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Abstract: In this paper we study two self-dual lattices of signed integer partitions,D(m,n) andE(m,n), which can be considered also
sub-lattices of the latticeL(m,2n), whereL(m,n) is the lattice of all the usual integer partitions with at mostmparts and maximum part
not exceedingn. We also introduce the concepts ofk-covering poset for the signed partitions and we show thatD(m,n) is 1-covering
andE(m,n) is 2-covering. We studyD(m,n) andE(m,n) as two discrete dynamical models with some evolution rules. In particular, the
1-covering lattices are exactly the lattices definable with one outside addition rule and one outside deletion rule. The 2-covering lattices
have further need of another inside-switch rule.
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1 Introduction

A wide range of papers have studied integer partition
posets considered as discrete dynamical systems. Under
this approach, the study of the poset is carried out locally,
by means of certain rules of evolution. A rule of evolution
is a way to deterministically generate a given partition of
the poset from another partition on the same poset, and
this generation can be accomplished if the partition on
which the rule acts has certain characteristics. If the rules
of evolution have been determined correctly, it follows
that a partitionw of the poset covers another partitionw′

if and only if w′ is obtained fromw with some evolution
rules.

In this paper, we at first generalize to the case of the
integer signed partitions the usual order of the classical
Young lattice. The concept of signed partition has been
recently introduced by Andrews in [9] : a signed partition
is a finite sequence of integersak, . . . ,a1,a−1, . . . ,a−l
such thatak ≥ ·· · ≥ a1 > 0> a−1 ≥ ·· · ≥ a−l . We remark
that when Andrews introduced the modern concept of
signed partition, he was expanding on apparent
acceptance of the possibility of negative parts in a
partition in Euler’s original work on the subject. Also in
[22] have been studied several combinatorial and
arithmetical properties of the signed partitions. However
in both [9] and [22] the signed partitions are not studied

from an order point of view and at present the unique
studies in this direction are only partially outlined in [11],
[12], [13], [19], [20].

The partial order⊑ that we obtain on the setP∗ of all
the signed partitions is a lattice that contains the Young
latticeY as a sublattice. The importance of the latticeP∗
is related to the fact that each finite, or also infinite,
sublatticeT of Y can be translated into a corresponding
isomorphic sublatticeT∗ of P∗. Then, inT∗, it is more easy
to see eventual symmetric or self-duality properties ofT.
The process of transition fromT to T∗ can be considered
analogous to a process of reduction to a canonical form of
a geometrical equation.

Moreover, it is easy to show that several sublattices of
P∗ (see for example a class of sublattices defined in [11]
and also the sublattices studied in this paper) have an
involution structure. Aninvolution posetis a partially
ordered set (X,≤) together with an idempotent
anti-automorphismc : X → X that makesX self-dual. The
involution posets generalize the Boolean algebras and
they are studied in several papers, see for example [1],
[2], [3], [14], [18]. Moreover, the involution structures are
closely connected with the well-developed theories of
Effect Algebra and Quantum Logic, as mentioned, for
example in the book [28].

If m ∈ Z, we can consider the subsetPar(m) of P∗
whose elements are all the signed integer partitions

∗ Corresponding author e-mail:giampiero.chiaselotti@unical.it

c© 2014 NSP
Natural Sciences Publishing Cor.

http://dx.doi.org/10.12785/amis/080661


3192 G. Chiaselotti et. al.: Two Self-Dual Lattices of Signed Integer Partitions

having summ. ThenPar(m) is an infinite subset ofP∗ that
we can think of as a horizontal axis. We introduce the
concept of k-covering sublatticeof P∗ so that, in
particular, a 1-covering sublatticeL is one that intersects
each horizontal axisPar(m), when the integerm runs
between the sums made respectively on the summands of
the minimum signed partition and the maximum signed
partition ofL.

In the lattice(P∗,⊑) we define three evolution rules
and we study two finite sublattices ofP∗, denoted
respectively by D(m,n) and E(m,n), which are
”definable” by means of a subset of such rules. The lattice
D(m,n) can be considered as a natural extension of the
latticeL(m,n) introduced by Stanley in his classical paper
[29]. It is defined as the set of all the signed integer
partitions with at mostm parts and whose sum of the
maximum positive part with the minimum negative part
does not exceedn. E(m,n) is the sublattice of all the
signed partitions ofD(m,n) having exactlym non-zero
parts.

In particular, we show thatD(m,n) is 1-covering and
we compute its cardinality. Next, we define a sublattice
E(m,n) of D(m,n) and we show that it is 2-covering but
it is not 1-covering. Both these lattices have an involution
map which makes them self-dual. The 1-covering lattices
are exactly the lattices definable with one outside addition
rule and one outside deletion rule. The 2-covering lattices
have further need of another inside-switch rule.
The way to study a lattice of classical partitions as a
discrete dynamical model having some particular
evolution rules begins implicitly in [16], where Brylawski
proposed a dynamical approach to study the latticeLB(m)
of all the partitions of a fixed positive integerm with the
dominance order. The Brylawski model has two evolution
rules, and it can be described as follows.

If m is a non negative integer, a configuration of the
model is represented by an ordered partition ofm, i.e. a
decreasing sequencea = (a1, ...,am) of non negative
integers having summ, and each positive part is
interpreted as a column of movable blocks whose
movement respects the following rules:

Rule 1 (vertical rule):one block can move from a column
to the next column if the difference of height of these two
columns is greater than or equal to 2.

Rule 2 (horizontal rule):If a column containing p+ 1
blocks, is followed by a sequence of columns containing p
blocks and next by one column containing p− 1 blocks,
then one block of the first column can slip to the last
column.

In the scope of the discrete dynamical systems (see
[4], [5], [6], [7], [8], [10], [21], [27]), the Brylawski
lattice can be interpreted then as the modelLB(m), where
the movement of a movable block respects the previous
Rules 1 and 2. In this paper we study the latticesD(m,n)

and E(m,n) as two discrete dynamical models having
respectively two and three evolution rules.

We conclude this introduction recalling that there are
several recent studies concerning discrete dynamical
models that use integer partitions as their configurations:
see for example [15], [17], [23], [24], [25].

2 The Signed Partitions Lattice

We begin with the concept of signed partition introduced
in [9] and studied in [22] from an arithmetical point of
view.

Definition 2.1 Let t ands be two non-negative integers. A
signed partition (briefly an s-partition)w with signature
(t,s) is a finite sequence of integersat , . . . ,a1,b1, . . . ,bs,
called parts of w, such that
at ≥ ·· · ≥ a1 > 0> b1 ≥ ·· · ≥ bs. We write w in the form
w= at . . .a1|b1 . . .bs.

An s-partition w is an s-partition having signature(t,s),
for some non-negative integerst and s. If t = s= 0 we
also formally consider the empty signed partition, which
we denote by(|). We callat , . . . ,a1 thepositive parts of w
andb1, . . . ,bs thenegative parts of w.

In all the numerical examples and also in the
graphical representation of the Hasse diagrams, we omit
the minus sign for all the partsb1, . . . ,bs. This means, for
example, that we shall writew = 44|113 instead of
w= 44|(−1)(−1)(−3).

If w = at . . .a1|b1 . . .bs, we setw+ := at . . .a1| and
w− := |b1 . . .bs. If m is an integer such that
m = aq + · · ·+ a1 + b1 + · · ·+ bp, we say thatw is an
s-partition of the integer mand we shall writew⊢ m.

We shall denote byP∗ the set of all the s-partitions. We
consider now the distributive latticeY×Y

∗, whereY is the
Young lattice andY∗ its dual. We write the partitions ofY
in decreasing form and the partitions ofY

∗ in increasing
form. We also denote by0 the partial order onY×Y

∗.
Since the mapφ : P∗ → Y×Y

∗ such that

φ(at . . .a1|b1 . . .bs) := ((at , . . . ,a1),(−b1, . . . ,−bs))

and
φ((|)) := (0,0)

is bijective, we can consider onP∗ the induced order⊑
from0.

Therefore, ifw,w′ ∈ P∗, we define:

w⊑ w′ :⇐⇒ φ(w)0 φ(w′) (1)

For example, 322|1133 ⊑ 33311|2 because
((3,2,2),(1,1,3,3))0 ((3,3,3,1,1),(2)) in Y×Y

∗.
We call (P∗,⊑) the signed partitions poset. In the

sequel, when we must compare two signed partitionsw
and w′ with respect to the partial order⊑ it will be
convenient to adjoin a sufficient number of 0’s inw+ or in
w′
+ in order to make them of the same length, and
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analogously forw− and w′
−. For example, if we must

compare the previous s-partitionsw = 322|1133 and
w′ = 33311|2, we write w = 32200|1133 and
w′ = 33311|0002. In this way, the relation
322|1133⊑ 33311|2 follows from the comparisons of the
components: 3≤ 3,2 ≤ 3,2 ≤ 3,0 ≤ 1,0 ≤ 1,−1 ≤
0,−1≤ 0,−3≤ 0,−3≤−2.

We call the process of adding 0s in order to makew+,
w′
+ and w−, w′

− of the same lengthuniformizationof w
andw′. Obviously a similar uniformization process can be
carried out also when we have a finite set of s-partitions.
Therefore, ifU is a finite subset ofP∗, in the sequel we
implicitly make a uniformization of U , i.e. we add a
necessary quantity of 0s in all the s-partitionsw ∈ U in
order to make all their non-negative parts and all their
non-positive parts of the same length. In particular, if
after the uniformization ofU , the resulting non-negative
parts of all the s-partitions inU have lengthq and the
resulting non-positive parts of all the s-partitions inU
have lengthp, we say thatU is made(q, p)-uniform.

After the uniformization, to describe a generic
s-partition w we shall use the notation
w = aq . . .a1|b1 . . .bp, or w = (aq, . . . ,a1|b1, . . . ,bp),
whereaq ≥ ·· · ≥ aq−t+1 ≥ 0 = aq−t = . . . = a1 = b1 =
· · ·= bp−s = 0> bp−s+1 ≥ ·· · ≥ bp, and we set|w|≥ := q,
|w|≤ := p, |w|> := t, |w|< := s, ||w|| := |w|> + |w|<,
M+(w) := |aq|, M−(w) := |bp|. Sometimes, if it is not
necessary to distinguish which parts ofw are
non-negative integers and which are non-positive integers,
we simply writew = l1 . . . ln, wheren = q+ p, without
specifying the sign of thel i ’s. If w,w′ ∈ P∗, we write
w⊏ w′ (or w′ ⊐ w) if w⊑ w′ andw 6= w′.

If w = l1 . . . ln ∈ P∗ and 1 ≤ k ≤ n we set
Ak(w) := l1 . . . lk−1(lk+1)lk+1 . . . ln if this is an element of
P∗. If 1 ≤ k < s ≤ n we set
Aks(w) := l1 . . . lk−1(lk + 1)lk+1 . . . . . . ls−1(ls+ 1)ls+1 . . . ln
if this is an element ofP∗.
If w = aq . . .a1|b1 . . .bp ∈ P∗, we identify w with an
ordered pairD = D1 : D2 of Young diagrams, whereD1 is
the Young diagram of the positive parts ofw, built with
decreasing columns rather than with decreasing rows, and
D2 is the Young diagram of the absolute values of the
negative parts ofw, built with increasing columns. We
call D = D1 : D2 the signed Young diagram(briefly
sgYD) of w. For example, if
w = 43310000|00000113∈ P∗, then we identifyw with
the following sgYD:

:

In this context, we adopt the terminology concerning the
Sand Piles Models in order to describe some finite
sublattices ofP∗ as discrete dynamic models. Our aim is
to prove some properties of these sublattices using some
evolution rules for discrete dynamical models. Let
w= aq . . .a1|b1 . . .bp be a fixed element inP∗. We use the

letter i ∈ {q, . . . ,1} to identify some non-negative partai
of w and the letter j ∈ {1, . . . , p} to identify some
non-positive partb j of w. We callai the ith-plus pileof w
and b j the j th-minus pileof w. We call block a stacked
square in the sgYD of w. We always assume
conventionally thata0 = b0 := 0.
We define the following evolution rules:

Outside Addition (R1): If i ∈ {q, . . . ,1} thenw 7→ Ai(w),
i.e. we add a block on theith-plus pile ofw.

: →
•

:

Switch Right-Left (R2): If i ∈ {q, . . . ,1} and
j ∈ {1, . . . , p} thenw 7→ Ai j (w), i.e. at the same time we
delete a block from thej th-minus pile ofw and we add a
block on theith-plus pile ofw.

: • → • :

Outside Deletion (R3): If j ∈ {1, . . . , p} thenw 7→ A j(w),
i.e. we delete a block from thej th-minus pile ofw.

:
•

→ :

If w′ ∈ P∗ is obtained fromw with the application of the
rule Rk, for somek∈ {1,2,3}, we writew′ = Rk(w). Now
let X be a generic subposet ofP∗ andK ⊆ {R1,R2,R3}. We
say thatX is definable with Kif K is the smallest subset of
{R1,R2,R3} such that: wheneverw,w′ ∈ X, it results that
w′ coversw in X if and only ifw′ =Rk(w) for someRk ∈K.
In our work, a relevant role is played by two classes of sub-
posets of(P∗,⊑) that we have calledk-covering posets and
k-stable posets, respectively. Therefore in this section we
define such posets and we prove some useful properties
for the 1-covering posets. Letw= l1 . . . ln andw′ = l ′1 . . . l

′
n

be two distinct s-partitions inP∗ and leth be an integer
such that 1≤ h≤ n. We writew′ ↓h w if w′ andw differ in
exactlyh placesi1, . . . , ih andl ′i1 = l i1 +1 . . . , l ′ih = l ih +1.

Definition 2.2. Let k be a fixed positive integer. If(U,⊑)
is a sub-poset of(P∗,⊑), we say thatU is k-coveringif :
(i) wheneverw,w′ ∈ U andw′ coversw, thenw′ ↓h w for
some integer 1≤ h≤ k;
(ii) there are at least two partitionsw,w′ ∈U such thatw′

coversw andw′ ↓k w .

Remark 2.3. (i) If U contains at least two comparable
distinct elements, then:
U is 1-covering⇐⇒ (wheneverw andw′ are two distinct
s-partitions inU , w′ covers w iff w′ ↓1 w) ⇐⇒ U is
definable with{R1,R3}.
(ii) P∗ is 1-covering.
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Definition 2.4. If (U,⊑) is a sub-poset of(P∗,⊑), we say
thatU is k-stable if||w||= k for all w∈U .

We recall now some basic facts concerning the graded
posets (see for example [30], cap.3). A finite posetX
having a minimum0̂ is saidgradedof rank l if all the
maximal chains inX have the lengthl , in this case the
non negative integerl is calledrank of X and we denote it
by rank(X) . If X is a graded poset of rankl , then it can
easily proved that there exists a unique function
ρ : X → N (calledrank functionof X) such thatρ(0̂) = 0
andρ(y) = ρ(x)+1 if x,y ∈ X andy coversx. If k is an
integer such that 0≤ k ≤ rank(X), the subset
{x ∈ X : ρ(x) = k} is denoted byNk(X) and it is called
the k-level setof X. It is easily seen that the family
{N0(X),N1(X), . . . ,Nl (X)} is a set partition ofX. Finally,
a finite distributive lattice is a graded poset. In our
context, each sub-lattice of(P∗,⊑) is distributive,
therefore each finite sub-lattice ofP∗ is a graded poset.
We define now the functionϑ : P∗ → Z such that

ϑ(aq . . .a1|b1 . . .bp) := aq+ · · ·a1+b1 · · ·+bp, ϑ((|)) := 0
(2)

Proposition 2.5. Let (U,⊑) be a finite sub-lattice with
minimum 0̂ of (P∗,⊑) and let ρ : U → N such that
ρ(w) := ϑ(w) − ϑ(0̂) for each w ∈ U . Then U is
1-covering if and only ifρ is the rank function ofU .
Moreover, in this case,Nk(U) = {w ∈ U : w ⊢ k+ϑ(0̂)}
for k= 0,1, . . . , rank(U).

Proof. Straightforward.�

3 Two natural extensions of the latticeL(m,n)
and some related sublattices

Let m and n be two fixed non-negative integers. In this
section we introduce and study two sublattices ofP∗ which
are both natural extensions of the classical latticeL(m,n)
of all the usual integer partitions with at mostm parts and
maximum part not exceedingn (see [29]). We set

C(m,n) := {w∈ P∗ : ||w|| ≤ m,M+(w)≤ n,M−(w)≤ n}
(3)

and

D(m,n) := {w∈ P∗ : ||w|| ≤ m,M+(w)+M−(w)≤ n}
(4)

In the sequel we make(m,m)-uniform bothC(m,n) and
D(m,n). It is clear thatC(m,n) and D(m,n) are both
distributive sublattices ofP∗, andD(m,n) is obviously a
sublattice of C(m,n). Now we recall the concept of
involution poset. An involution poset(IP) is a poset
(X,≤,c) with a unary operationc : x∈ X 7→ xc ∈ X, such
that:

I1)(xc)c = x, for all x∈ X;
I2)if x,y∈ X and ifx≤ y, thenyc ≤ xc.

The mapc is called complementationof X and xc the
complementof x. Let us observe that ifX is an involution
poset, byI1) follows thatc is bijective and byI1) andI2)
it holds that ifx,y∈ X are such thatx< y, thenyc < xc. If
(X,≤,c) is an involution poset and ifZ ⊆ X, we will set
Zc = {zc : z∈ Z}. We note that ifX is an involution poset
then X is a self-dual poset because fromI1) and I2) it
follows that if x,y ∈ X we have thatx ≤ y iff yc ≤ xc and
this is equivalent to saying that the complementation is an
isomorphism betweenX and its dual posetX∗. If
w = am. . .a1|b1 . . .bm ∈ C(m,n), we set
wT = (−bm) . . .(−b1)|(−a1) . . .(−am). It is easy to verify
then that the mapw 7→ wT is an involution both on
C(m,n) andD(m,n). HenceC(m,n) andD(m,n) are both
involution posets and therefore ,in particular, they are
both self-dual posets.

Proposition 3.1 The latticeC(m,n) is isomorphic to the
latticeL(m,2n).

Proof. We write a generic element ofL(m,2n) as

w= rm. . . rm−k+1rm−k . . . rm−s+1rm−s. . . r1,

where 2n ≥ r i > n for i = m, . . . ,m− k+ 1, r i = n for
i = m−k, . . . ,m−s+1 andn> r i ≥ 0 for i = m−s, . . . ,1.
Now we consider the applicationφ : L(m,2n) → C(m,n)
defined as φ(w) := (rm − n) . . .(rm−k+1 −
n)0m−k . . .0m−s+10m−s. . .01|01 . . .0s(rm−s − n) . . .(r1 −
n), where 0i means 0 in thei−th place. It is easy to prove
that φ is surjective: let v = tmtm−1 . . . t1|u1u2 . . .um =
tm. . . tm−k+10m−k . . .01|01 . . .0sus+1 . . .um be an element
of C(m,n) with n ≥ ti ≥ 1 for i = m, . . . ,m− k+ 1 and
−1 ≥ u j ≥ −n for j = s+ 1, . . . ,m. Since v ∈ C(m,n)
implies k+ (m− s) ≤ m, if we take w = (n+ tm)(n+
tm−1) . . .(n+ tm−k+1)(n)m−k . . .(n)s(n+us+1) . . .(n+um),
where(n)i meansn in the i−th place, thenw ∈ L(m,2n)
and φ(w) = v, i.e. the applicationφ is surjective. It is
immediate to prove thatφ is injective and thatφ and its
inverseφ−1 are order preserving.�

Corollary 3.2. C(m,n) is 1-covering and
|C(m,n)|=

(m+2n
m

)

.

Proof. L(m,n) is 1-covering. HenceC(m,n) is also
1-covering, since the isomorphismφ in the proof of the
previous proposition is 1-covering preserving. The other
part of the thesis follows from the well known formula
|L(m,n)|=

(m+n
m

)

. �
The formula for the cardinality ofD(m,n) is not much
more complicated.

Proposition 3.3. |D(m,n)| = 1 if n = 0 and
(m+n−1

n−1

)(

m+mn+n
n

)

otherwise.

Proof. (We cordially thank an anonymous referee for
much simplifying the proof of this proposition and that of
the analogous proposition in Section 4.)

The elements inD(m,n) with no negative parts are
simply normal partitions with at mostm parts of size at
mostn, known to be counted by

(n+m
m

)

. Those with largest
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negative part of size−k, by addition ofk to all parts,
become normal partitions with at mostm−1 parts of size
at most n. Since 0 < k ≤ n, we have
|D(m,n)| =

(n+m
m

)

+ n
(n+m−1

m−1

)

=
(m+n−1

n−1

)(

m+mn+n
n

)

as
claimed.�

We remark that these values, as a table, are sequence
A103450 in the OEIS [26]. They are symmetric under the
exchange ofn andm, as can also be seen visually from the
operation of several of the forms of conjugation of signed
partitions given in [22].

The next result shows that the latticeD(m,n) is
definable only with the rulesR1 andR3.

Theorem 3.4.D(m,n) is 1-covering.

Proof. Let w= (am, . . . ,a1|b1, . . . ,bm) = l1 . . . l2m a generic
element ofD(m,n). In order to simplify the proof it will
be convenient to state explicitly all the subcases when the
outside addition and the outside deletion are applicable in
the case ofD(m,n). They are the following:
D1: If am= 0, |bm|< n and||w||< m, then we applyR1 on
themth-plus pile ofw, that isam = 0 7→ 1.
D2: If am > 0 andam+ |bm| < n, then we applyR1 on the
mth-plus pile ofw, that isam 7→ am+1.
D3: If there is i ∈ {m− 1, . . . ,1} such thatai+1 > ai = 0
and||w|| < m, then we applyR1 on theith-plus pile ofw,
that isai = 0 7→ 1.
D4: If there is i ∈ {m−1, . . . ,1} such thatai+1 > ai > 0,
then we applyR1 on the ith-plus pile of w, that isai 7→
ai +1.
D5: If there is j ∈ {1, . . . ,m} such thatb j−1 > b j , then we
applyR3 on the j th-minus pile ofw, that isb j 7→ b j +1.

We will write w
k
−→ w′ (or w′ = w

k
−→) to denote thatw′ is

a signed partition obtained fromw applyingDk, for k =
1. . .5. We also set

∇(w) = {w′ : w
k
−→ w′

,k= 1. . .5}.

It is clear that the thesis is equivalent to proving that
∇(w) = {w′ ∈ D(m,n) : w′ coversw}. Let us note at first
that the inclusion∇(w) ⊆ {w′ ∈ D(m,n) : w′ coversw} is
obvious. Now, it is easy to see that the reverse inclusion
∇(w) ⊇ {w′ ∈ D(m,n) : w′ coversw} is a consequence of
the following statement: if

w′′ = (a′′m, . . . ,a
′′
1|b

′′
1, . . . ,b

′′
m) = l ′′1 . . . , l

′′
2m

is an element inD(m,n) such thatw′′ ⊐ w, then there
exists w′ = (a′m, . . . ,a

′
1|b

′
1, . . . ,b

′
m) ∈ D(m,n) such that

w
k
−→ w′ for somek= 1, . . . ,5 andw′′ ⊒ w′.

We prove then the previous statement. Sincew′′ ⊐ w,
there existsk such thatl ′′k > lk. We distinguish several
cases and conventionally we shall assume that
b0 = b′′0 := 0.

(A) a′′m > am.

(A1) am > 0 and am + |bm| < n. In this case we take

w′ = w
2
−→, with a′m = am+1≤ a′′m. Thusw′′ ⊒ w′.

(A2) am = 0, am+ |bm|< n and||w||< m. In this case we

take w′ = w
1
−→, i.e. w′ = (1,0, . . . ,0|b1, . . . ,bm) and we

geta′m = 1≤ a′′m. Thenw′′ ⊒ w′.
(A3) am = 0 and ||w|| = m. Then
w = (0,0, . . . ,0|b1, . . . ,bm), with 0 > b1 from ||w|| = m.
Note that b′′1 = 0. Otherwise 0> b′′1 ≥ ·· · ≥ b′′m and
a′′m > am = 0, we would get||w′′|| > m: a contradiction,
sincew′′ ∈ D(m,n). Therefore we can writeb′′1 = 0> b1.

So that if we takew′ = w
5
−→, with b′1 = b1+1, it follows

w′′ ⊒ w′, from b′1 = b1+1≤ b′′1 = 0.
(A4) am = 0, am+ |bm| = n and ||w|| < m. Then there is
j ∈ {2, . . . ,m} such that

w= (0,0, . . . ,0|0,0, . . . ,0,b j ,b j+1, . . . ,bm−1,−n)

Sincew′′ ⊐ w, we have

w′′ = (a′′m, . . . ,a
′′
1|0,0, . . . ,0,b

′′
j , . . . ,b

′′
m−1,b

′′
m).

The conditiona′′m > 0= am implies|b′′m| ≤ n−1, i.e.b′′m ≥
−(n−1). Now we takek ∈ {2, . . . ,m} minimal such that
bk =−n. Hence

w= (0,0, . . . ,0|0,0, . . . ,0,b j , . . .bk−1,−n, . . . ,−n)

From the minimality ofk, we obtainbk−1 > −n = bk. In
the placek of w′′, we must haveb′′k > −n from b′′m > −n.

Therefore if we take w′ = w
5
−→, with

b′k = bk+1=−n+1, it holds thatb′′k ≥ b′k, thusw′′ ⊒ w′.
(A5) am > 0, am+ |bm|= n andbm = 0. Thenam = n and
w = (n,am−1, . . . ,a1|0,0, . . . ,0). This case is impossible,
becausew′′ ∈ D(m,n) anda′′m > am = n.
(A6) am > 0, am+ |bm|= n and|bm|> 0. As consequence
we get b′′m > bm, otherwise
n ≥ a′′m + |b′′m| = a′′m + |bm| > am + |bm| = n. Now, if

bm−1 > bm, we choosew′ = w
5
−→ with b′m = bm + 1.

Otherwise, if bm−1 = bm necessarily b′′m−1 > bm−1,
because the condition b′′m−1 = bm−1 implies
bm < b′′m ≤ b′′m−1 = bm−1 and this is a contradiction. Now,

if bm−2 > bm−1, we choose w′ = w
5
−→ with

b′m−1 = bm−1 + 1. Continuing in the same way, since
am > 0, there is j ≥ 2 such that
bm = bm−1 = · · · = b j < 0, b j−1 = · · · = b1 = 0 and
b′′j > b j , b′′j+1 > b j+1, . . . ,b′′m > bm, and we take

w′ = w
5
−→ with b′j = b j +1.

(B) a′′m = am, . . . ,a′′i+1 = ai+1,a′′i > ai for somem> i ≥ 1.

(B1) ai+1 = ai . It is impossible because
ai+1 = a′′i+1 ≥ a′′i > ai .

(B2) ai+1 > ai > 0. In this case we takew′ = w
4
−→ with

a′i = ai +1.
(B3) ai+1 > ai = 0 and||w|| < m. In such case, we take
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w′ = w
3
−→ with a′i = ai +1.

(B4) ai+1 > ai = 0 and ||w|| = m. From ||w|| = m and
ai = 0, there exists at least ak ≥ 1 such thatbk < 0. Let j
be the minimum such thatb j < 0. Thenb′′j = 0, otherwise
||w′′|| > m becausea′′i > ai = 0. In such case, we take

w′ = w
5
−→, with b′j = b j +1 if j > 1.

(C) 0≥ b′′j > b j for somej ∈ {1, . . . ,m}.
In this case we can assume thatj is minimal, so that
b′′1 = b1, . . . ,b′′j−1 = b j−1 andb′′j > b j . Now, if b j−1 = b j ,
thenb′′j−1 ≥ b′′j > b j = b j−1, that is a contradiction. Hence
it must be necessarilyb j−1 > b j and we can take

w′ = w
5
−→, with b′j = b j +1.�

From the above theorem, we get the following
information about the structure ofD(m,n).

Corollary 3.5.
(i) The rank function ofD(m,n) is ρ : D(m,n)→ N0 such
that

ρ((an · · ·a1|b1 · · ·bn)) = an+ · · ·a1+b1 · · ·+bn+mn (5)

(ii) Nk(D(m,n)) = {w∈ D(m,n) : w⊢ k−mn}.
(iii) The rank ofD(m,n) is 2mn.

Proof. The minimum 0̂ in D(m,n) is the s-partition
(0, . . . ,0| −n, . . . ,−n), with −n that appearsm times. By
(5) we have ρ(0̂) = 0. Hence (i) and (ii) are direct
consequences of the Proposition 2.5 and of the Theorem
3.4. Finally, the maximum̂1 in D(m,n) is the s-partition
(n, . . . ,n|0, . . . ,0), where−n appearsm times. By (5) we
haveρ(1̂) = 2mn. Hence (iii) follows by (i).�

Below we draw the Hasse diagram of the latticeD(3,3)
(we omit the zeroes in each signed partition):

|333

|233

|133 |223

|33 |123 |222

|23 |113 |122

|13 |22 |112

|3 |12 1|22 |111

|2 1|12 |11

1|2 |1 1|11

11|2 1|1 (|) 2|11

11|1 1| 2|1

11| 21|1 2|

111| 22|1 21| 3|

211| 22| 31|

221| 311| 32|

222| 321| 33|

322| 331|

332|

D(3,3) :
333|

4 The Lattice E(m,n)

Let m andn be two fixed non-negative integers. We set

E(m,n) := {w∈ P∗ : ||w||= m,M+(w)+M−(w)≤ n}
(6)
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ThenE(m,n) is anm-stable sublattice ofD(m,n) and it is
also an involution poset with respect to the restriction of
the involution map ofC(m,n). Hence, in particular, also
E(m,n) is self-dual.

In this section we show that the latticeE(m,n) is 2-
covering forn> 1, and we compute its rank function.

As for D(m,n) andC(m,n), we considerE(m,n) as
an (m,m)-uniform sublattice ofP∗. Like D(m,n), we can
enumerate thes-partitions inE(m,n):
Proposition 4.1.|E(m,n)|= 1 for m= 0, 0 forn= 0,m>

0 and
(m+n−2

n−1

)(

m+mn+n−1
m

)

otherwise.
Proof. The proof is similar to that of Proposition 3.3. The
border cases are trivial. For nonzeron,m, when there are
no negative parts, the partitions are normal partitions of
exactly m parts of size at mostn, which are counted by
(n+m−1

m

)

. When the largest negative part is of size−k, we
remove the largest negative part, shorten the partition’s
profile by removing the last vertical step before the zero
line, and addk to all parts, producing a one-to-one
bijection between the former partitions and normal
partitions with at mostm− 1 parts of size at mostn− 1.
This gives us |E(m,n)| =

(n−1+m
m

)

+ n
(n+m−2

m−1

)

=
(m+n−2

n−1

)(

m+mn+n−1
m

)

as claimed.�
In order to describe alsoE(m,n) as a discrete

dynamical model, we give now the following evolution
rules. Let w = am. . .a1|b1 . . .bm be a fixed element in
E(m,n). Also in this case we conventionally assume
b0 := 0. Let us note that ifn = 1 thenE(m,1) is the pair
of elements
{(1, . . . ,1,1|0, . . . ,0),(0, . . . ,0|−1,−1, . . . ,−1)}.

Theorem 4.2.E(m,n) is definable with{R1,R2,R3}.
Proof. Let w = (am, . . . ,a1|b1, . . . ,bm) = l1 . . . l2m a
generic element ofE(m,n). As in the proof of the
Theorem 3.4., all the subcases when the rulesR1, R2 and
R3 are applicable in the case ofE(m,n) are the following:
E1: If am > 0 andam+ |bm| < n, then we applyR1 on the
mth-plus pile ofw, that isam 7→ am+1.
E2: If am = 0, |bm| < n and there isj ∈ {1, . . . ,m} such
that b j = −1 andb j−1 = 0, then the unique block in the
j th- minus pile ofw must be shifted in themth-plus pile of
w with the ruleR2, i.e.am 7→ 1 andb j 7→ 0 .
E3: If there is i ∈ {m−1, . . . ,1} such thatai+1 > ai > 0,
then we applyR1 on the ith-plus pile of w, that is
ai 7→ a′i = ai +1.
E4: If there is i ∈ {m− 1, . . . ,1} such thatai+1 > 0 and
ai = 0 and there isj ∈ {1, . . . ,m} such thatb j = −1 and
b j−1 = 0 then the unique block in thej th- minus pile ofw
must be shifted in theith-plus pile ofw with the ruleR2,
i.e.ai 7→ 1 andb j 7→ 0 .
E5: If there is j ∈ {1, . . . ,m} such thatb j−1 > b j and
b j < −1, then we applyR3 on the j th-minus pile ofw,
that isb j 7→ b j +1.

We will use now the same notation,w
k
−→ w′ (or

w′ = w
k
−→), to denote thatw′ is a signed partition obtained

from w applying theEk, for somek = 1, . . . ,5. As in the
proof of the Theorem 3.4., we are reduced to proving that
if w′′ = (a′′m, . . . ,a

′′
1|b

′′
1, . . . ,b

′′
m) = l ′′1 . . . , l

′′
2m is an element

in E(m,n) such that w′′ ⊐ w, then there exists

w′ = (a′m, . . . ,a
′
1|b

′
1, . . . ,b

′
m) ∈ E(m,n) such thatw

k
→ w′

for somek= 1, . . . ,5 andw′′ ⊒ w′.
We prove then the previous statement also in the case of
E(m,n). Sincew′′ ⊒ w′, there existss such thatl ′′s > ls.
Also in this proof we distinguish several cases and
conventionally we shall assume thatb0 = b′′0 := 0.

(A) a′′m > am.

(A1) am > 0 and am + |bm| < n. In this case we take
w′ = w

a
−→, with a′m = am+1≤ a′′m. Thusw′′ ⊒ w′.

(A2) am > 0 and am + |bm| = n. We must have
0 ≥ b′′m > bm becausea′′m+ |b′′m| ≤ n anda′′m > am. In this
case we takew′ = w

e
−→, with b′m = bm+1≤ b′′m.

(A3) am = 0. In this casew = (0, . . . ,0|b1, . . . ,bm) with
b1 < 0 andb′′1 = 0 because||w′′|| = ||w|| = m. If b1 = −1

we takew′ = w
b
−→, with j = 1, while if b1 ≤ −2 we

w′ = w
e
−→ with j = 1.

(B) a′′m = am = 0, . . . ,a′′i+1 = ai+1,a′′i > ai for some
i ∈ {m− 1, . . . ,1}. It is then immediate that it must be
ai+1 > ai . Now, if ai > 0 we take w′ = w

c
−→ with

a′i = ai + 1. Otherwise, if ai = 0 we have
a′′m = am > 0, . . . ,a′′i+1 = ai+1 > 0,a′′i > ai = 0. As
||w′′|| = ||w|| = m, there is j ∈ {1, . . . ,m} such that
b j < 0= b j−1 andb′′j = 0. If b j ≤ −2, we takew′ = w

e
−→

with b′j = b j + 1. If b j = −1, we takew′ = w
d
−→ with

b′j = b j +1= 0 anda′i = ai +1= 1 .

(C) a′′m = am = 0, . . . ,a′′1 = a1,b′′1 = b1, . . . ,b′′j−1 =

b j−1,b′′j > b j . We note that ifb j = −1 thenb′′j = 0, and
this is impossible because||w′′|| = ||w|| = m. Then
0 > b′′j > b j and therefore we takew′ = w

e
−→ with

b′j = b j +1.�

Corollary 4.3.
(i) If n≥ 2 thenE(m,n) is 2-covering.
(ii) The rank functionν of E(m,n) is ν(w) = ρ(w)−|w|>,
whereρ is the rank function ofD(m,n)
(iii) The rank ofE(m,n) is m(2n−1).

Proof. (i) From the Theorem 4.2 it results that if

w,w′ ∈ E(m,n), thenw′ coversw if and only if w′ = w
k
−→,

for somek = a, . . . ,e. Since each Rulea, . . . ,e adjoins
one block to some part ofw or shifts one block from the
negative parts into the positive parts, ifw′ coversw then
w′ ↓1 w or w′ ↓2 w. Moreover, if we take
w = (0, . . . ,0| − 1, . . . ,−1) and
w′ = (1,0, . . . ,0|0,−1, . . . ,−1), then w′ covers w in
E(m,n) andw′ ↓2 w.
(ii) Let ρ the rank function ofD(m,n). Let w ∈ E(m,n)
and letw ⊐ wt ⊐ · · · ⊐ w1 ⊐ 0̂ be any saturated chain in
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E(m,n) from 0̂ to w. Let us assume that in this chainw is
obtained from0̂ with k applications ofE2 and E4, for
some integerk ≥ 0. To each stepl ∈ {1, . . . , t} where we
apply E2 or E4, there is the following situation:
wl ⊐ ul ⊐ wl−1, for exactly one only element
ul ∈ D(m,n) \ E(m,n). This means that
ρ(w) = (t +1)+k, i.e.ν(w) = ρ(w)−k. The integerk is
also the difference between the number of positive parts
of w and the number of positive parts of0̂, i.e. exactly
|w|>, since0̂ = (0, . . . ,0| − n, . . . ,−n). Hence the thesis
follows.
(iii) The maximum ofE(m,n) is 1̂ = (n, . . . ,n|0, . . . ,0),
hence the thesis follows from the previous (ii) and from
(ii) in Corollary 3.5.�

Below we draw the Hasse diagram of the lattice
E(3,3):

|333

|233

|133 |223

|123 |222

|113 |122

|112 1|22

|111 1|12

1|11 11|2

2|11 11|1

21|1 111|

22|1 211|

221| 311|

222| 321|

322| 331|

332|

E(3,3) :
333|
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della Calabria, Italy. He
received his Ph.D. from the
University of Pisa, Italy. His
interests are in combinatorics,
particularly extremal
set theory and graph theory.

Paolo Oliverio is
Professore Associato at
the Universit̀a della Calabria,
Italy. He is on the Faculty
of Sciences, belonging
to the Geometry discipline.

William J. Keith
is an Assistant Professor at
the Michigan Technological
University, USA. He received
his Ph.D. at the Pennsylvania
State University, USA. His
interests are in combinatorics,
particularly partition
theory andq-series.

c© 2014 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp
http://oeis.org/

	Introduction
	The Signed Partitions Lattice
	Two natural extensions of the lattice L(m,n) and some related sublattices
	The Lattice E(m,n)

