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Abstract: In this paper, the joint estimation of frequency offsets and channel fordistributed MIMO system in time-varying channel is
discussed. We assume that each pair of transmit and receive antennas has a different frequency offset. We promote the multi-parameter
estimation based on expectation conditional maximization (ECM) and space-alternating generalized expectation-maximization (SAGE)
for a MIMO system operating under a flat-fading environment to the multi-parameter estimation using EM algorithm for distributed
MIMO systems in time-varying channel. Theoretical analysis and simulationresults indicate that the improvement can well compensate
for the performance loss caused by time-variability and achieve good performance for time-varying distributed MIMO systems
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1 Introduction

Multiple-Input Multiple-Output (MIMO) which is widely
used in Long Term Evolution (LTE) has been proved to
be effective in combating multipath fading, as well as
increasing the channel capacity [1,2,3]. It can be found
that the prominent direction about MIMO technology is
the distributed MIMO system [4,5,6,7,8] from the trend
of research. It can be set up transmitting and receiving
antennas according to the specific needs for its higher
capacity. As the transmitting and receiving antennas may
be located in different geographic locations, the signals
transmit through different channels, so the distributed
MIMO system puts up higher requirements for channel
and frequency offset estimation [4,9]. This problem must
be solved for its advantages. In addition, with the rapid
development of high-speed mobile communications, there
is an increasing demand for distributed MIMO systems
operating in high mobility environment.

To date, related studies of multi-parameter estimation
for distributed MIMO systems have been relatively
mature [10,11,12,13]. However, the research on
multi-parameter estimation for time-varying distributed
MIMO systems still requires some detailed work. In [9],
the authors have researched on the frequency offsets and

channel gains Maximum-Likelihood (ML) estimation for
a MIMO flat-fading channel using a training sequence. In
this work, they held that the ML estimation is a
multi-dimensional minimization problem and thus has a
very high computational complexity. Therefore, they
proposed two computationally efficient algorithms. In
[10], the authors pointed out that there exists numerical
problems when the frequency offsets are estimated using
the popular training sequences, which is due to the fact
that the involved matrices are rank-deficient. For
overcoming this drawback, a correlation-based algorithm
for frequency offset estimation was proposed in [12],
which brings an error floor in MSE performance caused
by the existence of the interference in multi-antenna
system. Compared with the method in [12], an iterative
algorithm has been proposed in [10], which does not have
the error floor.

In [11], the authors proposed two iterative algorithms
to estimate the channel coefficients and frequency offsets
in distributed MIMO flat-fading channels, which assumed
that each pair of transmit-receiver antenna has a distinct
frequency offset value. In addition, the rapid development
of high-speed mobile communications brings an
increasing demand for distributed MIMO systems
operating in high mobility environment. Therefore, the
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research on joint channel and frequency offsets estimation
for time-varying distributed MIMO systems has
important theoretical value and practical significance.

Motivated by all of the above, this paper focuses on
joint frequency offsets and channel estimation for
distributed MIMO systems in time-varying channels.
Notice that EM algorithm are widely used for iterative
receivers, such as [14,15,16,17]. We promote the
multi-parameter estimation based on EM algorithm in
distributed MIMO flat-fading channels [11] to the
multi-parameter estimation using EM algorithm in
distributed MIMO time-varying channels. Theoretical
analysis and simulation results show that the proposed
algorithm in this paper can well compensate for the
performance loss caused by time-variability.

The rest of the paper is organized as follows. In
Section 2, we describe system model and EM algorithm.
The initialization of the proposed algorithm and the
iterative algorithm are discussed in Section 3. Simulation
results are presented in Section 4 to demonstrate the
effectiveness of the proposed algorithm. Finally, Section5
states the conclusion.

2 System model

In this section, system model and an overview of EM
algorithms are presented, respectively.

2.1 Distributed MIMO system model

Consider a distributed MIMO system withNT transmitter
antennas andNR receiver antennas in time-varying
channels. Therefore, each transmitter and receiver
typically requires its own radio frequency- intermediate
(RF-IF) chain. Consequently, each pair of
transmit-receive antenna has a distinct frequency offset
value. The received signal of thek-th receive antenna at
time t can be expressed as

yk(t) =
NT

∑
l=1

hk,l(t)e
jwk,l tsl(t)+nk(t), t = 1,2, · · · ,N (1)

where sl(t), t = 1,2, · · · ,N is the sequence of symbols
transmitted from thel-th transmit antenna;hk,l(t) andwk,l
are the channel coefficient at timet and frequency offset
between thel-th transmit antenna and thek-th receive
antenna, respectively. In addition,nk(t), t = 1,2, · · · ,N
denotes a sequence of zero- mean, independent and
identically distributed complex-valued Gaussian random
variables with variance ofσ2 [11]. Noise sequences atNR
receiver antennas are statistically independent [11].

Let we define

yk = [yk(1),yk(2), · · · ,yk(N)]T (2)

hk = [hk,1,hk,2, · · · ,hk,NT ]
T (3)

hk,l = [hk,l(1),hk,l(2), · · · ,hk,l(N)]T (4)

wk = [wk,1,wk,2, · · · ,wk,NT ]
T (5)

nk = [nk (1) ,nk (2) , · · · ,nk (N)]T (6)

As is known that multi-parameter estimation for a
NT ×NR distributed MIMO system can be equivalent to
NR independent multi-parameter estimation problems for
MISO (Multi-Input Single-Output) systems, therefore, we
consider an equivalent 2×1 distributed MIMO system for
simplicity. And then, the received signal at timet can be
expressed as

y(t) =
2

∑
l=1

hl(t)e
jwl tsl(t)+n(t), t = 1,2, · · · ,N (7)

Let we define

w =
[

w1 w2
]T

(8)

Φ(w1) = diag(
[

e jw1 e j2w1 · · · e jNw1
]

) (9)

Φ(w2) = diag(
[

e jw2 e j2w2 · · · e jNw2
]

) (10)

h1 = diag(
[

h1(1) h1(2) · · · h1(N)
]

) (11)

h2 = diag(
[

h2(1) h2(2) · · · h2(N)
]

) (12)

We assume that the first transmit antenna transmits
s1 = [s1(1) 0 s1(3) · · · s1(N −1) 0]T ; The second
transmit antenna transmits s2 = [0 s2(2) 0 · · ·
0 s2(N)]T . Then, the received signal is given by

y =























2
∑

l=1
hl(1)e jwl sl(1)+n(1)

2
∑

l=1
hl(2)e j2wl sl(2)+n(2)

...
2
∑

l=1
hl(N)e jNwl sl(N)+n(N)























= h1Φ(w1)s1+h2Φ(w2)s2+n

=



















h1(1)e jw1s1(1)
h2(2)e j2w2s2(2)
h1(3)e j3w1s1(3)

...
h1(N −1)e j(N−1)w1s1(N −1)

h2(N)e jNw2s2(N)



















+n = Φsh+n

(13)
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whereΦs = diag([s1(1)e jw1 s2(2)e j2w2 s1(3)e j3w1 · · ·

s1(N −1)e j(N−1)w2 s2(N)e jNw2]);

h =
[

h1(1) h2(2) h1(3) · · · h1(N −1) h2(N)
]T
.

Therefore, Eq. (7) can be expressed as

y = Φsh+n (14)

2.2 EM algorithm

EM algorithm, namely expectation maximization
algorithm, is an effective method of seeking parameter
ML estimation, which can perform parameter estimation
from incomplete data space and significantly reduce
computational complexity of ML estimation.

Let θ denotes the parameter to be estimated from the
observational datay. And the probability density function
(PDF) ofy is f (y|θ). Therefore, the ML estimation ofθ
can be expressed as

θ̂ = argmax
θ

f (y|θ) (15)

The ML estimation has a very high computational
complexity and thus EM algorithm is proposed which
uses an iterative approach to solving ML estimation
problem.

The derivation of EM algorithm depends on the
concept a hypothesis, so-called complete data spacex.
The observed random variabley, which is referred to as
incomplete data space, is related tox by a
mappingy = g(x). The function g is a many-to-one
transformation. Sincex is not observable, at them-th
iteration, the EM algorithm computes its first step, called
expectation step(E-step), [11] which is given by

J
(

θ | θ̂ [m]
)

= E
{

log f (x|θ)|y, θ̂ [m]
}

(16)

In the second step, called maximization step (M-step),
the parameter vector is updated according to

θ̂ [m+1] = argmax
θ

J
(

θ | θ̂ [m]
)

(17)

In some cases, the expectation conditional
maximization (ECM) can be adopted to simplify the
computation when the M-step of EM algorithm is too
complicated. The ECM algorithm [16] replaces the
complicated M-step of EM algorithm by a series of
smaller and less complicated steps. Specifically, if the
parameter θ can be divided into M groups of
θl , l = 1,2, · · · ,M, then the M-step of EM algorithm at the
m-th iteration can be performed byM smaller steps in
which θl is updated at thel-th step,l = 1,2, ...,N,while
θv’s, v 6= l are fixed at their most updated values.[11]

Thel-th step can be described as follows

Finding:

θ [m+1]
l = argmax

θl

J
(

θ | θ̂ [m]
)∣

∣

∣

θv=θ̂ [m]
v ,v 6=l

(18)

Updating:

θ̂ [m]
l = θ̂ [m+1]

l (19)

3 Joint frequency offset and channel
estimation

In this section, we first describe the initialization of the
proposed algorithm, and then the iterative algorithms
which are applicable to time-varying channel are
discussed in detail.

3.1 Initialization of frequency offsets and
channel

After a careful analysis of Eq. (14), we can know that the
ML estimation of frequency offsets and channel are
achieved by minimizing of the following log-likelihood
function [9]

Λ = ‖y−Φsh‖
2 (20)

The initialization of frequency offsets can be obtained
using the correlation algorithm proposed in [13].

For a given value of frequency offsetw, the
initialization ofh can be expressed as

h0 = (Φs
HΦs)

−1Φs
Hy (21)

Substituting Eq. (21) into Eq. (20), the frequency
offsets are obtained by multi-dimensional optimization of
the following equation

w = argmax
w

yHΦs
(

ΦH
s Φs

)−1ΦH
s y (22)

In this paper, we adopt the method similar to [11].
However, the method in this paper is applicable to
time-varying channel while the method in [11] is used in
flat-fading channels. Therefore, Eq. (22) and the
counterpart in [11] share similar form but have different
nature.

3.2 The iterative algorithm

Specifically, we define the sequence of the symbols and
the frequency offset of thel-th transmit antenna as follows
[11]

sl = [sl (1) ,sl (2) , · · · ,sl (N)]T (23)

wl =
[

e jwl ,e j2wl , · · · ,e jNwl
]

(24)
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And then the received signal can be expressed as

y =
2

∑
l=1

(sl ⊙wl)⊙hl +nk (25)

where n = [n(1),n(2), · · · ,n(N)]T and n˜CN(0,σ2IN);
hl = [hl(1),hl(2), · · · , hl(N)] l = 1,2, and⊙ denotes the
element-wise product of two vectors/matrices. The
parameter to be estimated isθ =

[

θ T
1 ,θ T

2

]T
, where

θl = [wl ,hl ]
T is the two parameters corresponding to the

pair of the l-th transmit antenna and receive antenna. In
the EM algorithm, the observed signaly is the incomplete
data space. Following [17], we define the complete data
space asz= [z1,z2]

T , where

zl
∆
= (sl ⊙wl)⊙hl +nl , l = 1,2 (26)

Therefore, the relation between the complete data
spacez and incomplete datay can be expressed as

2

∑
l=1

zl = y (27)

Dividing the total noisen into two components, we
have

2

∑
l=1

nl = n (28)

where nl ’s are statistically independent, zero-mean
Gaussian random with covariance matrix ofβlσ2IN . βl ’s
are determined by

2

∑
l=1

βl = 1,βl > 0 (29)

We assume thatβl ’s are equal, namely,βl = 1/NT =
1/2.

3.2.1 ECM algorithm

The m-th iteration of ECM algorithm consists two steps,
i.e., the E-step and M-step.

The first step is E-step. Assuming that the parameter
θ and conditioned upon the incomplete data and the
current estimated value of̂θ [m] are given, the expectation
of the complete data space log-likelihood function can be
expressed as [11]

Q
(

θ
∣

∣

∣
θ̂ [m]

)

∆
= E

{

log f (z|θ )|y, θ̂ [m]
}

(30)

Because of the statistical independence amongnl ’s, the
probability density function ofzl as a function ofθ is given
by

f (z|θ) =
2
∏
l=1

f ( zl |θl) =
2
∏
l=1

1

(πβlσ2)
N exp

{

− ‖zl−(sl⊙wl)⊙hl‖
2

βlσ2

}

(31)

Substituting Eq. (31) into Eq. (30), we can have

Q
(

θ
∣

∣

∣
θ̂ [m]

)

=C1−E{
2
∑

l=1

1
βlσ2‖zl − (sl ⊙wl)⊙hl‖

2|y, θ̂ [m]}

=C2−
2
∑

l=1

1
βlσ2

∥

∥

∥
ẑ[m]

l
− (sl ⊙wl)⊙hl

∥

∥

∥

2

(32)

where

ẑ[m]
l

= E
{

zl |y, θ̂ [m]
}

(33)

andC1 andC2 are two constants which are independent of
θ .

We can easily obtain the following equation forzl and
y are jointly Gaussian distributed and satisfy Eq. (27)

ẑ[m]
l =

(

sl ⊙ ŵ[m]
l

)

⊙ ĥ[m]
l +

βl

(

y−
2
∑

v=1

((

sv ⊙ ŵ[m]
v

)

⊙ ĥ[m]
v

)

) (34)

where

ŵ[m]
v =

[

e jŵ[m]
v ,e j2ŵ[m]

v , · · · ,e jNŵ[m]
v

]T

(35)

The second step is the M-step. In this step, the updated
value ofθ , θ̂ [m+1], can be determined as

θ̂ [m+1] = argmax
θ

Q
(

θ | θ̂ [m]
)

= argmax
θ

(

C2−
2
∑

l=1

1
βlσ2

∥

∥

∥
ẑ[m]

l
− (sl ⊙wl)⊙hl

∥

∥

∥

2
)

=argmax
θ

(

−
2
∑

l=1

∥

∥

∥
ẑ[m]

l
− (sl ⊙wl)⊙hl

∥

∥

∥

2
)

= argmin
θ

2
∑

l=1

∥

∥

∥
ẑ[m]

l
− (sl ⊙wl)⊙hl

∥

∥

∥

2

(36)
From the above equation, we can easily know that the

updating process ofθ can be decoupled into two (i.e.NT )
updating processes ofθl for l = 1,2(NT = 2) [11].
Therefore, θ̂ [m+1] can be determined by the following
equation

θ̂ [m+1]
l = argmin

θl

∥

∥

∥
ẑ[m]

l
− (sl ⊙wl)⊙hl

∥

∥

∥

2
, l = 1,2 (37)

In ECM algorithm, the updating process ofθ̂ [m]
l =

[

ŵ[m]
l , ĥ[m]

l

]

consist two smaller steps. The Eq. (37) is

minimized with respect to one of
[

ŵ[m]
l , ĥ[m]

l

]

while the

others are kept at their most updated values [9]. We

denoteθ̂ [m+c/2]
l as the estimate ofθl at c-th step ofm-th

iteration of the ECM algorithm,c = 1,2.
Firstly, we determine the updated value ofwl while hl

is fixed atĥ[m]
l , i.e., we determinêθ [m+1/2]

l =
[

ŵ[m+1]
l , ĥ[m]

l

]
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where

ŵ[m+1]
l = argmin

ωl

∥

∥

∥
ẑ[m]

l
− (sl ⊙wl)⊙hl

∥

∥

∥

2
|
hl=ĥ[m]

l

= argmin
ωl

N
∑

t=1
|ẑ[m]

l (t)− sl (t)e jwl t ĥ[m]
l (t) |2

= argmax
ωl

N
∑

t=1
ℜ
{(

ẑ[m]
l (t)

)∗
sl (t) ĥ[m]

l (t)e jwl t
}

(38)
where ˆz[m]

l (t) is thet-th element of ˆz[m]
l , t = 1,2, · · · ,N.

We can resort to Taylor’s series expansion ofe jwl t

around ˆw[m+1]
l to the second-order term as the following

equation for handling the nonlinearity of Eq. (38)

e jwl t ≈ e jŵ[m]
l t +

(

wl − ŵ[m]
l

)

( jt)e jŵ[m]
l t+

1
2

(

wl − ŵ[m]
l

)2
( jt)2e jŵ[m]

l t
(39)

Simulations indicate that Eq. (39) is always convex.
Therefore, substituting Eq. (39) into Eq. (40), we can

obtain the updated value ˆw[m+1]
l as

ŵ[m+1]
l = argmax

ωl

N
∑

t=1
ℜ{

(

ẑ[m]
l (t)

)∗
sl (t) ĥ[m]

l (t)∗(e jŵ[m]
l t+

(

wl − ŵ[m]
l

)

( jt)e jŵ[m]
l t + 1

2

(

wl − ŵ[m]
l

)2
( jt)2e jŵ[m]

l t)}

(40)
Differentiating the function inside{·} of Eq. (40) with

respect towl and equating the result to zero, we can obtain

the updated value ˆw[m+1]
l as

ŵ[m+1]
l = ŵ[m]

l −
∑ N

t=1tℑ
{(

ẑ[m]
l (t)

)∗
sl (t) ĥ[m]

l (t)e jwl t
}

∑ N
t=1t2ℜ

{(

ẑ[m]
l (t)

)∗
sl (t) ĥ[m]

l (t)e jwl t
}

(41)
Secondly, the updated value ofhl at time t, ĥ[m]

l is
determined, wherewl is fixed at its newest value of

ŵ[m+1]
l . Therefore, we haveθ̂ [m+1]

l =
[

ŵ[m+1]
l , ĥ[m+1]

l

]

where

ĥ[m+1]
l (t) = argmin

hl(t)

∣

∣

∣
ẑ[m]

l (t)− sl (t)e jŵ[m+1]
l thl (t)

∣

∣

∣

2

t = 1,2, · · · ,N
(42)

After some algebra, we can have

ĥ[m+1]
l (t) =

1

|sl (t)|
2 ∗

ẑ[m]
l (t)s∗l (t)

e jŵ[m+1]
l t

t = 1,2, · · · ,N (43)

Thus,θ̂ [m+1]
l =

[

ŵ[m+1]
l , ĥ[m+1]

l

]T
and them-th iteration

is finished.

3.2.2 SAGE algorithm

In the ECM algorithm, the noise variance is distributed
overzl for all value ofl. Therefore, the Fisher information

of zl is relatively large. To improve the convergence rate,
we use space-alternating generalized
expectation-maximization (SAGE) algorithm where the
parameterθ is divided into two (NT ) groups ofθl , l = 1,2.
The updated process of any group is taken place while the
others are fixed at their latest updated values [11].

Similarly, for the group ofθl , l belongs to the set
{1,2}. The hidden data space is defined as

xl , (sl ⊙wl)⊙hl +n (44)

The update process ofθl at the m-th iteration also
consist of two steps, i.e., E-step and M-step. Givenθ and
y, we can determine the expectation of the hidden data
space log-likelihood function as

Q
(

θl

∣

∣

∣
θ̂ [m]

)

= E

{

log f

(

xl

∣

∣

∣

∣

θl ,
{

θ̂ [m]
v

}

v 6=l

)∣

∣

∣

∣

y, θ̂ [m]

}

(45)
where

f

(

xl

∣

∣

∣

∣

θl ,
{

θ̂ [m]
v

}

v 6=l

)

= f (xl |θl )

= 1

(πσ2)
N exp

{

− ‖xl−(sl⊙wl)⊙hl‖
2

σ2

}

(46)
Substituting Eq. (46) into Eq. (45), we can have

Q
(

θl

∣

∣

∣
θ̂ [m]

)

= E

{

1

(πσ2)
N exp

{

− ‖xl−(sl⊙wl)⊙hl‖
2

σ2

}

∣

∣

∣

∣

y, θ̂ [m]

}

= C3−
1

σ2 E
{

‖xl − (sl ⊙wl)⊙hl‖
2
∣

∣

∣
y, θ̂ [m]

}

= C4−
1

σ2

∥

∥

∥
x̂[m]

l − (sl ⊙wl)hl

∥

∥

∥

2

(47)
where

x̂[m]
l

∆
= E

{

xl

∣

∣

∣
y, θ̂ [m]

}

=
(

sl ⊙ ŵ[m]
l

)

⊙ ĥ[m]
l +

(

y−
2
∑

v=1

((

sv ⊙ ŵ[m]
v

)

⊙ ĥ[m]
v

)

)

= y−
2
∑

v=1,v 6=l

(

sv ⊙ ŵ[m]
v

)

ĥ[m]
v

(48)

In this step, the update value ofθl ,θ̂
[m+1]
l , is expressed

as

θ̂ [m+1]
l = argmax

θl

Q
(

θl

∣

∣

∣
θ̂ [m]

l

)

= argmin
θl

∥

∥

∥
x̂[m]

l − (sl ⊙wl)⊙hl

∥

∥

∥

2 (49)

The above equation can be solved like the M-step of
the previous where ECM is deployed, i.e., it consists of

two smaller steps and elements ofθ̂ [m]
l =

[

ŵ[m]
l , ĥ[m]

l

]

are

updated sequentially.
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Firstly, we determine the updated value of as the

following equation whilehl is fixed atĥ[m]
l

ŵ[m+1]
l = ŵ[m]

l −
∑ N

t=1tℑ
{(

x̂[m]
l (t)

)∗
sl (t) ĥ[m]

l (t)e jwl t
}

∑ N
t=1t2ℜ

{(

x̂[m]
l (t)

)∗
sl (t) ĥ[m]

l (t)e jwl t
}

(50)
where ˆx[m]

l (t) is the -th element of ˆx[m]
l in Eq. (48),

t = 1,2, · · · ,N.
Secondly, we determine the updated value of time of

hl as the following equation whilewl is fixed at its newest

value ofŵ[m+1]
l

ĥ[m+1]
l (t) =

1

|sl (t)|
2 ∗

x̂[m]
l (t)s∗l (t)

e jŵ[m+1]
l t

t = 1,2, · · · ,N (51)

Thus,θ̂ [m+1]
l =

[

ŵ[m+1]
l , ĥ[m+1]

l

]T
and them-th iteration

is finished.

4 Simulation results

In this section, we present the simulation results and
analysis of the proposed method. At the same time, we
compare the performance of the proposed algorithm in
terms of MSE with the existing algorithm.

The simulation parameters are shown in Table 1.

Table 1: MIMO system simulation parameters
Parameter Value

Frequency offsets 2π[0.01 0.011]T

Modulation QPSK
Doppler shiftHz 260

Sampling time (s) 2.5e-6
Number of antenna 2×2

Channel independent Rayleigh, time-varying

As is mentioned above, the algorithm in [11] is
appropriate for distributed MIMO systems in the
flat-fading channel. We promote the multi-parameter
estimation algorithms in [11] to the multi-parameter
estimation using EM algorithm in distributed MIMO
time-varying channels. And then we compare the
performances of the algorithm in this paper with the
algorithm in [11], which are in time-varying channels for
comparison.

In this paper, we initialize values for frequency offset
using the method in [12]. After having these values, Eq.
(21) is used to get the initial estimates for channel
coefficients. In addition, our proposed algorithms stop
when difference between log-likelihood function of the
two consecutive iterations is less than 0.001. In Fig.1 and

Fig. 1: Comparison of MSE performances of channel of [11] and
proposed algorithm

Fig. 2: Comparison of MSE performances of CFO of [11] and
proposed algorithm

Fig.2, the MSE performance of channel and carrier
frequency offset is illustrated, respectively.

Fig.1 shows the comparison of the MSE performance
of channel of [11] and the algorithm in this paper. Fig.2
shows the comparison of the MSE performance of carrier
frequency offsets (CFO) of [11] and the algorithm in this
paper. We can see that the MSE performance of the
algorithm in [11] is relatively poor. What’s worse, the
performance is still poor at high-SNR region. It indicates
that the algorithm in [11] is inappropriate in high-speed
environments. We can also see from the two figures that
the MSE performance of the proposed algorithm is very
satisfying, especially in high-SNR region. Obviously, the
performance of the proposed algorithm is better than the
algorithm in [11] in high-speed environment. Thus we
can conclude that the proposed algorithm can
significantly compensate for the performance loss caused

c© 2014 NSP
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by time-variability and achieve better performance for
time-varying distributed MIMO systems.

5 Conclusion

In this paper, two algorithms that jointly estimate
frequency offsets and channel for distributed MIMO
systems in time-varying channels have been presented.
The two algorithms are based on ECM and SAGE
algorithm, respectively. We promote the multi-parameter
estimation based on ECM and SAGE algorithms in
distributed MIMO flat-fading channels to the
multi-parameter estimation using EM algorithm in
distributed MIMO time-varying channels. Simulations
indicates that the improvement of the algorithms can
significantly compensate for the performance loss caused
by time-variability and achieve better performance in
time-varying distributed MIMO systems.
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