
Sohag J. Math.2, No. 3, 89-96 (2015) 89

Sohag Journal of Mathematics
An International Journal

http://dx.doi.org/10.12785/sjm/020301

Intersection Soft Subspaces and Union Soft Subspaces
with their Applications

Aslıhan Sezgin Sezer1,∗, Akın Osman Atag̈un2 and Naim Çăgman3
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Abstract: In this paper, we first introduce two kinds of subspaces of a vector space with respect to soft structures, which are
intersection-soft subspace (IS-subspace) and union-soft subspace (US-subspace). These new concepts shows how a soft set affects
on a subspace of a vector space in the mean of intersection, union and inclusion of sets and thus, they can be regarded as a bridge
among classical sets, soft sets and vector spaces. We then investigate their related properties with respect to soft setoperations, soft
image, soft preimage, soft anti image,α-inclusion of soft sets and linear transformations of the vector spaces. Furthermore, we obtain
the relation betweenIS-subspaces andUS-subspaces and give the applications of these new subspaceson vector spaces.
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1 Introduction

Soft set theory was introduced by Molodtsov [26] for
modeling vagueness and uncertainty and it has received
much attention since Maji et al. [23], Ali et al. [6] and
Sezgin and Atagün [29] introduced and studied
operations of soft sets. Soft set theory has also potential
applications especially in decision making as in [10,11,
24,32]. This theory has started to progress in the mean of
algebraic structures, since Aktaş and Çağman [5] defined
and studied soft groups. Since then, soft semirings [15],
soft BCK/BCI-algebras [18], soft p-ideals [19], soft
BCH-algebras [20], soft rings [4], soft near-rings [30],
soft set relations and functions [9], soft mappings [25],
soft substructures of rings, fields and modules [8], union
soft substructures of near-rings and near-ring modules
[28], normalistic soft groups [27] are defined and studied
in detailed.Soft set has also been studied in the following
papers [1,2,3,21,22,31].

In this paper, we first introduce intersection soft
subspace of a vector space that is abbreviated by
IS-subspace and investigate its related properties with
respect to soft set operations. We then give the application
of soft image, soft preimage, upperα-inclusion of soft
sets, linear transformations of vector spaces on vector

spaces in the mean ofIS-subspaces. Then, we introduce
union soft subspace of a vector space that is abbreviated
by US-subspace and investigate its related properties and
obtain a significant relation betweenIS-subspaces and
US-subspaces. Moreover, we apply soft preimage, soft
anti-image, lower α-inclusion of soft sets, linear
transformations of vector spaces on this soft subspace.
This study is of great importance sinceSI-subspaces and
SU-subspaces show how a soft set affect on a subspace of
a vector space in the mean of intersection, union and
inclusion of sets, so it functions as a bridge among
classical sets, soft sets and vector spaces.

2 Preliminaries

LetU be a universe set,E be a set of parameters,P(U) be
the power set ofU andA⊆ E.

Definition 1.[26] A pair (F,A) is called asoft setover U,
where F is a mapping given by

F : A→ P(U).

In other words, a soft set overU is a parameterized family
of subsets of the universeU .
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Note that a soft set(F,A) can be denoted byFA. In
this case, when we define more then one soft set in some
subsetsA, B, C of parametersE, the soft sets will be
denoted byFA, FB, FC, respectively. On the other case,
when we define more then one soft set in a subsetA of the
set of parametersE, the soft sets will be denoted byFA,
GA, HA, respectively. For more details, we refer to [11,16,
17,23,26,7].

Definition 2.[6] The relative complement of the soft set
FA over U is denoted by FrA, where Fr

A : A → P(U) is a
mapping given as FrA(α) =U \FA(α), for all α ∈ A.

Definition 3.[6] Let FA and GB be two soft sets over U
such that A∩B 6= /0. The restricted intersection of FA and
GB is denoted by FA ⋓GB, and is defined as FA ⋓GB =
(H,C), where C = A∩B and for all c∈C, H(c) = F(c)∩
G(c).

Definition 4.[6] Let FA and GB be two soft sets over U
such that A∩B 6= /0. The restricted union of FA and GB is
denoted by FA∪R GB, and is defined as FA∪R GB = (H,C),
where C = A∩B and for all c∈C, H(c) = F(c)∪G(c).

Definition 5.[12] Let FA and GB be soft sets over the
common universe U andΨ be a function from A to B.
Then we can define the soft setΨ (FA) over U, where
Ψ(FA) : B→ P(U) is a set valued function defined by

Ψ(FA)(b) =

{⋃
{F(a) | a∈ A andΨ(a) = b}, if Ψ−1(b) 6= /0,

/0, otherwise

for all b ∈ B. Here,Ψ(FA) is called the soft image of FA
underΨ . Moreover we can define a soft setΨ−1(GB) over
U, whereΨ−1(GB) : A → P(U) is a set-valued function
defined byΨ−1(GB)(a) = G(Ψ(a)) for all a ∈ A. Then,
Ψ−1(GB) is called the soft preimage (or inverse image) of
GB underΨ .

Definition 6.[13] Let FA and GB be soft sets over the
common universe U andΨ be a function from A to B.
Then we can define the soft setΨ⋆(FA) over U, where
Ψ⋆(FA) : B→ P(U) is a set-valued function defined by

Ψ⋆(FA)(b)=

{⋂
{F(a) | a∈ A andΨ(a) = b}, if Ψ−1(b) 6= /0,

/0, otherwise

for all b ∈ B. Here,Ψ ⋆(FA) is called the soft anti image of
FA underΨ .

Theorem 21[13] Let FH and TK be soft sets over U, FrH , Tr
K

be their relative soft sets, respectively andΨ be a function
from H to K. Then,

i)Ψ−1(T r
K) = (Ψ−1(TK))

r .
ii)Ψ(F r

H) = (Ψ⋆(FH))
r andΨ⋆(F r

H) = (Ψ(FH))
r .

Definition 7.[14] Let FA be a soft set over U andα be
a subset of U. Then upperα-inclusion of FA, denoted by
F⊇α

A , is defined as

F⊇α
A = {x∈ A | F(x)⊇ α}.

Similarly,
F⊆α

A = {x∈ A | F(x)⊆ α}

is called the lowerα-inclusion of FA.

A nonempty subsetU of a vector spaceV is called a
subspaceof V if U is a vector space onF . From now on,
V denotes a vector space overF and ifU is a subspace of
V, then it is denoted byU <V.

3 IS-subspaces

In this section, we first define intersection-soft subspace
of a vector space, abbreviated asIS-subspace. We then
investigate its related properties with respect to soft set
operations.

Definition 8.Let U be a subspace of V and GU be a soft set
over V . Then GU is called an IS-subspace of V , denoted by
GU<̃iV, if the following properties are satisfied:

s1)G(x+ y)⊇ G(x)∩G(y) and
s2)G(αx)⊇ G(x)

for all x,y∈U andα ∈ F.

Example 3.1Let the vector space overZ2 be

V =

{[
0 0
0 0

]
,

[
0 1
1 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]}

and the subspace U of V be V itself.
Let the soft set GU over V , where G: U → P(V) is a set-
valued function defined by

G

([
0 0
0 0

])
=

{[
0 0
0 0

]
,

[
0 1
1 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]}
,

G

([
0 1
1 0

])
=

{[
0 0
0 0

]
,

[
0 1
1 0

]}
,

G

([
0 1
0 0

])
=

{[
0 0
0 0

]
,

[
0 0
1 0

]}
,

G

([
0 0
1 0

])
=

{[
0 0
0 0

]
,

[
0 1
0 0

]}
.

Then, one can show that GU<̃iV. However, if we define
the soft set HU over V such that

H

([
0 0
0 0

])
=

{[
0 1
1 0

]
,

[
0 1
0 0

]}
,

H

([
0 1
1 0

])
=

{[
0 0
0 0

]
,

[
0 1
1 0

]}
,

H

([
0 1
0 0

])
=

{[
0 0
1 0

]}
,

H

([
0 0
1 0

])
=

{[
0 0
1 0

]
,

[
0 1
1 0

]}

then,

H

(
0.

[
0 0
1 0

])
= H

([
0 0
0 0

])
+ H

([
0 0
1 0

])
.

Thus, HU is not an IS-subspace of V .
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It is easy to see that if we take the subspace ofV asU =
{0V}, where 0V is the zero element ofV, then it is obvious
thatGU is anIS-subspace ofV no matter howG is defined.
Thus, every vector space has at least oneIS-subspace.

Proposition 3.2If GU<̃iV, then G(0V) ⊇ G(x) for all x ∈
U.

Proof.SinceGU is anIS-subspace ofV, then

G(x+ y)⊇ G(x)∩G(y).

for all x,y∈U and since(U,+) is a group, if we takey=
−x then, for allx∈U ,

G(x− x) = G(0V)⊇ G(x)∩G(x) = G(x).

Theorem 31If GU1<̃iV and HU2<̃iV, then GU1 ⋓HU2<̃iV.

Proof.SinceU1 andU2 are subspaces ofV, thenU1∩U2 is
a subspace ofV. By Definition3, letGU1⋓HU2 =(G,U1)⋓
(H,U2) = (T,U1∩U2), whereT(x) = G(x)∩H(x) for all
x∈U1∩U2 6= /0. Then for allx,y∈U1∩U2 andα ∈ F,

s1)T(x + y) = G(x + y) ∩ H(x + y) ⊇
(G(x) ∩ G(y)) ∩ (H(x) ∩ H(y)) =
(G(x)∩H(x))∩ (G(y)∩H(y)) = T(x)∩T(y),

s2)T(αx) = G(αx)∩H(αx)⊇ G(x)∩H(x) = T(x).

ThereforeGU1 ⋓HU2 = TU1∩U2<̃iV.

Definition 9.Let (G,U1) and(H,U2) be two IS-subspaces
of V1 and V2, respectively. The product of IS-subspaces
(G,U1) and (H,U2) is defined as
(G,U1) × (H,U2) = (Q,U1 × U2), where
Q(x,y) = G(x)×H(y) for all (x,y) ∈U1×U2.

Theorem 32If GU1<̃iV1 and HU2<̃iV2, then
GU1 ×HU2<̃iV1×V2.

Proof.Since U1 and U2 are subspaces ofV1 and V2,
respectively, thenU1 ×U2 is a subspace ofV1 ×V2. By
Definition 9, let
GU1 × HU2 = (G,U1) × (H,U2) = (Q,U1 × U2), where
Q(x,y) = G(x)×H(y) for all (x,y) ∈ U1 ×U2. Then for
all (x1,y1),(x2,y2) ∈U1×U2 and(α1,α2) ∈ F ×F,

s1)Q((x1,y1) + (x2,y2)) = Q(x1 + x2,y1 + y2) =
G(x1+x2)×H(y1+y2)⊇ (G(x1)∩G(x2))× (H(y1)∩
H(y2)) = (G(x1) × H(y1)) ∩ (G(x2) × H(y2)) =
Q(x1,y1)∩Q(x2,y2),

s2)Q((α1,α2)(x1,y1)) = Q(α1x1,α2y1) =
G(α1x1)×H(α2y1)⊇ G(x1)×H(y1) = Q(x1,y1).

HenceGU1 ×HU2 = QU1×U2<̃iV1×V2.

Definition 10.Let GU1 and HU2 be two IS-subspaces of V .
If U1∩U2 = {0V}, then the sum of IS-subspaces GU1 and
HU2 is defined as GU1 +HU2 = TU1+U2, where T(x+ y) =
G(x)+H(y) for all x+ y∈U1+U2.

Theorem 33If GU1<̃iV and HU2<̃iV where
U1∩U2 = {0V}, then GU1 +HU2<̃iV.

Proof.SinceU1 andU2 are subspaces ofV, thenU1+U2 is
a subspace of V. By Definition 10, let
GU1 + HU2 = (G,U1) + (H,U2) = (T,U1 + U2), where
T(x+ y) = G(x) + H(y) for all x+ y ∈ U1 +U2. It is
obvious that sinceU1∩U2 = {0V}, then the sum
is well defined. Then for allx1+y1,x2+y2 ∈U1+U2 and
α ∈ F ,

T((x1+y1)+(x2+y2)) = T((x1+x2)+(y1+y2))

= G(x1+x2)+H(y1+y2)

⊇ (G(x1)∩G(x2))+(H(y1)∩H(y2))

= (G(x1)+H(y1))∩ (G(x2)+H(y2))

= T(x1+y1)∩T(x2+y2),

T(α(x1+ y1)) = T(αx1+αy1)

= G(αx1)+H(αy1)

⊇ G(x1)+H(y1)

= T(x1+ y1).

Thus,GU1 +HU2<̃iV.

Definition 11.Let GU be an IS-subspace of V . Then,

a)GU is said to be trivial if G(x) = {0V} for all x ∈U.
b)GU is said to be whole if G(x) =V for all x∈U.

Proposition 3.3Let GU1 and HU2 be IS-subspaces of V .
Then,

i)If GU1 and HU2 are trivial IS-subspaces of V , then
GU1 ⋓HU2 is a trivial IS-subspace of V .

ii)If GU1 and HU2 are whole IS-subspaces of V , then
GU1 ⋓HU2 is a whole IS-subspace of V .

iii)If G U1 is a trivial IS-subspace of V and HU2 is a whole
IS-subspace of V , then GU1 ⋓ HU2 is a trivial
IS-subspace of V .

iv)If GU1 and HU2 are trivial IS-subspaces of V where
U1 ∩ U2 = {0V}, then GU1 + HU2 is a trivial
IS-subspace of V .

v)If GU1 and HU2 are whole IS-subspaces ofV where U1∩
U2 = {0V}, then GU1 +HU2 is a whole IS-subspace of
V .

vi)If GU1 is a trivial IS-subspace of V and HU2 is a whole
IS-subspace of V where U1 ∩U2 = {0V}, then GU1 +
HU2 is a whole IS-subspace of V .

Proof.The proof is easily seen by Definition3, Definition
10, Definition11, Theorem31and Theorem33.

Proposition 3.4Let GU1 and HU2 be two IS-subspaces of
V1 and V2, respectively. Then,

i)If GU1 and HU2 are trivial IS-subspaces of V1 and V2,
respectively, then GU1 ×HU2 is a trivial IS-subspace of
V1×V2.

ii)If GU1 and HU2 are whole IS-subspaces of V1 and V2,
respectively, then GU1 ×HU2 is a whole IS-subspace of
V1×V2.

Proof.The proof is easily seen by Definition9 , Definition
11and Theorem3 .
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4 Applications of IS-subspaces

In this section, we give the applications of soft image, soft
preimage, upperα-inclusion of soft sets and linear
transformation of vector spaces on vector space with
respect toIS-subspaces.

Theorem 41If GU<̃iV, thenUG = {x∈U |G(x) =G(0V)}
is a subspace of U.

Proof.It is obvious that 0V ∈UG and /06=UG ⊆U . We need
to show thatx+ y∈UG andαx∈UG for all x,y∈UG and
α ∈ F, which means thatG(x+ y) = G(0V) andG(αx) =
G(0V) have to be satisfied. Sincex,y ∈ UG andGU is an
IS-subspace ofV, thenG(x) = G(y) = G(0V),

G(x+y)⊇ G(x)∩G(y) = G(0V),G(αx) ⊇ G(x) = G(0V)

for all x,y∈UG andα ∈ F . Moreover, by Proposition3.2,

G(0V)⊇ G(x+ y) andG(0V)⊇ G(αx)

which completes the proof.

Theorem 42Let GU be a soft set over V andα be a subset
of V such that G(0V) ⊇ α. If GU is an IS-subspace of V ,
then G⊇α

U is a subspace of V .

Proof.SinceG(0V)⊇ α, then 0V ∈G⊇α
U and /06=G⊇α

U ⊆V.
Let x,y∈ G⊇α

U , then

G(x)⊇ α andG(y)⊇ α.

We need to show thatx+ y ∈ G⊇α
U an mx∈ G⊇α

U for all
x,y∈ G⊇α

U andm∈ F . SinceGU is anIS-subspace ofV, it
follows that

G(x+ y)⊇ G(x)∩G(y)⊇ α ∩α = α.

Furthermore,G(mx) ⊇ G(x) ⊇ α, which completes the
proof.

Theorem 43Let GU and TW be soft sets over V, where U
and W are subspaces of V andΨ be a linear isomorphism
from U to W. If GU is an IS-subspace of V , then so is
Ψ(GU).

Proof.Let w1,w2 ∈ W. Since Ψ is a surjective linear
transformation, then there existsu1,u2 ∈ U such that
Ψ(u1) = w1 andΨ(u2) = w2. Then,

(Ψ(GU ))(w1+w2) =
⋃
{G(u) : u∈U,Ψ (u) = w1+w2}

=
⋃
{G(u) : u∈U,u=Ψ−1(w1+w2)}

=
⋃
{G(u) : u∈U,u=Ψ−1(Ψ(u1+u2)) = u1+u2}

=
⋃
{G(u1+u2) : ui ∈U,Ψ (ui) = wi , i = 1,2}

⊇
⋃
{G(u1)∩G(u2) : ui ∈U,Ψ (ui ) = wi , i = 1,2}

= (
⋃
{G(u1) : u1 ∈U,Ψ (u1) = w1})

∩ (
⋃
{G(u2) : u2 ∈U,Ψ (u2) = w2})

= (Ψ(GU ))(w1)∩ (Ψ(GU ))(w2)

Now, let α ∈ F andw∈W. SinceΨ is a surjective linear
transformation, there exists ˜u ∈ U such thatΨ(ũ) = w.
Then,

(Ψ(GU ))(α.w) =
⋃

{G(u) : u∈U,Ψ (u) = α.w}

=
⋃

{G(u) : u∈U,u=Ψ−1(α.w)}

=
⋃

{G(u) : u∈U,u=Ψ−1(Ψ(α.ũ)) = α.ũ}

=
⋃

{G(α.ũ) : α.ũ∈U,Ψ (ũ) = w}

⊇
⋃

{G(ũ) : ũ∈U,Ψ (ũ) = w}

= (Ψ (GU ))(w)

Hence,Ψ (GU) is anIS-subspace ofV.

Theorem 44Let GU and TW be soft sets over V, where U
and W are subspaces of V andΨ be a linear
transformation from U to W. If TW is an IS-subspace of
V , then so isΨ−1(TW).

Proof.Let u1,u2 ∈U . Then,

(Ψ−1(TW))(u1+u2) = T(Ψ(u1+u2))

= T(Ψ(u1)+Ψ(u2))

⊇ T(Ψ(u1))∩T(Ψ (u2))

= (Ψ−1(TW))(u1)∩ (Ψ−1(TW))(u2)

Now let α ∈ F andu∈U . Then,

(Ψ−1(TW))(α.u) = T(Ψ (α.u))

= T(α.Ψ (u))

⊇ T(Ψ (u))

= (Ψ−1(TW))(u)

HenceΨ−1(TW) is anIS-subspace ofV.

Theorem 45Let V1 and V2 be two vector spaces and
(G1,U1)<̃iV1,
(G2,U2)<̃iV2. If f : U1 →U2 is a linear transformation of
vector spaces, then

i)If f is surjective, then(G1, f−1(U2))<̃iV1,
ii)(G2, f (U1))<̃iV2,
iii) (G1,Ker f)<̃iV1.

Proof.i) SinceU1 < V1, U2 < V2 and f : U1 → U2 is a
surjective linear transformation, then it is clear that
f−1(U2) < V1. Since (G1,U1)<̃iV1 and f−1(U2) ⊆ U1,
G1(x+ y) ⊇ G1(x) ∩ G1(y) and G1(αx) ⊇ G1(x) for all
x,y∈ f−1(U2) andα ∈ F . Hence(G1, f−1(U2))<̃iV1.

ii) SinceU1 <V1, U2 <V2 and f : U1 →U2 is a vector
space transformation, then f (U1) < V2. Since
f (U1)⊆U2, the result is obvious by Definition8.

iii) SinceKer f < V1 and Ker f ⊆ U1, the rest of the
proof is clear by Definition8.

Corollary 4.1Let (G1,U1)<̃iV1, (G2,U2)<̃iV2 and
f : U1 → U2 is a linear transformation, then
(G2,{0U2})<̃iV2.

c© 2015 NSP
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Proof.By Theorem 45 (iii), (G1,Ker f)<̃iV1. Then
(G2, f (Ker f)) =
(G2,{0U2})<̃iV2 by Theorem45(ii).

5 US-subspaces

In this section, we first define union soft subspace of a
vector space, abbreviated byUS-subspaces. We then
investigate its related properties with respect to soft set
operations.

Definition 12.Let U be a subspace of V and TU be a soft
set over V . Then, the soft set TU is called a US-subspace
of V , denoted by TU<̃uV, if the following properties are
satisfied:

s1)T(x+ y)⊆ T(x)∪T(y) and
s2)T(αx)⊆ T(x),

for all x,y∈U andα ∈ F.

Example 5.1Consider the vector space V and the
subspace U of V in Example3.1. Let the soft set TU over
V, where T: U → P(V) is a set-valued function defined
by

T

([
0 0
0 0

])
=

{[
0 0
0 0

]}
,

T

([
0 1
1 0

])
=

{[
0 0
0 0

]
,

[
0 1
1 0

]
,

[
0 0
1 0

]}
,

T

([
0 1
0 0

])
=

{[
0 0
0 0

]
,

[
0 1
1 0

]
,

[
0 1
0 0

]}
,

T

([
0 0
1 0

])
=

{[
0 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]}
.

Then, one can show that TU<̃uV. However, if we define the
soft set KU over V such that

K

([
0 0
0 0

])
=

{[
0 0
0 0

]}
,

K

([
0 1
1 0

])
=

{[
0 0
0 0

]
,

[
0 1
1 0

]
,

[
0 0
1 0

]}
,

K

([
0 1
0 0

])
=

{[
0 0
0 0

]
,

[
0 1
1 0

]}
,

K

([
0 0
1 0

])
=

{[
0 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]}

then,

K

([
0 1
1 0

]
+

[
0 1
0 0

])
= K

([
0 0
1 0

])
*

K

([
0 1
1 0

])
∪ K

([
0 1
0 0

])
. Thus, KU is not a

US-subspace of V .

It is easy to see that if we take the subspace ofV asU =
{0V}, then it is obvious thatGU is aUS-subspace ofV no
matter howG is defined. Thus, every vector space has at
least oneUS-subspace as in the case ofIS-subspace.

Proposition 5.2If TU<̃uV, then T(0V) ⊆ T(x) for all x ∈
U.

Proof.SinceTU is aUS-subspace ofV, then for allx,y∈U ,
T(x+y)⊆ T(x)∪T(y). Since(U,+) is a group, if we take
y=−x then,

T(x− x) = T(0V)⊆ T(x)∪T(x) = T(x)

for all x∈U .

In Section3, we showed that restricted intersection, the
sum and the product of twoIS-subspaces ofV is an IS-
subspace ofV. Now, we show that the restricted union of
two US-subspaces ofV is a US-subspace ofV with the
following theorem:

Theorem 51If GU1<̃uV and TU2<̃uV, then
GU1 ∪R TU2<̃uV.

Proof.By Definition 4, let
GU1 ∪R TU2 = (G,U1)∪R (T,U2) = (Q,U1 ∩U2), where
Q(x) = G(x)∪T(x) for all x∈U1∩U2 6= /0. SinceU1 and
U2 are subspaces ofV, thenU1 ∩U2 is a subspace ofV.
Let x,y∈U1∩U2 andα ∈ F , then

Q(x+ y) = G(x+ y)∪T(x+ y)

⊆ (G(x)∪G(y))∪ (T(x)∪T(y))

= (G(x)∪T(x))∪ (G(y)∪T(y))

= Q(x)∪Q(y)

Q(αx) = G(αx)∪T(αx)

⊆ G(x)∪T(x)

= Q(x)

Therefore,GU1 ∪R TU2 = QU1∩U2<̃uV.

Definition 13.Let TU be a US-subspace of V . Then,

a)TU is said to be trivial if T(x) = {0V} for all x ∈U.
b)TU is said to be whole if T(x) =V for all x∈U.

Proposition 5.3Let GU1 and TU2 be US-subspaces of V ,
then

i)If GU1 and TU2 are trivial US-subspaces of V , then
GU1 ∪R TU2 is a trivial US-subspace of V .

ii)If GU1 and TU2 are whole US-subspaces of V , then
GU1 ∪R TU2 is a whole US-subspace of V .

iii)If G U1 is a trivial US-subspace of V and TU2 is a whole
US-subspace of V , then GU1 ∪R TU2 is a whole US-
subspace of V .

Proof.The proof is easily seen by Definition4, Definition
13, Theorem51.
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6 Applications of US-subspaces

In this section, first we obtain the relation between
IS-subspaces andUS-subspaces and then give the
applications of soft pre-image, soft anti image, lower
α-inclusion of soft sets and linear transformation of
vector spaces on vector spaces with respect to
US-subspaces.

Theorem 61Let TU be a soft set over V . Then, TU is a US-
subspace of V if and only if TrU is an IS-subspace of V .

Proof.Let TU be aUS-subspace ofV. Then, for allx,y∈U
andα ∈ F ,

T r(x+ y) = V \T(x+ y)

⊇ V \ ((T(x)∪T(y))

= (V \T(x))∩ (V \T(y))

= T r(x)∩Tr(y).

T r(αx) = V \T(αx)

⊇ V \T(x)

= T r(x)

Thus,T r
U is anIS-subspace ofV. Conversely, letT r

U be an
IS-subspace ofV. Then, for allx,y∈U andα ∈ F ,

T(x+ y) = V \Tr(x+ y)

⊆ V \ (Tr(x)∩T r(y))

= (V \Tr(x))∪ (V \Tr(y))

= T(x)∪T(y).

T(αx) = V \Tr(αx)

⊆ V \Tr(x)

= T(x)

Thus,TU is aUS-subspace ofV.

Theorem61 shows that if a soft set is aUS-subspace
of V, then its relative complement is anIS-subspace ofV
and vice versa.

Theorem 62If TU<̃uV, then UT = {x∈U | T(x) = T(0V)}
is a subspace of U.

Proof.It is seen that 0V ∈ UT and /06= UT ⊆ U . We need
to show thatx+ y∈UT andαx∈UT for all x,y∈UT and
α ∈ F . Sincex,y∈UT andTU is aUS-subspace ofV, then
T(x) = T(y) = T(0V),

T(x+ y)⊆ T(x)∪T(y) = T(0V),T(αx) ⊆ T(x) = T(0V)

for all x,y ∈ UT andα ∈ F . Furthermore, by Proposition
5.2,

T(0V)⊆ T(x+ y) andT(0V)⊆ T(αx).

Thus, the proof is completed.

Theorem 63Let GU be a soft set over V andα be a subset
of V such thatα ⊇ G(0V). If GU is a US-subspace of V ,
then G⊆α

U is a subspace of V .

Proof.Sinceα ⊇G(0V), then 0V ∈G⊆α
U and /06=G⊆α

U ⊆V.
Let x,y∈ G⊆α

U , then

G(x)⊆ α andG(y)⊆ α.

We need to show thatx+ y ∈ G⊆α
U an mx∈ G⊆α

U for all
x,y∈ G⊆α

U andm∈ F . SinceGU is aUS-subspace ofV, it
follows that

G(x+ y)⊆ G(x)∪G(y)⊆ α ∪α = α.

Moreover,G(mx)⊆G(x)⊆ α, which completes the proof.

Theorem 64Let GU and TW be soft sets over V, where U
and W are subspaces of V andΨ be a linear
transformation from U to W. If TW is a US-subspace of V ,
then so isΨ−1(TW).

Proof.Let TW be a US-subspace ofV. Then, Tr
W is an

IS-subspace ofV by Theorem61 and Ψ−1(T r
W) is an

IS-subspace of V by Theorem 44. Thus,
Ψ−1(T r

W) = (Ψ−1(TW))r is an IS-subspace ofV by
Theorem21 (i). Therefore,Ψ−1(TW) is aUS-subspace of
V by Theorem61.

Theorem 65Let GU and TW be soft sets over V, where U
and W are subspaces of V andΨ be a linear isomorphism
from U to W. If GU is a US-subspace of V , then so is
Ψ⋆(GU).

Proof.Let GU be aUS-subspace ofV. Then, Gr
U is an

IS-subspace ofV by Theorem61 and Ψ(Gr
U ) is an

IS-subspace of V by Theorem 43. Thus,
Ψ(Gr

U) = (Ψ ⋆(GU))
r is anIS-subspace ofV by Theorem

21 (ii). So, Ψ⋆(GU) is aUS-subspace ofV by Theorem
61.

Theorem 66Let V1 and V2 be two vector spaces and
(T1,U1)<̃uV1,
(T2,U2)<̃uV2. If f : U1 → U2 is a linear transformation,
then

i)If f is surjective, then(T1, f−1(U2))<̃uV1,
ii)(T2, f (U1))<̃uV2,
iii) (T1,Ker f)<̃uV1.

Proof.Follows from Definition 12 and Theorem45,
therefore omitted.

Corollary 6.1Let (T1,U1)<̃uV1, (T2,U2)<̃uV2 and
f : U1 → U2 is a linear transformation, then
(T2,{0V2)}<̃uV2.

Proof.Follows from Theorem66(ii) by Theorem66(iii).
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7 Conclusion

Throughout this paper, we have dealt with the
IS-subspaces andUS-subspaces of a vector space. We
have investigated their related properties with respect to
soft set operations and obtained the relations between
IS-subspaces andUS-subspaces. Furthermore, we have
derived some applications of IS-subspaces and
US-subspaces with respect to soft image, soft preimage,
soft anti image,α-inclusion of soft sets and linear
transformations of vector spaces. Further study could be
done for soft substructures of different algebras.
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(Turkey). Her research
interests are in the areas
of soft set and its algebraic
applications and general

near-ring theory.

c© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


96 A. S. Sezer et. al. : Intersection Soft Subspaces and Union Soft...

Akın Osman Atagün
is Associate Professor
of Mathematics at Bozok
University. He received the
PhD degree in Mathematics at
Erciyes University (Turkey).
His main research interests
are: Near-ring, Prime ideals
of near-rings and near-ring
modules, Soft set and its

algebraic applications.
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