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Abstract: In this paper we study two self-dual lattices of signed integer partitid(rs, n) andE(m, n), which can be considered also
sub-lattices of the lattice(m,2n), whereL(m, n) is the lattice of all the usual integer partitions with at mmgiarts and maximum part
not exceedingl. We also introduce the conceptsle€overing poset for the signed partitions and we show Eiat, n) is 1-covering
andE(m, n) is 2-covering. We studp(m, n) andE(m, n) as two discrete dynamical models with some evolution rules. In particudar, th
1-covering lattices are exactly the lattices definable with one outside additeoand one outside deletion rule. The 2-covering lattices
have further need of another inside-switch rule.
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1 Introduction from an order point of view and at present the unique
studies in this direction are only partially outlined ],

A wide range of papers have studied integer partition[12], [13], [19], [20].

posets considered as discrete dynamical systems. Under The partial ordef_ that we obtain on the s&, of all

this approach, the study of the poset is carried out locallythe signed partitions is a lattice that contains the Young

by means of certain rules of evolution. A rule of evolution lattice Y as a sublattice. The importance of the lattie

is a way to deterministically generate a given partition of is related to the fact that each finite, or also infinite,

the poset from another partition on the same poset, angublatticeT of Y can be translated into a corresponding

this generation can be accomplished if the partition onisomorphic sublattic&. of P.. Then, inT,, it is more easy

which the rule acts has certain characteristics. If thesrule to see eventual symmetric or self-duality propertied of

of evolution have been determined correctly, it follows The process of transition froff to T, can be considered

that a partitionw of the poset covers another partitioh analogous to a process of reduction to a canonical form of

if and only if W is obtained fromw with some evolution a geometrical equation.

rules. Moreover, it is easy to show that several sublattices of
In this paper, we at first generalize to the case of theP. (see for example a class of sublattices definedLi [

integer signed partitions the usual order of the classicabnd also the sublattices studied in this paper) have an

Young lattice. The concept of signed partition has beeninvolution structure. Aninvolution posetis a partially

recently introduced by Andrews i][: a signed partition ~ ordered set (X,<) together with an idempotent

is a finite sequence of intege®,...,a,a 1,...,a| anti-automorphisne : X — X that makes self-dual. The

suchthagy>--->a; >0>a_1>--->a . Weremark involution posets generalize the Boolean algebras and

that when Andrews introduced the modern concept ofthey are studied in several papers, see for exanile [

signed partition, he was expanding on apparent2], [3], [14], [18]. Moreover, the involution structures are

acceptance of the possibility of negative parts in aclosely connected with the well-developed theories of

partition in Euler’s original work on the subject. Also in Effect Algebra and Quantum Logic, as mentioned, for

[22] have been studied several combinatorial andexample in the book2g].

arithmetical properties of the signed partitions. However If m € Z, we can consider the subsear(m) of P,

in both O] and [22] the signed partitions are not studied whose elements are all the signed integer partitions
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having sunm. ThenPar(m) is an infinite subset d?, that  and E(m,n) as two discrete dynamical models having
we can think of as a horizontal axis. We introduce therespectively two and three evolution rules.
concept of k-covering sublatticeof P, so that, in We conclude this introduction recalling that there are
particular, a 1-covering sublattideis one that intersects several recent studies concerning discrete dynamical
each horizontal axi$ar(m), when the integem runs  models that use integer partitions as their configurations:
between the sums made respectively on the summands ske for exampleld], [17], [23], [24], [25].
the minimum signed partition and the maximum signed
partition ofL.

In the lattice (P,,C) we define three evolution rules 2 The Signed Partitions Lattice
and we study two finite sublattices d®., denoted
respectively by D(m,n) and E(myn), which are We begin with the concept of signed partition introduced
"definable” by means of a subset of such rules. The latticein [9] and studied in 22] from an arithmetical point of
D(m,n) can be considered as a natural extension of theview.

lattice L(m, n) introduced by Stanley in his classical paper pefinition 2.1 Lett ands be two non-negative integers. A

[29). It is defined as the set of all the signed integer signed partition (briefly an s-partitiony with signature
partitions with at mostm parts and whose sum of the (t,s) is a finite sequence of integess,...,as,bs, ..., bs,

maximum positive part with the minimum negative part cgjled parts of w such that
does not exceed. E(m,n) is the sublattice of all the a>--->a;>0>by > >bs. We write w in the form
signed partitions oD(m,n) having exactlym non-zero W=a...a|bs...bs

parts.

In particular, we show thdD(m,n) is 1-covering and  An s-partition w is an s-partition having signatuge,s),
we compute its cardinality. Next, we define a sublatticefor some non-negative integersands. If t = s= 0 we
E(m,n) of D(m,n) and we show that it is 2-covering but also formally consider the empty signed partition, which
it is not 1-covering. Both these lattices have an involutionwe denote by(|). We calla, ..., a; the positive parts of w
map which makes them self-dual. The 1-covering latticesandby, ..., bs the negative parts of w
are exactly the lattices definable with one outside addition In all the numerical examples and also in the
rule and one outside deletion rule. The 2-covering latticesgraphical representation of the Hasse diagrams, we omit
have further need of another inside-switch rule. the minus sign for all the parts, ..., bs. This means, for
The way to study a lattice of classical partitions as aexample, that we shall writev = 44{113 instead of
discrete dynamical model having some particularw = 44|(—1)(—1)(-3).
evolution rules begins implicitly in1[6], where Brylawski If w=g&...aq/b;...bs, we setw; :=&...a1| and
proposed a dynamical approach to study the lattiggn)  w_ := |b;...bs. If m is an integer such that
of all the partitions of a fixed positive integarwith the  m=ag+---+a; + by + --- + by, we say thatw is an
dominance order. The Brylawski model has two evolutions-partition of the integer rand we shall writev - m.
rules, and it can be described as follows. We shall denote bf. the set of all the s-partitions. We

If mis a non negative integer, a Conﬁguration of the consider now the distributive latticé x Y*, whereY is the

model is represented by an ordered partitiompfi.e. a  Young lattice andy™ its dual. We write the partitions Gf

decreasing sequence = (ay,...,an) of non negative in decreasing form and the partitions Bf in increasing

integers having summ, and each positive part is form. We also denote by the partial order orly x Y*.

interpreted as a column of movable blocks whoseSince the mag: P, — Y x Y* such that

movement respects the following rules:
P ¢ o(a...a1lby...bs) = ((a,....a1), (—by,...,—bs))

Rule 1 (vertical rule):one block can move from a column

to the next column if the difference of height of these two o(())) == (0,0

columns is greater than or equal to 2. o ) ]
is bijective, we can consider dp. the induced ordeC

from <.

Rule 2 (horizontal rule):If a column containin 1
( ) g B Therefore, ifw,w € P,, we define:

blocks, is followed by a sequence of columns containing p
blocks and next by one column containing- @ blocks,
then one block of the first column can slip to the last WEW = p(w) < o(W) 1)
column. For example, 324133 C 333112 because
((3.2,2),(1,1,3,3)) = ((3,3.3,.1,1),(2)) in ¥ x Y*.

In the scope of the discrete dynamical systems (see We call (P,,C) the signed partitions posetin the
[41, [5], [6], [7], [8], [10], [21], [27]), the Brylawski  sequel, when we must compare two signed partitions
lattice can be interpreted then as the mddgim), where  and w with respect to the partial ordeE it will be
the movement of a movable block respects the previougonvenient to adjoin a sufficient number of 0'sWn or in
Rules 1 and 2. In this paper we study the lattiDém, n) W, in order to make them of the same length, and
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analogously forw_ and w’_. For example, if we must letteri € {q,...,1} to identify some non-negative paat
compare the previous s-partitions = 3221133 and of w and the letterj € {1,...,p} to identify some
W = 333112, we write w = 322001133 and non-positive parb; of w. We calla; theitM-plus pileof w
w = 3331]0002. In this way, the relation andb; the j"-minus pileof w. We callblock a stacked
32211133LC 333112 follows from the comparisons of the square in the sgYD ofw. We always assume
components: X 3,2<32<30<10<1-1< conventionally thagg = bg := 0.
0,-1<0,-3<0,-3<-2. We define the following evolution rules:

We call the process of adding 0s in order to make
w, andw_, w_ of the same lengtluniformizationof w Outside Addition (Ry): If i € {q,...,1} thenw— Aj(w),
andw'. Obviously a similar uniformization process can be j.e. we add a block on th&-plus pile ofw.
carried out also when we have a finite set of s-partitions.
Therefore, ifU is a finite subset oP,, in the sequel we
implicity make a uniformizationof U, i.e. we add a %]E@%%Eﬁ
necessary quantity of Os in all the s-partitionss U in ' '
order to make all their non-negative parts and all theirg,itch Right-Left (R»): If i € {g...,1} and

non-positive parts of the same length. In particular, ifj € {1,...,p} thenw— A; (W), i.e. at the same time we

after the uniformization obJ, the resulting non-negative delete a block from thgh-minus pile ofw and we add a
parts of all the s-partitions ikl have lengthg and the block on theith-plus pile ofw

resulting non-positive parts of all the s-partitions ln
have lengthp, we say that) is made(q, p)-uniform

After the uniformization, to describe a generic Eﬂ E@ %3 @
s-partiion w we shall use the notation : - :

W = ag...a1lby...by, or w = ,...,a1|by,...,bp), . . )
8. -a[by..-bp (3 1/ ) Outside Deletion R3): If j € {1,..., p} thenw— Aj(w),

whereag > - > agt41>0=agt=...=aa = = 1. _
- =bp_s=0>bp 1>+ >bp, and we sefw|> :=q, i.e. we delete a block from thg"-minus pile ofw.
W< = p, Wl =t (Wle =5, (W] = (Wl + (W,

M*(w) := |ag|, M~ (w) := |bp|. Sometimes, if it is not %} %ﬂ

necessary to distinguish which parts ofv are :[@a .cH

non-negative integers and which are non-positive integers
we simply writew = I1...l,, wheren = g+ p, without  If w € P, is obtained fromw with the application of the
specifying the sign of théi’s. If ww € P,, we write  rule Ry, for somek € {1,2 3}, we writew = R¢(w). Now

wCw (orw Jw) if wC w andw # w. let X be a generic subposetBf andK C {R;, R, R3}. We

say thatX is definable with Kif K is the smallest subset of
If w=1Il...lh e PR and 1< k < n we set {R,Ry,Rs} suchthat: whenever,w € X, it results that
Acw) =11 Jge1(lk+Dlga - . - In if this is an element of ~ w coverswin X if and only ifw = R (w) for someRy € K.
P.. If 1 < k < s < n we set  Inourwork, arelevant role is played by two classes of sub-
AwW) =11 (e + Dlgsg e ls1(Is+ Dlsta...In posets of P,, C) that we have callel-covering posets and
if this is an element oP.. k-stable posets, respectively. Therefore in this section we

If w=aq...a1|by...bp € P,, we identify w with an  define such posets and we prove some useful properties
ordered paiD = D; : D2 of Young diagrams, wherB1 is  for the 1-covering posets. Let=1;...1nandw =1} .. 1},

the Young diagram of the positive parts wf built with be two distinct s-partitions i, and leth be an integer
decreasing columns rather than with decreasing rows, anguch that 1< h < n. We writew’ |" wif w andw differ in

D, is the Young diagram of the absolute values of theexactlyh placedy,...,inandlj =1l +1....I{ =1 +1.

. . . . . AN
negative parts ofv, built with increasing columns. We - ' L
call D = D; : Dy the signed Young diagrantbriefly Definition 2.2. Let k be a fixed positive integer. (U,C)

sgYD) of W For example, if is a sub-poset ofP.,C), we say thatl is k-coveringif :

w — 4331000000000113¢< P,, then we identifyw with ) Whe”e"e“"”l‘é‘/he o andw’ coversw, thenw’ | w for
: . *' some integer X h<k;
the following sgYD: (ii) there are at least two partitiongw € U such thaw/

coversw andw [Xw.

ﬂ \:D:E . .
Remark 2.3. (i) If U contains at least two comparable

In this context, we adopt the terminology concerning thedistinct elements, then:
Sand Piles Models in order to describe some finiteU is 1-coveringe=- (whenevemw andw’ are two distinct
sublattices ofP, as discrete dynamic models. Our aim is s-partitions inU, w coversw iff w |1 w) < U is
to prove some properties of these sublattices using somdefinable with{R;, Rs}.
evolution rules for discrete dynamical models. Let (ii) P, is 1-covering.
W=aq...a1|b;...bp be a fixed element iR,. We use the
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Definition 2.4.If (U,C) is a sub-poset ofP.,C), we say
thatU is k-stable if||w|| =k forallwe U.

The mapc is called complementatiorof X and x¢ the
complemenbf x. Let us observe that X is an involution
poset, byl 1) follows thatc is bijective and byt 1) andl2)

We recall now some basic facts concerning the gradedt holds that ifx,y € X are such that <y, theny® < x°. If

posets (see for example(q, cap.3). A finite poseX
having a minimumO is saidgradedof rank | if all the
maximal chains inX have the lengtH, in this case the
non negative integdris calledrank of X and we denote it
by rank(X) . If X is a graded poset of rarlk then it can

(X,<,c) is an involution poset and & C X, we will set

Z° ={Z:z<€ Z}. We note that iX is an involution poset
then X is a self-dual poset because frdh) and12) it
follows that if x,y € X we have thak <y iff y* < x® and
this is equivalent to saying that the complementation is an

easily proved that there exists a unigue functionisomorphism betweenX and its dual posetX*. If

p : X — N (calledrank functionof X) such thato(0) = 0
andp(y) = p(x) +1 if x,y € X andy coversx. If k is an
integer such that 0< k < rank(X), the subset
{xe X: p(x) =k} is denoted byNc(X) and it is called
the k-level setof X. It is easily seen that the family
{No(X),N1(X),...,N(X)} is a set partition oK. Finally,

a finite distributive lattice is a graded poset. In our
context, each sub-lattice of P.,C) is distributive,
therefore each finite sub-lattice Bf is a graded poset.

We define now the functiof? : P, — Z such that

9(aq...a1|by...bp) :=ag+---ag+b1---+bp, 3((])):=0
)
Proposition 2.5. Let (U,C) be a finite sub-lattice with
minimum 0 of (P,C) and letp : U — N such that
p(w) := 3(w) — 3(0) for eachw € U. Then U is
1-covering if and only ifp is the rank function olU.
Moreover, in this casélg(U) = {we U 1wk k+9(0)}
fork=0,1,...,rank(U).
Proof. Straightforward(]

3 Two natural extensions of the latticel.(m, n)
and some related sublattices

Let m and n be two fixed non-negative integers. In this
section we introduce and study two sublatticeRofvhich
are both natural extensions of the classical lattit®, n)

of all the usual integer partitions with at mastparts and
maximum part not exceeding(see P9]). We set

C(mn):={weP:|jw||<mM*(w)<nM (w) <n}

®3)

and

D(mn):={we P, :|jw|]| <mM*(w)+M (w) <n}

(4)
In the sequel we makém, m)-uniform bothC(m,n) and
D(m,n). It is clear thatC(m,n) and D(m,n) are both
distributive sublattices oP., andD(m,n) is obviously a
sublattice of C(m,n). Now we recall the concept of
involution poset. Aninvolution poset(IP) is a poset
(X, <,c) with a unary operatiog : x € X — x° € X, such
that:

11)(xX°)¢ =x, forall x € X;
12)if x,y € X and ifx <y, theny® < x°.

w am...ailb1...bmy € C(myn), we set
W' = (=bp)...(=b1)|(—a1)...(—am). Itis easy to verify
then that the mapv — w' is an involution both on
C(m,n) andD(m,n). HenceC(m,n) andD(m, n) are both
involution posets and therefore ,in particular, they are
both self-dual posets.

Proposition 3.1 The latticeC(m,n) is isomorphic to the
latticeL(m, 2n).

Proof. We write a generic element &f{m, 2n) as

W= rm e rm,k+1rm,k e rm_s+1rm_s. .. rl,

where 2i>r >nfori=m,....m—k+1, ri =n for
i=m—k,...m—s+landn>r; >0fori=m-s,... 1.
Now we consider the applicatiop : L(m,2n) — C(m,n)
defined as ¢@(w) (rm — ). (frmke1 —
n)Om_k. . .Om,s+10m,s. .. 01‘01 . Os(rm—s — n) ... (r1 —
n), where @ means 0 in thé—th place. It is easy to prove
that ¢ is surjective: letv = tptm_1...t1|urlp... Uy =
tm.. . tm-k+10m—k...01]01...0sUst1...Um be an element
of C(m,n) withn>t >1fori=m,....m—k+1 and
—1>uj> —nfor j=s+1,...,m Sinceve C(mn)
implies K+ (m—s) < m, if we takew = (n+tm)(n+
tm-1) ... (N+tmk+1) (Mmk---(Ns(N+Ust1) ... (N+ Um),
where(n); meansn in thei—th place, therw € L(m, 2n)
and @(w) = v, i.e. the applicationp is surjective. It is
immediate to prove thap is injective and thatp and its
inversep ! are order preservingl

Corollary 3.2.  C(mn) is
Cm,n)| = ("2").

Proof. L(m,n) is 1-covering. HenceC(m,n) is also
1-covering, since the isomorphisgin the proof of the
previous proposition is 1-covering preserving. The other
part of the thesis follows from the well known formula
IL(mn)| = (). O o _

The formula for the cardinality ob(m,n) is not much
more complicated.

Proposition 3.3. |D(m,n)|

(ML) (MmN otherwise.

1l-covering and

1 if n 0 and

Proof. (We cordially thank an anonymous referee for
much simplifying the proof of this proposition and that of
the analogous proposition in Section 4.)

The elements irD(m,n) with no negative parts are
simply normal partitions with at mosh parts of size at
mostn, known to be counted bff'{ ™). Those with largest
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negative part of size-k, by addition ofk to all parts,
become normal partitions with at mast— 1 parts of size

at most n. Since 01< k < ? we have
Dmn)| = (") +n("w) = (Tal) (TR

claimed.dd

We remark that these values, as a table, are sequen
A103450 in the OEISZ6]. They are symmetric under the
exchange of andm, as can also be seen visually from the
operation of several of the forms of conjugation of signed’),

partitions given in 22].
The next result shows that the lattid®(m,n) is
definable only with the ruleR; andRs.

Theorem 3.4.D(m,n) is 1-covering.

Proof. Letw= (am,...,a1|b1,...,bm) =11...lanageneric
element ofD(m,n). In order to simplify the proof it will

(Al) an > 0 andam + |bm| < n. In this case we take

w =w 2, with &, = am+ 1 < alh. Thusw’ Jw.

(A2) am =0, am+ |bm| < nand||w|| < m. In this case we

takew =w 3, ie.w = (1,0,...,0/by,...,bm) and we
taj,=1<ay,. Thenw’ Jw.
3) an = O and

W] = m  Then

w = (0,0,...,0|by,...,by), with 0> by from ||w|| = m.

Note thatb] = 0. Otherwise 0> b{ > --- > by, and
apn, > am = 0, we would get|w’|| > m: a contradiction,
sincew” € D(m,n). Therefore we can write] = 0> b.
So that if we takav’' = w >, with b, = by + 1, it follows
w' Jw, fromb) =b;+1<b]=0.

(A4) am =0, am+ |bm| = nand||w|| < m. Then there is
j €{2,...,m} such that

w=(0,0,...,00,0,...,0,bj,bj1,...,bp_1,—1)

be convenient to state explicitly all the subcases when the
outside addition and the outside deletion are applicable irSincew” 3w, we have

the case oD(m,n). They are the following:

D1: If an =0, |bm| < nand||w|| < m, then we applyR; on

them"-plus pile ofw, that isam = 0 1.

Dy: If am > 0 andam + |bm| < n, then we applyR; on the
m-plus pile ofw, that isam — am+ 1.

Ds: If there isi € {m—1,...,1} such thatgj;1 > a =0

and||w|| < m, then we applyR; on theit"-plus pile ofw,

thatisgj =0~ 1.

Dy: If there isi € {m—1,...,1} such thatg;;; > & > 0,

then we applyR; on theitM-plus pile ofw, that isa —

a+1.

Ds: Ifthereisj € {1,...,m} such thab;_; > bj, then we
apply Rz on thejt"-minus pile ofw, that isbj — bj+ 1.

We will write w % w/ (orw =w 5) to denote thatv is
a signed partition obtained from applying D, for k =
1...5. We also set

Ow) = {w w5 w,k=1...5).

W' = (e 3]0.0.. 0. B 1, B,

The conditionaf}, > 0 = ay implies|bj,| <n—1, i.e.bj, >
—(n—1). Now we takek € {2,...,m} minimal such that
by = —n. Hence

w=(0,0,...,00,0,...,0,bj,...b_1,—n,...,—n)

From the minimality ofk, we obtainb,_; > —n=by. In
the placek of w’, we must havdy, > —n from b, > —n.

Therefore if we take W = w i> with

i = b+1=—n+1, it holds thaby, > by, thusw’ Jw'.
(A5) am > 0, am+ |bm| = nandby, = 0. Thenay, = nand
w = (n,an-1,...,a1]|0,0,...,0). This case is impossible,
becausev’ € D(m,n) anday, > am = n.
(AB) am > 0, am+ |bm| = nand|bmy| > 0. As consequence
we get by, > bm, otherwise
n > ap+ bl = an+ |bm| > am+ |[bm| = n. Now, if

. . : . 5. .
It is clear that the thesis is equivalent to proving thatbm 1 > bm, we choosew = w = with by, = by + 1.

O(w) = {w € D(m,n) : W coversw}. Let us note at first
that the inclusiorl(w) C {w' € D(m,n) : W coversw} is

Otherwise, if bm_1 = bym necessarilyb_;

because the condition b ; = bm1

> bm—ly
implies

obvious. Now, it is easy to see that the reverse inclusiorbm < by, < b, _; = bm_1 and this is a contradiction. Now,

O(w) 2 {w € D(m,n) : W coversw} is a consequence of ¢

the following statement: if

w = (ay,...,aq|b],....00) =17....15,
is an element inD(m,n) such thatw’ 3 w, then there
exists W = (ap,...,a|bj,...,by,) € D(mn) such that

WQV\/forsomekzl,...,S andw’ Jw.
We prove then the previous statement. Sin¢e3 w,
there existsk such thatl; > I,. We distinguish several

cases and conventionally we shall assume
bo = by :=0.
(A) a5, > am.

tha

bn> > bm_1, we choose W = w 2 with
b/,_; = bm-1+ 1. Continuing in the same way, since

am > O, there is j > 2 such that
bm=bm1=--=Db; <0, bj_y=---=Dby =0 and
bj > bj, b,y > bjs1,....05 > bm, and we take

W =w > with b = by + 1.
(B) a =am,...,a,; = ai1,8) > a for somem>i > 1.
{(B1) a1 = & It s
a=a, >a >a.

Ayl > > . In this case we ta =W — wit
(B2) aj. 0. In thi ke/ 4 with

a=a+1
(B3) ai+1 > & = 0 and||w|| < m. In such case, we take

impossible  because
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V\/:Wiwitha{:awrl.

(B4) aiy1 > & = 0 and||w|| = m. From ||w|| = m and
a =0, there exists at leastka> 1 such thaby < 0. Let j
be the minimum such théj < 0. Thenb{ = 0, otherwise

[|w'|| > m becauses > g = 0. In such case, we take
W =w >, with b =bj +1if j > 1.

(C) 0> bf > bj for somej € {1,...,m}.

In this case we can assume thiais minimal, so that
by = by,...,b{ ; =bj_1 andb{ > bj. Now, if bj_1 = bj,
thenbj_; > bf > bj =bj_4, thatis a contradiction. Hence
it must be necessarilypj_; > b; and we can take

W =w >, with bf =bj +1.00

From the above theorem, we get the following
information about the structure Bf(m,n).

Corollary 3.5.
(i) The rank function oD(m,n) is p : D(m,n) — Ng such
that

p((an...al|bl...bn)):an+...a1+b1...+bn+mn (5)

(i) N(D(m,n)) = {we D(m,n) : wk k—mn}.
(iii) The rank ofD(m,n) is 2mn

Proof. The minimum in D(mn) is the s-partition
(0,...,0] —n,...,—n), with —n that appearsn times. By 1333
(5) we havep(()) = 0. Hence (i) and (ii) are direct
consequences of the Proposition 2.5 and of the Theorem
3.4. Finally, the maximuri in D(m,n) is the s-partition .
(n,...,n|0,-..,0), where—n appearsn times. By 6) we 4 The Lattice E(m,n)
havep(1) = 2mn Hence (iii) follows by (i).0]
Let mandn be two fixed non-negative integers. We set

Below we draw the Hasse diagram of the latiing, 3) E(mn) :={weP.:||w|=mM"(w)+M (w) <n}
(we omit the zeroes in each signed partition): (6)
@© 2014 NSP
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ThenE(m, n) is anm-stable sublattice db(m,n) and itis  from w applying theEy, for somek =1,...,5. As in the
also an involution poset with respect to the restriction of proof of the Theorem 3.4., we are reduced to proving that
the involution map ofC(m,n). Hence, in particular, also if W’ = (ap,...,a{|b],....b) =17...,15, is an element

E(m,n) is self-dual. in E(mn) such thatw’ T w, then there exists
In this section we show that the latti€&m,n) is 2- ,/ _ (@y,.... 8|0, ....bl) € E(mn) such thatw L,
covering forn > 1, and we compute its rank function. for somek = 1... .5 andw” 3 w.

As for D(m,n) andC(m,n), we consideE(m.n) 8  \yg prove then the previous statement also in the case of
an (m,m)-uniform sublattice of.. Like D(m,n), we can E(m,n). Sincew” J W, there existss such that” > I,
enumerate the-partitions inE(m, n): Also in this proof we distinguish several cases and
Proposition 4.1.[E(m,n)| =1form=0,0forn=0,m>  conventionally we shall assume thmgt= bf} := 0.
0 and (™" %) (MMHN-1) gtherwise.
Proof. The proof is similar to that of Proposition 3.3. The (A) an> am.
border cases are trivial. For nonzeran, when there are )
no negative parts, the partitions are normal partitions of(A1) @m > 0 andam+ [bm[ < n. In this case we take
exactly m parts of size at most, which are counted by W =w 3, with &, = am+1 < &}, Thusw’ Jw'.
("™-1). When the largest negative part is of size, we ~ (A2) am > 0 and am + |[bm| = n. We must have
remove the largest negative part, shorten the partition'® > by, > bm because, + [bf,| < nandag, > am. In this
profile by removing the last vertical step before the zerocase we take/ = w -, with b, =bm+1<b.
line, and addk to all parts, producing a one-to-one (A3) am = 0. In this casew = (0,...,0/bs,...,by) with

bijection between the former partitions and normal by < 0 andb] = 0 becausgw’|| = ||w||=m. If by = -1
partitions with at most— 1 parts of size at most— 1. we takew — w 2. with i — -

. ) - - = , j =1, while if by < -2 we
This gves us [Emm = ("5 + ("YW i 1
= (MiN ) (M=) a5 claimedd

In order to describe als&E(mn) as a discrete (B) &y = an = 0,...,a",; = a1,& > & for some
dynamical model, we give now the following evolution i € {m—1,...,1}. It is then immediate that it must be
rules. Letw = an...a1|b;...by be a fixed element in ai;1 > a. Now, if a > 0 we takew = w 5 with

E(m.n). Also in this case we conventionally assume g — 5 + 1. Otherwise, if 4 = 0 we have
bo := 0. Let us note that it = 1 thenE(m,1) is the pair g7 — 3, > 0,...a, = a1 > 0a >a =0. As
of elements | \w’|| = ||w|| = m, there is j € {1,...,m} such that
{(17,171|O,,0),(0,70| —1,—17...,—1)}. bJ <0= bj—l andb/j/ —=0.If bj < —2, we takew :Wi
Theorem 4.2.E(m, n) is definable with{Ry, Ry, R} with bj = bj + 1. If bj = —1, we takew = w % with
Proof. Let w = (am,...,a1lb1,....;bm) = l1...lo;m @ bj=bj+1=0anday=a+1=1.

generic element ofE(m,n). As in the proof of the
Theorem 3.4., all the subcases when the r@@gsR, and ~ (C) @m = am = 0,....8] = a,bf = by,....bf ; =

R; are applicable in the case Bfm,n) are the following: ~ bj-1,bj > bj. We note that ifo; = —1 thenb] = 0, and
Ey: If am > 0 andam + |bm| < n, then we applyR; on the  this is impossible becausgw’|| = ||w|| = m. Then
m"-plus pile ofw, that isam — am+ 1. 0> b/ > bj and therefore we takav = w < with

Ez: If am =0, |bm| < nand there isj € _{L...,m} sych b =bj+1.0
thatb; = —1 andb;_; = 0, then the unique block in the

jt"- minus pile ofw must be shifted in theth-plus pile of
w with the ruleRy, i.e.an — 1 andbj — 0. (if) The rank functionv of E(m, n) is v (w) =

; o , =p(wW)— W[,
Es: If there isi € {m—1,...,1} such thata.1 > & > O, : ;

AT . . wherep is the rank function oD (m, n)

g:e._n} YVE ;Ffllle on the iM-plus pile of w, that is (iii) The rank ofE(m,n) ism(2n—1).
Es: |fa{here isi .e {m—1,...,1} such thata;; > 0 and Proof. (i) From the Theorem 4.2 it results that if
g = 0 and there i§ € {1,...,m} such thatb; = —1 and ~ w,w € E(m,n), thenw coversw if and only ifw = w,
bj_1 = 0 then the unique block in thg"- minus pile ofw  for somek = a,....e. Since each Rule,....e adjoins
must be shifted in thé"-plus pile ofw with the ruleR,, ~ One block to some part af or shifts one block from the
i.e.a — 1andbj 0. negative parts into the positive partswf coversw then

Es: If there is ] € {1,...,m} such thatb;_; > bj and W I woor w2 w. Moreover, if we take

S ith_ o ; w = 0,...,0 - 1,....,-1) and
bj < 1 the‘n we apphRs on the jT-minus pile ofw, w = (1,0,...,0/0,—1,...,—1), then w covers w in
thatisbj — bj + 1.

) ) K E(m,n) andw = w.
We WII||< use now the same notationy — W (or (i) Let p the rank function oD(m,n). Letw € E(m,n)
w = w —), to denote that/ is a signed partition obtained and letw I w; 3 --- 3wy 1 0 be any saturated chain in

Corollary 4.3.
() If n> 2 thenE(m, n) is 2-covering.
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