
Appl. Math. Inf. Sci.8, No. 6, 3159-3166 (2014) 3159

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.12785/amis/080657

NDM-Cache: A Network Cache for Cloud Computing
System
Yunfa Li and Pengtao Wang∗

Department of Computer and Technology, Hangzhou Dianzi University, 310018, Hangzhou, Zhejiang, China

Received: 27 Nov. 2013, Revised: 25 Feb. 2014, Accepted: 26 Feb. 2014
Published online: 1 Nov. 2014

Abstract: Block-level storage service is one of the basic services in a cloud computing system, it not only provides block-level storage
volumes to the virtual machines for persistent data, but also improve the availability of data. However, with the rapid expansion of
cloud computing systems and increasing number of the virtual machines,higher I/O performance of storage subsystem is demanded,
when the storage subsystem under the condition of high load, its service quality is severely affected. According to this issue, this paper
designs and implements the prototype of a network cache for cloud computing system, named NDM-Cache. This network cache system
uses local block device as L1 cache, the block devices of other hosts in LAN as L2 cache, and proposes a data management solution for
network cache system. On this basis, for the host with a spare memory space, we propose a double level cache optimization strategy
to further enhance the overall system performance. The experimental results of prototype system show that in the case of high load
storage subsystem, the network cache system can effectively improvethe performance of storage system.

Keywords: Cloud Computing, block-level storage service, network cache

1 Introduction

In the early cloud computing [1] system, it often uses the
host’s own disk storage space when provides the user
with a virtual machine instance service. This approach
has two problems: firstly, the space of a single host is
limited, it unable to meet the rapidly growing demand of
user-space; Secondly, the allocation of disk space to the
virtual machine instances is temporary, when the instance
is terminated, this part of the space will disappear,
resulting in the loss of user data. Therefore, today’s
popular cloud computing systems have their respective
block-level storage subsystem, such as the AWS EBS [2],
OpenStack Cinder [3] and other storage subsystems. They
can not only provide persistence storage volume to the
virtual machines, but also provide reliable storage service
to the I/O intensive applications.

With the rapid expansion of cloud computing systems
and increasing number of accessed applications, the
concurrent access of storage subsystem rises sharply,
centralized data storage and network bandwidth
limitations lead to storage performance seriously decline.
When the data request quantity exceeds a certain
threshold, the system may be unable to handling user
requests timely, resulting in the collapse of storage

service. And cache technology has always been the main
method and research hot spot to solve the performance
problems of network storage, client cache system can
effectively improve the overall performance of the storage
system, however, most of the current network cache
systems are based on client memory, although their
performance are good, but the memory space is relatively
small and the cache data is easy to lost. Although the
access speed of local disk compare slowly with memory,
it has larger space and reliable performance of continuity
read and write, some researchers began to explore the
method that use client-side local disk as a network cache,
such as Stony Brook University’s xCachefs [4], SUN’s
NFS [5], IBM’s AFS [6], Carnegie Mellon University’s
Coda [7], UC Berkeley’s xFS [8] and Pennsylvania State
University’s CAPFS [9] and other distributed file systems,
they use the client disk as the cache of a network storage
system, in order to alleviate the load pressure of the
backend server and improve the overall system’s
performance and availability. However, since these cache
systems are designed for specific file system, their
versatility and flexibility are poor. In contrast, block-level
cache can be transparently applied to most of the storage
systems, with more versatility. But, at present in view of

∗ Corresponding author e-mail:wangpengtao.bh@gmail.com

c© 2014 NSP
Natural Sciences Publishing Cor.

http://dx.doi.org/10.12785/amis/080657


3160 Y. Li, P. Wang: NDM-Cache: A Network Cache for Cloud Computing System

the FC [10], NBD [11], AoE [12] and iSCSI [13]
block-level protocols, only a few researchers use the
client-side local disk space as a cache subsystem, among
them, IBM and the university of Florida’s DM-Cache [14]
and Facebook’s flashcache [15] is representative of the
results. They both use Device Mapper mechanism [16],
and map the local disk to the cache of remote block
device. This scheme is applicable to iSCSI and NBD
block-level storage network, it can significantly improve
the performance and scalability of the storage network
system. And due to the support of the Linux kernel, also
shows excellent stability and availability. In addition, the
university of Florida expanded the DM-Cache [17], it
makes virtual machines on the same server to
dynamically share a same local disk, and supports for
dynamic cache replacement and write policy, this applies
to different cloud computing environments.

However, DM-Cache and flashcache both only be
used for a single client node, without using the correlation
between client nodes in cloud computing systems.
Considering the LAN, the client block device and other
factors, this paper designs and implements the prototype
of a network cache for cloud computing system, named
NDM-Cache. NDM-Cache system uses local block
device as L1 Cache, the block devices of other hosts in
LAN as L2 Cache. When designing this system, this
paper designs the network cache system structure based
on local block device, and proposes a data management
solution for network cache system. NDM-Cache system
can fully utilize the advantages of local LAN and the
speed difference between various levels in system,
effectively extend the host’s cache data access coverage,
improve the overall efficiency of the cache data in client
cluster, Thus effectively alleviate the high load problem
of the storage subsystem, improve the availability and
service quality of cloud computing storage subsystems.

The rest of this paper is organized as follows: Section
2 introduces the design and implementation of
NDM-Cache. Section 3 describes the cache data
management strategy and double level cache optimization
strategy. Section 4 presents the theoretical analysis and
the experimental evaluation of system performance.
Section 5 is the conclusion of paper and future work.

2 Design and Implementation of NDM-Cache

2.1 Architecture Design of NDM-Cache

Combining with the network characteristics of the
read-only shared storage system and the characteristics of
local block device, this paper proposes the NDM-Cache
system architecture, that is, a network cache architecture
based on the local block device. NDM-Cache system is in
the I/O channel between client host and remote network
storage system. As shown in figure1, in the NDM-Cache
system, the client host cluster is connected to the same

LAN and through the relatively slow network connection
to the remote shared and read-only block storage.
NDM-Cache system uses the virtualization technology
provided by the Device Mapper, firstly, create the local
disk cache of client host, then virtualization the cache
device of each compute nodes in the client host cluster
into a unified global cache that to be shared by client
hosts as a global cache.

Fig. 1: System Architecture of NDM-Cache

In the above architecture, the Device Mapper is used
to manage the remote block devices as well as the cache
devices in local LAN. By making the corresponding
mapping rule, the cache devices in local LAN are mapped
into global shared cache device, this global shared cache
device and the remote shared device are dynamically
mapped to a virtual block device with a cache. And from
the user perspective, this device is not much different
from the original device, the only difference is the device
descriptor, there is no difference in the use and capacity
of equipment, figure2 shows its mapping principle.

Fig. 2: Mapping Principle

Due to the advantage that the access speed of local
cache device is relative faster than the device caches of
other hosts in local LAN, this paper gives the local cache
device first priority, the other cache devices in LAN
second priority, and shared storage device third priority,
when specifying mapping rule. That is, when accessing a
block, the user first attempts to access the data on local

c© 2014 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.8, No. 6, 3159-3166 (2014) /www.naturalspublishing.com/Journals.asp 3161

host, then check whether the data is on other cache
devices in LAN, finally, if the data is not on the cache
device, it will access the remote shared block device.
Such mapping rule can make full use of the speed
difference between various levels and the advantage of
local LAN, improve the overall performance of system.

2.2 Prototype Implementation of NDM-Cache

This paper uses the Device Mapper technology to realize
the prototype system of NDM-Cache. For the setting of
cache system in LAN between multiple nodes, it involves
the complexity of I/O path, the complex scheduling of
cache resources and the consistency of cache. To simplify
the research, this paper only temporary realizes the
caching system between two hosts in LAN and the remote
shared storage system.

This paper uses the two hosts on their shared cache
space is mapped into a global cache device, then by
making the corresponding mapping rule, gives two
devices different access priority (i.e., local block device
prior to network block device), forms a hierarchical
access method. This paper realizes the NDM-Cache
mechanism in the form of the kernel block layer driver
module. NDM-Cache module can be easily plugged into
or removed from the Linux kernel by user. The
implementation process of NDM-Cache module mainly
involves the implementation of private data structure and
mapping rule.

2.2.1 The Implementation of NDM-Cache Private Data
Structure

Considering the characteristics of the prototype system
architecture, in the NDM-Cache, this paper set a data
structure of shared storage device named srcdev, a data
structure of local host cache device named hostcachedev,
and a data structure of LAN device named lancachedev.
In order to achieve a faster cache data search, this paper
sets two cache block metadata hash tables for these two
kinds of devices, and places the two tables in kernel space
memory. When searching the data block, operating
system first searches the metadata table in kernel space,
then according to the search result, determines whether
the cache data exists in the cache device and exists in
which position. Compared to access block device directly,
this approach will has a great improvement in speed. This
paper also sets the cache block size named size and the
cache associativity parameter named assoc, which are
used to specify the cache block size and data block
storage group size.

2.2.2 The Implementation of NDM-Cache Mapping Rule

On the basis of setting two kinds of tables, this paper
realizes the mapping rule of NDM-Cache in the mapping

method cachemap, the specific process is described by
the later algorithm. This paper uses the kernel replication
thread kcopyd to realizes the asynchronous replication of
cache data. The cache data replication occurs mainly in
the first cache data loading and the cache data
replacement. For the replacement strategy of data cache,
this paper uses LRU (Least Resent Used) algorithm. This
algorithm has a simple mechanism, and a high cache hit
ratio.

3 Cache Data Management and Double
Layer Optimization Strategy

This paper designs the NDM-Cache oriented system
block level cache data management solution. This
solution mainly includes the cache data storage and
organization scheme and cache data mapping algorithm.

3.1 Analysis of Influencing Factors

Because of working in the local area network (LAN)
environment, NDM-Cache system has obvious difference
compared with the traditional caching system built in the
memory in the cache media characteristics and processing
level of operating system. So in the design of the cache
data management solution, the two differences are mainly
considered.

3.1.1 The Influence of Local Block Device

This paper refers the local block device as the device
within the local area network (LAN), which is mainly
normal disk medium of its physical layer. Compared with
SDRAM and flash disk medium, normal disk medium has
three differences as follows: firstly, the response speed is
slow; secondly, data continuity requirement is higher;
Thirdly, data is non-volatile.

Because normal disk media response speed is slow,
the operating system’s I/O waiting time will be longer
accordingly. When the network block device in a local
area network (LAN) used as a cache system, the I/O
processing speed is also affected by network bandwidth
and protocol. Therefore, in the process of cache handling,
we must fully consider the impact of this feature,
especially to estimate whether the additional I/O time
brought by cache operation will lead to decline in overall
speed I/O. If it is necessary, cache operation can be
skipped. Because requirement of normal disk medium for
data continuity is high, local characteristics of data can be
combined with disk storage location, which stores data
blocks of high correlation in the neighboring physical
storage position. Because the disk data has characteristic
of non-volatile, so in the case of a power outage or
network suddenly disconnected, the data on the local
block device also will not be lost, and therefore the
cached data do not need to be reload when restart.

c© 2014 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


3162 Y. Li, P. Wang: NDM-Cache: A Network Cache for Cloud Computing System

3.1.2 The Influence of Operating System Features

In general, operating system processes the request from
general block layer and normal file layer in a different
way. Operating system allow writing for normal file level
requests on reading and writing, but the writing time for
request from general block layer is short, otherwise the
operating system may be deadlock for the I/O without
treatment for a long time. So comprehensive
consideration is need on this operating system properties
as well as the local block device I/O processing speed to
make reasonable I/O processing rules.

3.2 Cache Data Organization and Storage

In the NDM-Cache system, the cached data mainly
includes two aspects, namely the actual cache data and
the metadata associated with cached data. Metadata is
mainly used to find the corresponding cache data, which
records basic information about cache data, including the
cache block size, the offset set in the shared storage
device of original data corresponding to the cache data ,
associative parameters of set as well as status information
and so on. In order to distinguish metadata from ache data
in storage, this paper stores metadata in the tail of the
device. And in order to increase the search speed, in this
article these metadata will be loaded into kernel memory
space.

This cached data processing granularity of data
blocks, which consist of a number of sectors, and the user
can customize the data block size. On one hand the
response of disk media is slow relative to the SDRAM, on
the other hand performance of disk media on processing
consecutive read and write is higher than the random read
and write, so the cache block size should be not too large
nor too small. Too big cache block will result in long
waiting time for the operating system, affecting the
normal operation of the operating system; if the cache
block is too small, it can not make good use of continuous
nature of cache data, and will generate more metadata ,
declining the overall system performance. Considering
Linux operating systems typically use 4KB page size as
the default, this paper use eight sectors (each sector 512B,
8 sectors is 4KB) as the default cache block size.

In terms of cache data storage, this paper adopts the
way of set associated, that multiple sectors of data make
up a single data block, multiple of data blocks make up a
single data set. In this paper, hash algorithm is introduced
to map a data block to its set data position. The hash key
is got by calculating the position offset on a remote
storage device of cached data block, the hash value is then
divided by the correlation parameters to get the final set
offset. However, the original hash algorithm can’t use the
local characteristics of the data, which may lead to near
the position original data be mapped to relatively distant
position on cache device. Since normal disk has a better
performance when processing consecutive data than

Fig. 3: Schematic Diagram of Cache Data Storage

random data, we need to improve the original hash
algorithm so as to makes the consecutive data on the
shared storage devices can store in close position. This
paper uses a simple but effective improved hash
algorithm, to obtain data block local characteristics. In
this hash algorithm , the article use the parameters of
continuity as cacheconsecutive to set the number of
stored continuously data blocks and before the calculation
of hash value the original offset is divided by the
continuity parameters. An example about cache data
stored on the cache device is shown in figure3.

3.3 The Design of Mapping Algorithm for
Cache Data

In this paper, Device Mapper is used to achieve the
appropriate mapping rules and virtualize the client on
each node in the cluster into a unified cache device. Each
node accesses to the cached data block via the global
metadata table. The local cache device, LAN cache device
on other hosts and remote block device were given three
different priorities from high to low in the rule-making.
And in order to achieve the level of relations, this paper
designs corresponding mapping algorithm for cache data.
The algorithm disposes the generic block layer request
bio from the top of the file system or VFS layer based on
the priority of plot devices and shared storage devices.

Table 1: Related Data Structures and Parameter List
Type Domain
struct Bio

struct blockdevice * bio→bdev
struct dmdev * src dev

struct blockdevice * src dev→bdev
struct dmdev * hostcachedev

struct blockdevice * hostcachedev→bdev
struct dmdev * lancachedev

c© 2014 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.8, No. 6, 3159-3166 (2014) /www.naturalspublishing.com/Journals.asp 3163

Figure 4 depicts the flow of processing algorithms
about a bio sent from the node in file system from the
upper layer or I/O control layer, which involves the
relevant data structure and the parameters in Table1.
NDM-Cache system processing bio specific process is as
follows:

Step 1 The node query metadata belong to their compute
nodes in global metadata tables. If hits, the block
device descriptor (bio→bdev) requested by generic
block layer will be modified cache block device
descriptor (hostcachedev→bdev). After doing some
appropriate treatment to the bio, it will be handed over
to core, the bio is processed after this; If not hits,
proceed to step 2.

Step 2 The node continues to research metadata belong
to other local computing nodes in global metadata
tables. If hits, bio→bdev compute nodes will be
modified into device descriptor lancachedev→dev of
cache block devices. After doing some appropriate
treatment to the bio, it is taken to the kernel and then
goes to step 3; If not hits, proceed to step 4.

Step 3 When kernel copies block data, it quires the status
of local cache device and finds the available
replacement block according to the replacement
algorithm, and the data block is replaced by bio
required. Then updates the global metadata table, thus
ends the process for this bio.

Step 4 bio→bdev is modified into device descriptor
src dev→bdev of a remote block device. Next, the bio
is delivered to the kernel, then goes to step 3.

receive a bio

query local metadata

hit?

The kernel processing&

Update the metadata

hit?

query LAN metadata

bio->bdev=src_dev->bdev

bio->bdev=

hostcache_dev->bdev

bio->bdev=

lancache_dev->bdev

The kernel processing

The kernel processing&

Update the metadata

Y

Y

N

N

Fig. 4: Flowchart of Cache Data Mapping Algorithm

3.4 Double Layer Cache Optimization Strategy

Considering the memory relative to the disk on the speed
advantage and in order to make the NDM-Cache for a
further improvement in performance. This paper proposes
double layer cache optimization strategy in view of the
spare memory space in the client. That divide spare
memory space and plus a layer of memory cache on the
basis of the original global cache equipment. This
optimization program has two preconditions:

Firstly, the client must have free memory space, and
must be at the level of GB. The default size of a single
block data is 8 sectors, that is 4KB. Memory block device
must provide sufficient buffer space to make the effect of
acceleration in cache mechanisms, which often need to
divide dozens or even hundreds of MB for cache space.
Coupled with the interventions and scheduling of
operating system, only when the free space reaches at the
level of a few hundred MB or even GB , can the normal
operation of the client do not been affected, but also to
provide a stable buffer space.

Secondly, the client power outages and other fault
conditions are not taken into account. Because memory
medium is volatile media, in the case of failure or power
failure may cause loss of data. Thus the internal storage
could be considered into two-story cache memory in the
case of the loss of data in the cache has little effect on the
system.

Double layer cache optimization strategy is still using
Device Mapper mapping mechanism, its structure and
principle are shown in figure5.

Fig. 5: Schematic Diagram of Double Layer Architecture
Mappings

4 Performance Evaluations

The NDM-Cache prototype system mounts the LAN
cache devices and remote storage device through the
iSCSI technology. The prototype system uses two client
servers, six assisted client servers and one storage server.
All the servers are in a LAN. These servers’
configurations in experiment are as shown in Table2.

c© 2014 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


3164 Y. Li, P. Wang: NDM-Cache: A Network Cache for Cloud Computing System

Table 2: DNM-Cache Prototype System’s Configurations
Node name Quantity Memory OS
Client Node 2 32G Ubuntu 11.10
Added Node 6 32G Ubuntu 11.10
Server Node 1 32G Ubuntu 11.10

4.1 Experiments of the NDM-Cache Prototype
System

This section designs the speed of data reading
experiments for NDM-Cache prototype system.
Experiments are divided into two parts, the first part uses
the normal disk as cache devices and the second part uses
the SSD as cache devices.

4.1.1 The Read Speed Experiment Based on the Normal
Disk

In the read speed experiment based on the normal disk,
specific experimental settings are as follows: the size of
remote storage device is 30GB; on each client server, the
normal disk cache space is 2GB; the size of cache data
block is 32 sectors, namely 16KB; set-associative
parameter is 1024, the 1024 data blocks are a single
storage group; the continuity parameter is 512, that is 512
consecutive data blocks are to be processed
simultaneously. Firstly, this paper uses only two client
servers and a storage server for testing. The test
respectively do the data read on original shared storage
devices without cache, the virtual devices uses DM-Cache
mechanism and NDM-Cache system. During the test, two
client nodes simultaneously do data read operations on a
shared storage device. In the test, the data block size is
divided into 4KB, 8KB, 16KB, 32KB , 64KB and 128KB.
Then, we add six assisted client servers, these assisted
servers connect to a same storage device provided by the
storage server. Eight client servers simultaneously access
to the shared storage devices and the same with the above
experiment process, we do the test on data of different
block size under different mechanisms. The specific
experimental results are as shown in figure6.

As shown in figure6, figure (a) represents that when
the client-side has only two servers, NDM-Cache system
and DM-Cache system’s read performance are worse than
the original shared storage device. Figure (b) represents
that when the number of servers in the client-side
increased to 8, The NDM-Cache system’s performance
relative to the original shared storage device has improved
by an average of 11.31% and relative to the DM-Cache
system, has improved by an average of 2.34%. The
reasons for the above results are as the following three
aspects:

Firstly, when the storage server’s load is relatively
low, the speed that client servers access to the shared
storage device and access to the local normal disk does

not differ much. At this time, the operating system’s
scheduling delay and Device Mapper’s processing delay
mainly influences the data read performance. So, the
NDM-Cache system and DM-Cache system’s
performance relative to the original shared storage
device’s performance has declined.

Fig. 6: The Normal Disk-based Cache Experiment Results
Comparison

Secondly, when the storage server’s load is high, the
speed that client servers access to the shared storage
device and access to the local normal disk differ much. At
this time, the operating system and Device Mapper’s
impact relative to the impact of access latency is small.
So, using disk cache mechanism can improve the overall
access speed.

Thirdly, because NDM-Cache system takes full
advantage of the local area network, so it has better
performance than DM-Cache system.

4.1.2 The Read Speed Experiment Based on the SSD
Disk

In the read speed experiment based on the SSD disk, in
addition to the cache device types, other experimental
configurations are same with the above experiment that
based on the normal disk. And in this experiment, we also
respectively test on the original shared storage device
without cache, the virtual devices use DM-Cache
mechanism and NDM-Cache system. The specific
experimental results are as shown in figure7.

As shown in figure7, when the client-side has only
two servers, the NDM-Cache system and DM-Cache
system’s read performance are worse than the original
shared storage device; when the number of servers in the
client-side increased to 8, the NDM-Cache system’s
performance improves 18.42%; and relative to the
DM-Cache system, improves 2.76%. The main reasons
for the above results are similar to the case of using
normal disk: Firstly, when the storage server’s load is
relatively low, the operating system and Device Mapper

c© 2014 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.8, No. 6, 3159-3166 (2014) /www.naturalspublishing.com/Journals.asp 3165

will have a great impact on the I/O; Secondly, when the
load increased to a certain extent, the cache effects of
SSD begins to show; Thirdly, NDM-Cache system takes
better use of the LAN, therefore, the overall performance
is better.

Fig. 7: The SSD Disk-based Cache Experiment Results
Comparison

4.2 Experiments of Double Layer Cache
Optimization

In view of the double layer cache optimization strategy
proposed in this paper, this section respectively evaluates
the data read performance on NDM-Cache prototype
system with the double layer cache optimization strategy
based on normal disk and SSD. The specific experimental
settings are still same with the above experiments.

In this experiment, 2 client servers and 6 assisted client
servers simultaneously access to the shared storage device
provided by the storage server and the size of data block is
4KB, 8KB, 16KB, 32KB, 64KB and 128KB. The results
are shown in figure8.

Fig. 8: The SSD Disk-based Cache Experiment Results
Comparison

As shown in figure8, compared to the single layer
cache strategy, the NDM-Cache prototype system’s read
performance with the double layer cache optimization
strategy based on normal disk and SSD has improved by
an average of 4.57% and 4.61%. The main reason for the
above results is that the NDM-Cache system with double
layer cache optimization strategy uses the memory block
device as a two-levels cache and it’s performance is better
than the normal disk and SSD. This experiment
demonstrates that in the case of which the client server
has a spare memory space, using double layer cache
optimization strategy can improve the overall
performance of the shared storage system.

5 Conclusions and Future Work

Based on the problem of the decline of the storage
subsystem’s service quality under the condition of high
load, this paper designs and implements a network cache
system for cloud computing system, named NDM-Cache.
This network cache system uses local block device as L1
cache, the block devices of other hosts in LAN as L2
cache and proposes a data management solution for
network cache system. On this basis, for the host with a
spare memory space, we propose a double level cache
optimization strategy to further enhance the overall
system performance. Proved by experiments that eight
client nodes simultaneously access the shared storage
device, as opposed to the original shared storage devices
and NDM-Cache system, data reading performance of the
NDM-Cache prototype system based on local normal disk
has increased by an average of 11.31% and 2.34%, while
the NDM-Cache prototype system based on the SSD has
increased by an average of 18.42% and 2.76%. After
adopting a double cache optimization strategy, the
NDM-Cache prototype system with the double layer
cache optimization strategy based on normal disk and
SSD has improved by an average of 4.57% and 4.61%.

In this paper, some aspects still need further research
and improvement. In our future work, we will consider
more data management solutions for network cache
system. We will study automatic mounting mechanism
for network cache system and pluggable network cache
devices. We will also implement various cache
replacement algorithms and study the effect of cache
strategy on cache efficiency under various experimental
conditions.

Acknowledgement

This paper is supported by the National Key Technology
Support Program under Grant No.2012BAH24B04, the
National Natural Science Foundation of China under
Grant No.61202094 and the major science and
technology plan of zhejiang province(No. 2011C11038).

c© 2014 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


3166 Y. Li, P. Wang: NDM-Cache: A Network Cache for Cloud Computing System

References

[1] P. Mell and T. Grance, NIST special publication,800, 7-7
(2011).

[2] Amazon EBS Service,http://aws.amazon.com/ebs/.
[3] OpenStack Cinder,http://wiki.openstack.org/wiki/Cinder.
[4] G. Sivathanu and E. Zadok, Stony Brook University,

Technical Report FSL-,05, 5-5 (2005).
[5] R. Sandberg, D. Goldberg, S. Kleiman, et al, Design and

implementation of the Sun network filesystem, Proceedings
of the Summer USENIX conference, 119-130 (1985).

[6] J. H. Howard, An overview of the andrew file system,
Carnegie Mellon University, Information Technology Center,
(1988).

[7] M. Satyanarayanan, J. J. Kistler, P. Kumar, et al, Computers,
IEEE Transactions on,39, 447-459 (1990).

[8] T. E. Anderson, M. D. Dahlin, J. M. Neefe, et al, ACM
Transactions on Computer Systems (TOCS),14, 41-79
(1996).

[9] M. Vilayannur, P. Nath, A. Sivasubramaniam, FAST,5, 2-2
(2005).

[10] Z. Meggyesi, Fibre channel overview, Research Institute for
Particle and Nuclear Physics, (1994).

[11] M. Lopez, P. T. A. Arturo Garcia Ares, Linux Journal,2000,
40-40 (2000).

[12] B. Coile, S. Hopkins, The ATA over Ethernet Protocol,
Technical Paper from Coraid Inc, (2005).

[13] K. Z. Meth, J. Satran, Design of the iSCSI Protocol,
Mass Storage Systems and Technologies, Proceedings. 20th
IEEE/11th NASA Goddard Conference on. IEEE, 116-122
(2003).

[14] E. Van Hensbergen, M. Zhao, Dynamic policy disk caching
for storage networking,http://visa.cs.fiu.edu/ming/dmcache,
(1997).

[15] Flashcache,http://github.com/facebook/flashcache/.
[16] Device-mapper Resource Page,http://sourceware.org/dm/.
[17] D. Arteaga, D. Otstott, M. Zhao, Dynamic Block-

level Cache Management for Cloud Computing Systems,
Conference on File and Storage Technologies, (2012).

Yunfa Li received
the PhD degree in Computer
System Organization
from Huazhong University
of Science and Technology,
Hubei, China, in 2008.
He is currently a vice
professor in software
engineering in Hangzhou
Dianzi University, China. His

research interests include Cloud Computing and Virtual
Machine Technique.

Pengtao Wang
reveived Bachelor degree in
Communication Engineering
from Yanshan University,
Hebei, China, in 2010.
He is now studying the
Master of computer software
and Theory in Hangzhou
Dianzi University, China.
His research interest is Cloud

Computing.

c© 2014 NSP
Natural Sciences Publishing Cor.

http://aws.amazon.com/ebs/
http://wiki.openstack.org/wiki/Cinder
http://visa. cs. fiu. edu/ming/dmcache
http://github.com/facebook/flashcache/
http://sourceware.org/dm/

	Introduction
	Design and Implementation of NDM-Cache
	Cache Data Management and Double Layer Optimization Strategy
	Performance Evaluations
	Conclusions and Future Work

