0v)}

Prooflt is obvious that Q € Ug and 04 Ug C U. We need
to show thaik+y € Ug andax € Ug for all X,y € Ug and
a € F, which means thaB(x+y) = G(0v) andG(ax) =
G(0v) have to be satisfied. Sinogy € Ug andGy is an
IS-subspace 0¥, thenG(x) = G(y) = G(Ov),

G(Ov),G(ax) 2 G(x) =

G(x+y) 2 G(X)NG(y) = G(Ov)
forall x,y € Ug anda € F. Moreover, by Propositio8.2,
G(Ov) 2 G(x+y) andG(0v) 2 G(ax)

which completes the proof.

Theorem 44_et (¢ be a soft set overV and be a subset
of V such that ®y) D a. If Gy is an IS-subspace of V,

then G;* is a subspace of V.

ProofSinceG(0v) 2 a, then @ € G;“
Letx,y € Gg“, then

and 0# G C V.

G(x) 2 a andG(y) 2 a.

We need to show that+y € Gg¥ anmxe Gg“ for all
X,y € Gg" andme F. SinceGy is anlS-subspace 0¥, it

follows that

G(x+y)2GX)NG(y) 2ana =a.

Furthermore, G(mx) O G(x) 2 o, which completes the
proof.

Theorem 43_et G and Ty be soft sets over V, where U
and W are subspaces of V atitlbe a linear isomorphism
from U to W. If G is an IS-subspace of V, then so is
¥(Gu).

ProofLet w;,wo, € W. Since ¥ is a surjective linear
transformation, then there existg,u, € U such that

W(uy) = wy and¥(up) = w,. Then,
(W(Gu)) (Wi +wo) = [ J{G(u):ueU,¥(u) =wy+w,}
= J{GW:ueU,u=¥ 1w +w,)}

(u)
(u)
(u)
(

= J{Gu):ueU,u=¥ 1 (W(u+u)) =u+up}
= J{G(u+u) u €U, ¥(u)=w,i =12}

2 (J{G(u1)NG(up) 1 €U, W(u) =w,i =12}
= (J{G(w) :u €U, W(uy) =wi})

N (ULG(12) 112 €U, W (1) = w,})

= (W(Gu))(w1) N (P(Gy))(we)

transformation, there exists € U such that¥({) = w.
(W(Gu))(a.w) = [ J{G(u) :ueU,¥(u) = a.w}
= J{G(u):ueU,u=¥"(aw)}
= J{G(w) :ueU,u=¥1(¥(a.0) = a.0}
= | J{G(a.0): a.GeU,¥ (i) =w}

O | J{G(0) : Geu,w(0) =w}

= (W(Gu))(w)
Hence W(Gy) is anlS-subspace of.
Theorem 44 et G, and Ty be soft sets over V, where U
and W are subspaces of V an? be a linear

transformation from U to W. Ifyf is an IS-subspace of
V, then so iV ~(Tw).

ProofLetuy,u € U. Then,

(W (Tw)) (g + up) = T(W(ug + up))
T(W(u)+¥(u))
QT( (up))NT(W(u2))

(W1 (Tw)) (un) N (W H(Tw)) (U2)
Now leta € F andu € U. Then,
(WY~ 1(Tw))(a.u) = T(¥(a.u))
=T(a.W(u))
2 T(W(w)
(Y1 (Tw))(u)
L(Tw) is anlS-subspace 0¥ .

HenceW~

Theorem43.et V4 and b be two vector spaces and
(G1,U1)<iVa,

(G2,U2)<iVo. If f :U; — Uy is a linear transformation of
vector spaces, then

WIf f is surjective, ther(Gy, f~1(Uz))<iVi,
i) (Gz, f(U1))<iVa,

i) (Gy, Ker f)<;Vi.

Proof.i) SinceU; < Vi, U <V and f :U; - Uz is a
surjective linear transformation, then it is clear that
f~1(U,) < V1. Since (G1,U1)<Vy and f~1(U,) C Uy,
Gi1(X+Yy) 2 G1(x) NG1(y) and G1(ax) D Gy(x) for all
x,y € f~1(Uy) anda € F. Hence(Gy, f~1(Uy)) <iV4.

i) SinceU; < Vi, U, <V, andf :U; — Uy is a vector
space transformation, thenf(U;) < V,. Since
f(U1) C Uy, the result is obvious by Definitio8.

iii) SinceKerf <V; andKerf C U;, the rest of the
proof is clear by Definitior8.

(G1,U1)<iVs,
is a linear

and
then

Corollary 4.1Let
f U —>NU2
(G2,{0u, })<iVa.

(G2,Uz)<iV2
transformation,
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ProofBy Theorem 45 (iii),
(Gz, f(Kerf)) =
(G2,{0u,})<iV2 by Theorem45 (ii).

(Gy,Kerf)<iVi. Then

5U Ssubspaces

In this section, we first define union soft subspace of a

vector space, abbreviated HyS-subspaces. We then

Proposition 5.2f Ty <.V, then T0y) C T(x) for all x €
U.

ProofSinceTy is aU S-subspace of, then for allx,y € U,
T(x+y) CT(X)UT(y). Since(U,+) is a group, if we take
y = —xthen,

T(X—=x)=T(Ov) CT(X)UT(X)=T(X)

investigate its related properties with respect to soft setqgr all x € U.

operations.

Definition 12.Let U be a subspace of V ang be a soft
set over V. Then, the soft sgf & called a US-subspace
of V, denoted by <.V, if the following properties are
satisfied:

sT(x+y) CT(X)UT(y) and
s2)T(ax) C T(x),
forallx,yeU anda € F.

Example 5.1Consider the vector space V and the
subspace U of V in Examp&1 Let the soft setl over
V, where T: U — P(V) is a set-valued function defined

by

00 00
T{|oo]) = |00 }
T([9%]) = []00] [01] To0]
10 o0|’|10|’(10]| /"
T([9L]) = [[00] [01] foT]
100] |00]7[10]7|00] "’
T<'§§'>:{'§§' 01 '99'}
10 100/'|00]' |10

Then, one can show thay £,V . However, if we define the
soft set i overV such that

[00] [00]
“\[o0]) = _66_}_’ -
K 01|\ [|00| [01] [0O
'10|) ~\|00]’|10] |10]
K 01|\ [|00]| |01
00|/~ \|00]' |10
K 00|\ [[00O] [01] [OO
|10/) ~ 1|00)'|00)" |10
then, _ I
01 01 00
(|30 +[50]) = «([3)
01 01 .
K({IGDUKQGGD. Thus, K is not a

U S-subspace of V.

It is easy to see that if we take the subspac¥ efsU =
{Ov}, then it is obvious thaBy is aU S-subspace d¥ no

In Section3, we showed that restricted intersection, the
sum and the product of twiS-subspaces d¥ is anlS-
subspace o¥. Now, we show that the restricted union of
two U S-subspaces o¥ is aUS-subspace of with the
following theorem:

Theorem51f  Gy,<,Vv and T,<.v, then
GU1 Uy TU2 <uV.
ProofBy Definition 4 let

GU1 Uz TU2 (G,Ul) Uz (T,Uz) = (Q,Ul N Uz), where
Q(x) = G(x) UT(x) for all x € Uy NUy # 0. SinceU; and
U, are subspaces &, thenU; NU, is a subspace of.

Letx,y e UyNUy anda € F, then

Q(x+y) = G(x+y)UT(X+y)
(X)UG(Y) U(T(X)UT(y))
(X UT (X)) U(G(Y)UT(y))
(X)UQ(y)

C (G
= (G
=Q

Therefore Gy, Uz Tu, = Qu;nu, <WV.

Definition 13.Let Ty be a US-subspace of V. Then,

a)Ty is said to be trivial if T(x) = {Oy} forall x € U.
b)Ty is said to be whole if Tx) =V for allx e U.

Proposition 5.3 et Gy, and Ty, be US-subspaces of V,
then

)If Gy, and T, are trivial US-subspaces of V, then
Gu, Uz Tu, is a trivial U S-subspace of V.
iiif Gy, and T, are whole US-subspaces of V, then
Gu, Uz Tu, is a whole US-subspace of V.
iii)If Gy, is a trivial U S-subspace of V ang,lis a whole
U S-subspace of V, thenyGJ Tu, is a whole US-
subspace of V.

matter howG is defined. Thus, every vector space has atProofThe proof is easily seen by Definitigh Definition

least onéJ S-subspace as in the casel 8fsubspace.

13, Theorenbl
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6 Applications of U S-subspaces

Theorem 63_et (¢, be a soft set over V andl be a subset
of V such thar O G(Oy). If Gy is a US-subspace of V,

In this section, first we obtain the relation between then G;“ is a subspace of V.

IS-subspaces andJS-subspaces and then give the

applications of soft pre-image, soft anti image, lower ProofSincea > G(0y), then & eGSO’ and(l);AGS" CV.
a-inclusion of soft sets and linear transformation of LetxyeGS" then

vector spaces on vector
U S-subspaces.

spaces with

Theorem 61 et Ty be a soft set overV. Then; Ts aUS-
subspace of V if and only if}Tis an 1S-subspace of V.

ProofLet Ty be aU S-subspace df . Then, for allx,y € U
anda € F,

T'(x+y) =V\T(x+Yy)

Thus, T} is anlS-subspace of . Conversely, le} be an
IS-subspace o¥. Then, for allx,y € U anda € F,

T(x+y) =V\T'(x+Y)
CVA(T'(x)NT(y)
= (VAT (X)UV\T(y))
=TXUT(y).

T(ax) =V\T'(ax)
CVA\T'(x)
=T®X)

Thus,Ty is aU S-subspace o¥ .

Theorem61 shows that if a soft set isldS-subspace
of V, then its relative complement is &48-subspace of
and vice versa.

Theorem 62f Ty <.V, then4 = {xcU | T(x) =T(0v)}
is a subspace of U.

Prooflt is seen that § € Ur and 0# Ut C U. We need
to show thatx+y € Ur andax € Uy for all x,y € Ut and
o € F. Sincex,y € Ut andTy is aU S-subspace 0¥, then
T(X)=T(y)=T(Ov),

TX+y) STXUT(y) =T(0v),T(ax) S T(x) =T(Ov)

for all x,y € Ut anda € F. Furthermore, by Proposition
5.2
T(0v) C T(x-+y) andT(0v) C T(ax).

Thus, the proof is completed.

respect to

G(x) Ca andG(y) C a.

We need to show that+y € GG* anmxe G5 for all

X,y € GS" andme F. SinceGy is aU S-subspace oV, it
follows that

G(x+y) CG(x)UG(y) CaUa =a.
MoreoverG(mx) C G(x) C a, which completes the proof.

Theorem 64_et G, and Ty be soft sets over V, where U
and W are subspaces of V an? be a linear
transformation from U to W. Ify} is a US-subspace of V,
then so iV ~1(Tw).

ProofLet T be aUS-subspace oV. Then, T}, is an

IS-subspace o¥/ by Theorem61 and ¥~1(T,) is an

IS-subspace of V by Theorem 44. Thus,

WL(Th) = (W 1(Tw))" is an IS-subspace ofV by

Theorem21 (i). Therefore ¥—1(Tw) is aU S-subspace of
V by Theorentl

Theorem 69_et Gy and Ty be soft sets over V, where U
and W are subspaces of V atitlbe a linear isomorphism
from U to W. If G is a US-subspace of V, then so is
W (Gy).

ProofLet Gy be aUS-subspace oV. Then, G|, is an
IS-subspace oV by Theorem61 and ¥(G[)) is an
IS-subspace of V by Theorem 43  Thus,
Y(G) = (W*(Gy))" is anlS-subspace o¥ by Theorem
21 (ii). So, Y*(Gy) is aUS-subspace o by Theorem
61

Theoren166_et Vi and \b be two vector spaces and
(T1,U1) <uVi,

(To,U2)<uVo. If £ :U; — Uz is a linear transformation,
then

)If f is surjective, ther(Ty, f~1(Uz))<uVi,
i) (To, £ (Ur)) Vo,
iii) (Tq,Ker f)<yVi.

ProofFollows from Definition 12 and Theorem45,
therefore omitted.

(Ty,Up)<uVa,
is a linear

(T2,U2)<uV2
transformation,

and
then

Corollary 6.1Let
f U —>NU2
(T2, {Ov,) } <uVa-

ProofFollows from Theoren66 (ii) by Theorem6a6 (iii).
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