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Abstract: This study presents an ironless permanent magnet linear brushlées (RMLBM) with three objective functions:
maximal thrust force, minimal temperature, and minimal volume. Usaspaonse surface methodology (RSM), this study presents
a mathematical predictive model with constraints using the penalty functatept for each objective function. The design variables
in this study include magnetic width, magnetic height, magnetic pitch, air-ggipwicith, coil height, and coil diameter. This study
uses an elitist hybrid quantum behavior particle swarm optimization algorititimmutation to solve this multi-objective optimization
problem (EMOHQPSO). This elitist mechanism with crowding distance sontipgoves the number and diversity of the solutions.
Results show that the proposed approach is superior to the non-dodngmating genetic algorithm (NSGA II) and multi-objective
particle swarm optimization (MOPSO), respectively, on the 3D graphté*amimal front. Compared to the initial motor, the thrust
force increased by 6.27%, the thrust density increased by 14.9%thartemperature and volume decreased by 14.03% and 6.25%
respectively. These results confirm the satisfactory performanite groposed solutions.
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1 Introduction and thrust density compared to iron-core motors.
, Therefore, several researchers have attempted to optimize
The permanent magnet linear brushles_s synchron_ouiq1e design of ironless PMLBMSs. IsfaharB][analyzed
motor (PMLBM) has recently become widely used in magnet dimensions using the genetic algorithm (GA) to
machine tools and semiconductor devices because ifnprove the thrust force and thrust ripple. Isfahani et
provides high-speed performance, faster responsg) 4] used the multi-objective GA method further to
characteristics, high controllability, and high-preorsi improve efficiency and power factor for a low-speed

positioning [l]. However, because of the interaction gingle-sided linear induction motor. Tavana et &| |
between the edges of the finite length mover and the teetﬁnalyzed the magnet dimensions that approximate the

slotting of the stator in an iron-core PMLBM, the cogging sjne waveform by using the GA for reducing the thrust
forces distort the thrust force waveform and cause outpUtipple and air-gap flux density harmonics. Ender and

power variation. Heljce, an effective solution is to use pApmet 6] presented an analytical method using a hybrid
ironless PMLBMSs, with no cogging force, magnetic flux 555r0ach of an equivalent magnetic circuit. They used
leakage reduction, iron loss, or attractive force toward th fnite-element analysis to minimize the total

magnets 2]. These PMLBMs can provide stable thrust .omnytational time and determine the best thrust force.
force and achieve higher efficiency and performance than  previous studies have improved the design

iron-core PMLBMs. Although ironless PMLBMs have timization of the ironless PMLBM. However, because
several advantaggs over iron-core motors and produce Gferent design objectives must be simultaneously
smooth linear motion, they also lead to lower thrust force
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considered to determine the optimal design variables obf 120° motor angle §]. The forcer windings of a mover
the ironless PMLBM, the optimization of one objective manufactured from copper wires are embedded in epoxy
may conflict with that of another. Thus, there is no single material that slides within the U-shaped channel of the
optimal solution, and a compromise between thesestator. Therefore, the characteristics of the windings can
objectives is required. However, these studies and findingsffect the magnetic densityl{]. For the same current
in the literature use formulations from a single-objective passing through the windings, an increased number of
optimization algorithm. Thus, these results are unsuwgtabl turns increases the strength of the magnetic field and
for most real-world applications because they do notthrust force. However, this also functions as a major heat
produce the Pareto-optimal front identifying the set of source of the entire motor. Hence, the area and diameter
optimal solutions in the feasible region. of the windings of the mover are significant parameters.
The mathematical predictive model used in this studyAs the winding coils commutate, they create a magnetic
performs the response surface methodology (RSM) tdield that interacts with the magnets of the stator to drive
develop the design method of the ironless PMLBM. Thethe motor to generate linear motion. Therefore, the
central composite design (CCD) from RSM with a magnet dimensions and air-gap length between the mover
second-order model calculates the individual andand stator also affect motor performance. In general, a
interactive effects of the ironless PMLBM design longer air-gap decreases the thrust density and thrust
variables. The penalty function method based on theforce. However, a smaller air-gap may cause
constraint of the permeance coefficient first generates thenanufacturing difficulties. Therefore, the air-gap size
objective function from RSM by solving a constructed should be properly chosen to satisfy the requirements of
unconstrained optimization problem][ To achieve faster design objective and constraints. Therefore, the air-gap
convergent velocity and reduce the control parameters, aize should be properly chosen to satisfy the requirements
guantum behavior particle swarm optimization (QPSO)of design objective and constraints. Figure 1 show the
algorithm then solves the response surface models bgtructure of the ironless PMLBM. The magnet width
simultaneously considering maximal thrust, minimal (wy,), magnet height(,), magnet pitchiy), air-gap@),
temperature, and minimal volume. To avoid prematurecoil width(w), coil heightfc) and wire diameterd;) are
convergence and local optimal solutions, the QPSOimportant design parameters, creating trade-off solstion
algorithm adopts a GA mutation operator. The proposedhat must simultaneously consider maximal thrust force,
approach also adopts an elite-preserving mechanism witiminimal temperature, and minimal volume. Tatlshows
crowding distance sorting. The main purpose of thisthe values of the geometrical parameters of the initial
mechanism is to increase the number and diversity of thenotor.
optimal solutions §]. Thus, this study uses an elitist
multi-objective hybrid quantum behavior particle swarm 2.2 Permeance Coefficient
optimization (EMOHQPSO) algorithm to determine the
optimal design variable values of an ironless PMLBM, The permeance coefficient of a magnet, referred to as
including the magnet width, magnet height, magnet pitch,the “operating slope”, load line, or B/H1f], is an
air-gap length, coil width, coil height, and wire diameter. important parameter for selecting magnetic material and
Results demonstrate that the proposed approach in thiachieving the optimal effect of ironless PMLBM. A
study possesses superior ability to determine the Paretmagnet with a higher permeance coefficient generally
optimal front, compared to the non-dominated sorting GAworks at a higher operating point with a certain operating
(NSGA 1) and multi-objective particle swarm slope. Longer magnets have greater permeance
optimization (MOPSOQ). In other words, the EMOHQPSO coefficients. The shape and dimension of the magnetic
algorithm achieves good performance in both convergingoody determines the permeance coefficient. Additionally,
to the true Pareto-optimal front and maintaining a widely when the temperature rises, the permanent magnets may
distributed set of solutions. Depending on their specificbecome demagnetized1d). Therefore, the magnet
requirements, developers can adequately select ththickness must be large enough to avoid thermal
trade-off operation along the true Pareto-optimal front.  demagnetization. However, the length of the air-gap
decreases as the magnet thickness increases, causing
manufacturing difficulties. Therefore, the permeance
2 Structure and topology of ironless PMLBM coefficient is a constraint condition in the design problem
of the ironless PMLBM. The permeance coefficient is

2.1 Geometric Structure defined as
P.= fn 1 1
The proposed ironless PMLBM contains a mover with c=3 Cyp’ (1)
a copper winding and a stator with a U-shaped rack base
that has an array of alternate-pole permanent magnets Co = An/Aa, )

mounted on a bilateral of the U-shaped channel. Based on
cost and efficiency considerations, most designs adopt aherehy, is the magnet heigh is the air-gap lengttCy
three-phase equilibrium winding with a phase differenceis the flux concentration factofy, =Wy, x H is the surface
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Fig. 1: (a) lllustration of PMLBM (b) Geometrical structure of PMLBM

area of air-gapAm = T x H is magnet surface area. For is the length of wound coil in air-gap. The; I, called
ironless linear motor, the larger the air-gap length is, the*ampere turns”, is described as followsq]:

lower theP. of magnet is. In this study, the condition of

theP; is greater than 0.813). PeAc

Nele =/ —— 5
clCc plc ) ( )
. . whereP is total power supplied to the coj, is resistivity
3 Modeling of ironless PMLBM of the coil, ¢ is the area space factor for the cdi}, is the
coil area. The thrust density is the ratio of generatingghru
3.1 Description of Volume force at the certain input power and the motor volume. It

is one of the most important operational characteristics of
The dimensions of a linear motor affect its mass, the ironless-type linear motor. Thus, the optimal values of
dynamic response, inertia, cost, and applied situationsthe design variables with a higher thrust force and thrust
Therefore, the motor volume plays an important role indensity can improve operating performance. \/die the
optimizing the design of the motor body. However, the volume of the total motor. The thrust densidyis defined
dimensions of the magnets in the stator affect theas follows:

retentivity of the linear motor, thereby affecting the tsiru B( PgAclc)]_/z
force and thrust density. Hence, the volume of the entire D= F - p ] (6)
motor body must be properly designed to improve motor V  24H Ty (2hml + 26 + 2h)

performance. Let, H, hy, L, d andh; be the pole pitch,
total height, magnet height, total length, air-gap length3.3 Temperature analysis
and coil height of motor body, respectively. As shown in

Fig. 1(b), the volume of the total motor is defined as Because the mover slides along the U-shaped channel
of the stator in ironless-type linear motors, it creates

V = (121)(2hmk + 28 + 2he)H. (3) worse heat dissipation heat than iron-core linear-type

motors. The operating temperature of the windings in the

3.2 Thrust and thrust density analysis mover increases with high-speed operation or long

working time. Hence, the parts of the motor with various

Because the forcer windings in the mover are suppliecheat  coefficients may exhibit the deformation
with a current in a direction perpendicular to a magneticphenomenon. Deformation affects the position precision,
field, an induced thrust force causes the mover to movedperation point of permanent magnets, and dynamic
along the direction perpendicular to the directions of bothresponse. To analyze the heat source of the ironless

the current and the magnetic field. The formulation of PMLBM, the following formulas consider the heat loss

thrust force generated is generally described as dissipation from the mover:
lc
F = NclcBle, (4) J= E7 (7)
wherel. is the amount of current flowing throudl turns 2 5 2
of wire, B is magnetic field of flux density in air-ga, W = MNclc"R = MNclc KA (8)
© 2014 NSP
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optimization problem in its general form:
Q=en ~ MNele K A ©) Minimize/Maximize {Y1(X),Y2(X),.... Ya(X)},

stxeX, <0, k=12..n

(11)
whereM is the number of winding phasé,s the density
of current,W is the copper losses of windingR,is the

resistant ratio of each copper wi@,is heat flow density
derived from the surface of the movaex,is the electrical
resistivity of the copper wire.

where ¥ : R" - R, g : R" - R for
j €J=1{123,..,9}, q denotes that the number of
objective functions to be minimized or maximized,
ke K=1{123,..,n}, and X € R" is a m-dimension
vector: X = {X1,X2,..,Xm}'. Each xp(p = 1,....m) is
bounded by lower and upper limit§ < x, < xp. g(X) is
The FEM analysis model of the initial ironless known as inequality cqnstraints,. respectively._ln_ general
PMLBM calculated by COMSOL software. This model N° squuqn vectoiX exits that_ minimizes/maximizes .aII
consists of the 12-pole PMs arranged in the U-shapedhe g objective functions simultaneously. A feasible

channel of stator and the three-phase winding coils of the0lution is called a Pareto optimal set if no other feasible
mover. Tablel shows the dimensions of the initial motor. SOlution is in the search space for which an improvement
in any objective does not simultaneously worsen the value

of at least one other objective.

3.4 Modeling of initial motor

4 Response Surface M ethodology 5.2 Penalty function

Response surface methodology (RSM) consists ofagroup For a constrained optimization problem, an

of mathematical and statistical techniques that can beinconstrained form adding a penalty term to the objective
used to find the relationships between the response anflinction is constructed. Therefore, the unconstrained
independent variables1)]. The RSM approach is an objective function is the original objective function with

appropriate approximating model for the true responseconstraints plus a penalty term for each constraint. The
surface, and can evaluate the design variables fopenalty term consists of constrained functions multiplied
generating the optimization response values. This studyy a positive coefficient. This calculation process can
uses a second-order prediction equation to model th@emove the infeasible solution in the penalty function
curvature in the true response function. The CCD ofmethod from the population in each iterative algorithm. A
7-factors and 3-levels selected a starting point as arpenalty method (for minimization problem) is, generally,

experimental center position is appliedl6 The  defined as18]:

second-order response equation was formulated as

follows: Yi(X) =Y;(X) + p®[gi(X)], (12)
m m m-1 m
f=Bo+ S Bixi+ S Bjixe+ BipXiXp,  (10) k. 0.9:(X)12.q1(X) < O,
;1 iX] ;1 %] ;lp; ipXjXp d’[gi(X)]:{z'Ol[ma)( gi(X))] ZEX))iO (13)

where xj and xp are input variables that influence the
responseY; m is the number of variableshy is the
constant termb; is thejth interaction coefficient.

wherep is the penalty coefficienty;(X) the originaljth
objective function of the constrained optimization
problem in equation1(l), \?j (X) is the modified objective
function with penalty term, ang®|g;(X)] is the penalty
term. For minimization problemp @®[g;(X)] returns zero

5 Constrained EMOHQPSO algorithm if no violation occurs; otherwise, it is positive. The
penalty function approach determines the solutions of the
5.1 Constraint-based Multi-Objective Optimization unconstrained objective function, eventually converging

to the solution of the original constrained optimization
A multi-objective optimization problem has a number problem.

of optimizing objective functions. Many real-world
applications involve sets of constraints when considerings.3 Quantum-behaved particle swarm optimization
a multi-objective optimization problem. In this situatjon
the constrained optimization problem in the search space Particle swarm  optimizaton (PSO) is a
consists of two types of solutions: feasible and infeasiblepopulation-based stochastic optimization technique
[17]. A feasible solution is a vector of design variables in inspired by the social behavior of bird flocking or fish
which the final solutions satisfy all the constraints, schooling [L9]. In traditional PSO withN particles, each
whereas infeasible regions violate at least one constrainparticle represents a potential solution to a problem in an
The following formula presents the multi-objective m-dimensional space, and its position and velocity at
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Table 1: Dimensions of initial motor

Parameter Symbol  Unit Value Parameter Symbol Unit Value
Air-gap o mm 0.6 Winding pitch Is mm 40.0
Coil width We mm 5.0 Number of turns 122.0
Coil height he mm 3.8 Motor length along z-axis  hy mm 49.0
Number of phases M 3.0 Thickness of the back iron  wgqg mm 4.0
Pole pitch T mm  15.0 Wire diameter Nc mm 0.4
Magnet height hm mm 4.0 Root mean square value  dy A 3.4
Magnet width Wm mm 124 Thrust P N 68.6
Magnet pitch Tm mm 2.6 Temperature T °C 99.5
Motor length along x-axis L mm  18.0 Volume \Y 10'mm?  40.1
Motor length along y-axis H mm  25.0

iterationt are denoted aX(t) andVi(t). The following
equations update the velocity and position of particié
the (t + 1)th iteration:

Vi(t+1) = wVi(t) 4+ cira(pbest— X;(t)

+Corz(pbest—X(t)), (14)
X(t+1) =Xt +Vi(t+1), (15)
W = Whnax— [(Wmax— Wmin)/ (iteramax)] x itera,  (16)

where w is the dynamic
Acceleration coefficientsc; and c, are two positive
constants, and; andry are two uniformly distributed
random numbers within [0,1]. Thpbest (particle’s best
solution) is the position for particlewith the best fitness

inertia weight factor.

whereN is the number of all particlesnbestis the Mean
Best position (defined as the mean of the best positions of
all particles at time), and the random numbetsand @

are distributed uniformly within [0,1] respectively. The
contraction-expansion coefficiemt, which controls the
convegence speed of the algorithm, is the only parameter
in the QPSO algorithm. This coefficient has a dynamic
value that decreases frooax t0 amin as the number of
iterations increases. The tem(t) is the best position of
particlei at timet.

5.4 Mutated elitist mechanism QPSO

The QPSO algorithm has simpler evolutional equation
forms and less parameters than PSO, substantially
facilitating the control and convergence in the search
space. To avoid trapping into the local optimum region in

found thus far. The gbest (global best solution) recordsthe search process, the QPSO performs a broader
the best position discovered by the swarm thus far. Insearching through the GA mutation operator. The
equation {4)-(16), the traditional PSO algorithm can mutation operation only occurs if a randomly generated
prematurely converge and converge slowly later in thenumber in [0, 1] is less than or equal to the given
search process. To strengthen optimal search abilities anghutation probability. When a mutation is performed, the
faster convergence speed, this study develops a QPSO tfumber of design variables is multiplied by a random
overcome the disadvantages of the PSO algorithm. In th&alue within [0, 1] to determine which variable in each
QPSO algorithm, each particle exhibits quantum behavioparticle should be mutated in the variable space. ret
in the search process. Only the position vector and onendr, be random numbers in [0, 1]. The ceiling function
control parameter are considered in the entire feasibleeil(.) is the smallest integer greater than or equal to
region. The probability of each particle appearing at time“r; x m’". The real-valued mutation operators for each

t is only described in the probability density function updated particle in equatio®]) are as follows:
| w(x,t) |> of the particle’s position. The iteration

formulation of each particle’s position is as follow&(]:

mbest(t) = S pi—(t), 17)
2N
pi(t) = @(t) x pbesf(t) + (1— @(t)) x gbestt), (18)

X (t+1) = i+ | mbestt) —x(t) | xIn(1/u(t)), (19)

MaXer —t
a= (amax— amin) X (T;Ler) + Qmin- (20)

X s(t+ Dmue = Xs(t+1)
+1a % [Xs(t+1) —xg(t+1)],s=ceil(rs xm).  (21)

In this study, m is conducted in the space of 7 design
variables. ¥’is the variable sequence position after the
mutation for a new particle. Hence, thgValue is an
integral value in [1, 7]. In order to promote the number
and diversity of Pareto-optimal front solutions, an ditis
strategy with non-dominated sorting and crowding
distance is used for the updated particle. This approach
preserves the current best solutions from one generation
to the next. The crowding distance of a particle, defined
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as the Euclidean distance between its two adjacenX = (Wm,hm, Tm, d,We, he,No) = (X1,X2, X3, X4, X5, X6, X7).

neighbors on the same front, can estimate the density of he formulations of the models are as follows:

solutions in its front. Let}*! andY!~! represent thef"
objective function of Xi.1 and Xi_;, which are the
neighboring particles to thé’ particle.Yg"* andYs"" are

the maximal and minimal values of tlg¥" objective in
the feasible space. The crowding distadcis as follows:

q Y‘i+1 _ Y_ifl
- J J
di = Z| ymax_ymin - (22)
I= J J

6 Design Optimization Flowchart of
EMOHQPSO

The flowchart in Fig. 2 shows the steps of the entire design
procedure.

Step 1: Selection of design variables and levels

Consider that the independent design variables in an
ironless PMLBM include the magnet width{, magnet
height &), magnet pitch X3), air-gap &), coil width
(xs), coil height &), and coil diameter x¢). Their
dimensions are the most effective in volume calculation
and performance of the motor. Tab® €hows the units,
symbols, and coded levels of variables in RSM. Each
independent variable has three levels: -1, 0, and +1. Level
-1 is the minimum value of the variables. Level O is the
initial design value of the variables. Level 1 is the
maximum value of the variables.

Table 2: Independent design variables and their coded levels

Coded Levels x; X2 X3 X4 X5 X X7

-1 109 3 21 045 45 33 0.35
0 124 4 26 0.6 5 38 04
1 139 5 31 075 55 43 045

Step 2: Design of experiments (DOE)

Use the CCD from DOE with a quadratic model.

Yp = 657096+ 5.416x1 + 5.414xx + 0.9175¢;
— 2.553%4+2.091X5 + 3.0562X — 17.571x7

—0.7885¢1X1 — 1.663 2% — 0.09683X3
+0.09734x4 — 0.5135¢5X5 — 0.428KgXs
+ 4.4143%7x7 4 0.4553; xo — 0.45021 X3
— 0.375k1 X4 + 0.447 2 X5 + 0.497 K1 Xg
—1.4091x1X7 + 0.2933ox3 — 0.1066¢2X4
+0.1495¢x5 + 0.4193oxs — 1.200 727
—0.10923x4 — 0.03833x5 — 0.09023X5
— 0.213%3%7 + 0.27IXaXs + 0.30984 g
+0.434 %7 — 2.20975X5 — 0.397 XXy
— 0.535%¢x7,

Yr = 75.3228—0.8687%; — 2.4205¢; — 0.827x3
+0.5687%4 + 7.9311xs + 3.4654; — 53.186%7

—0.7885¢1x1 — 1.6632ox2 — 0.0968¢3x3
+0.0973¢xq — 0.5135sx5 — 0.428KeXe
+4.414%X7x7 4 0.45531 X — 0.4502 X3
— 0.375Xq + 0.447 X1 X5 + 0.497 K1 Xg
—1.4091X1X7 + 0.2933Kox3 — 0.1066KX4
4 0.1495¢:xs5 + 0.4193oxg — 1.2007%oX7
— 0.10923x4 — 0.03833xs — 0.09023Xe
—0.213X3x7 + 0.27IX4Xs + 0.30984Xg
+0.43474x7 — 2.2097K5xg — 0.397 X5X7
— 0.5355(X7,

Yv =40.131+ 3.7044; + 3.822¢2 + 1.2348¢
+0.5733%4 + 0.95556 + 0.3528¢1 X2 + 0.52K1 X4

+0.0882%1Xg + 0.1176o%3 + 0.0176K3%4
+ 0.02943Xg.

Step 4: Formulation of optimization

(23)

(24)

(25)

Use equations2Q)-(25) to determine the optimizing

Based on the ranges of each design variable, 152 differerdbjective functions for the ironless PMLBM, including
combinations of seven variables at three levels weremaximal thrustYp(X), minimal temperaturéfr (X), and

chosen in random order. The optimal levels of the designminimal

volume Yy (X).

To avoid the

thermal

variables and the interactions of these variables ordemagnetization of magnets, the permeance coefficient is

objective functions were estimated in this step.

set to greater than 0.8. Therefore, the objective functions

constrain conditions, and the variable ranges are as
Step 3: FEA calculation and creation of response surface follows:

predictive model

Max Yp(X)
Use FEA COMSOL software and MINITAB software Max ¥ (X) (26)
to find the second-order predictive models for thrust,
temperature, and volume. The variable space is Max ¥ (X)
@© 2014 NSP
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S.t. START
— Mutate the new particles(Nt)

hm 1
X)=P= - x 1
gl( ) c g ( Wm ) Initialize particle (R1) Utilize Elitist mechanism and calculate
Wm+Tp e i the crowding distance (Mt)
Select the design variables
Xo X1+ X3 and coded levels R—
= X Z =
(2 X )(4) +Xp X1 l Evaluate fitness by Eq. (6)-(8) Rt = Mt U Nt
L
Perform CCD for DOE
with a quadratic model
10.9mm<x; < 13.9mm I
3mm<x; < 5mm s
Analysis of FEM
2.1mm<x3z < 3.1mm
0.45mm<xy < 0.75mm Update mbest * contraction ’
Creats resptn0s furface mods] expansion coefficient for particles
4.5mm<xg < 5.5mm seticppremsssbininll 0
volume
3.3mm<xg < 4.3mm Update positian of particles (N1) spa s o g
O 3&“m<x7 < 0 45.nm from Pareto graphs

Step 5: Penalty function method for constrained objective
functions
Fig. 22 EMOHPSO Flowchart

Use equation 46) to determine the constraint
condition for the ironless PMLBM design in this study.
Equations (28)-(30) show the penalty function method by
modifying the objective functions with adding the penalty
term p®[gi(X)] to constrain a condition for feasible i . .
region violations. The formulations for objective St€P 7: Evaluate the fitness and check if the stopping

functions are as follows: criteria is satisfied
®[gi(X)] = X2 X g Evaluate the fitness value of each particle. Consider
! (2X X4) +Xg X1 ’ the modified objective functions with the penalty term as

(27) the fitness function. If the stopping criterion is satisfied,
proceed to Step 11. If not, proceed to the next step.

5 X X1+
Yo0) =Yo(X) IO, gy B % 082

! (28) Step 8: Comparison to personal best (pbest) and global

« N best (gbest)
Y (X) = Y1 (X)+p[0, 22— x == 0.8 . . .
(2xXa)+X% X Compare the fitness with each particlgiest and
(29)  with all swarm's overall previous best values. If the

~ X X current value of the particle’s fitness is better than the
%(X) =Y (X)+p[0, — 2 TN _gg2 P

(2% X4) + Xg X1 pbest then replace the current value with thbestvalue
(30)  and replace the current location with thbestlocation in
the m-dimensional space. If the particle’s fithess is better
wherep is set to 20. If the feasible solutiohithrough the  thangbest all particles accelerate toward the location of
duration of the calculations satisfies the constraintthegbest and thegbestmust be reset to the current index
condition, theng(X) = 0. If not, theng(X) = 1. In other  and value of the particle array.
words, this infeasible solution can be removed from the
population during the next steps of the iteration Step 9: Update the positions of each particle
algorithm.
Using the updating mbest and contraction expansion
Step 6: Initialization of swarm positions coefficient the new position is determined for each
particle using equatioriL@).
Use a uniform distribution number to initialize a
population of particles with random positions in the Step 10: Perform the mutation for the updating particle
m-dimension search space. The initial combination of thelf the mutation probability is less than or equal to 10%
design variables is random. Equatio@6) shows the for each updating particle, perform the mutation operation
ranges of design variables of each particle between thaccording to equatior2() and proceed to the next step. If
upper and low limits. not, proceed to Step 12.
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Step 11: Perform non-dominated sorting and calculate closer to the true Pareto-optimal front than those of

crowding distance NSGA Il and MOPSO. They are effective in keeping the
number and diversity of the swarm. Figures 4(a)-4(c)
Step 12: Determine the trade-off solutions show projections onto two of the objectives in the 3D

Pareto-optimal surface, and present comparisons of the
Obtain the 3D graph of the Pareto frontier surface inNSGA 1l, MOPSO, and EMOHQPSO algorithms. The
the objective space from the maximal thrust, minimalinitial linear motor had a thrust force, thrust density,
temperature, and volume. Find a discrete set of points otemperature, and volume of 68.6 N, IN/tn?, 99°C
the Pareto surface corresponding to high trade-offand 40.1x 10*mn¥, respectively. Table 3 shows that the
solutions. set of 14 optimization solutions in EMOHQPSO are
excellent solutions along the true Pareto-optimal front.
These 14 trade-off solutions simultaneously considering
7 Results and discussions the maximal thrust and thrust density, minimal
temperature, and volume for ironless PMLBM are all
This study presents a way to optimize the performance ofUPerior to initial one. _Tablé show; that the thrust force
ironless PMLBM from RSM with constraints as a and thrust density increase within  0.72-6.27% and
constrained multi-objective optimization problem. The 1-43-14.9 %, respectively. The temperature and volume
optimizing objective functions are maximal thrust force, décrease  within - 0.14-14.03% and  0.01-6.25%,
minimal temperature, and minimal volume, respectively, €SPectively. According to these 14 trade-off solutions,
and the constraint condition is the permeance coefficient!n® solutions of the higher thrust force do not necessarily
The penalty function method transforms the constrained€Present those of the greater thrust density. The
multi-objective  optimization  problem into  an temperature and volume can decrease_&multaneously in
unconstrained problem that can be solved using thé" optimized motor, but the thrust force is not neces;ar_lly
EMOHQPSO algorithm. The initial particles are set at décreased. Under the same volume, the predictive
1000, the contraction expansion coefficiemin andamax ~ 2CCUraACY of the thrust force and temperature obtaln_ed in
as 0.5 and 1.0, respectively. Each particle represents thgSM and FEA are 99.41% and 91.23%, respectively.
combination of seven design variables of ironless ' herefore, a developer can choose proper design variables
PMLBM. This study presents results after 500 iterations!© achieve the desired objectives of the linear motor
of the EMOHPSO performed using Matlab and FEA. design according to the research results.
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Figures 3(a)-3(c) show a 3D graph of Pareto-optimal
solutions for the NSGA II, MOPSO, and EMOHQPSO
algorithms. Each particle in the EMOHQPSO algorithm
appears at any position at a certain probability in the
entire feasible region. This is unlike the MOPSO
algorithm, which is restricted to searching for particles i
a fixed area and a certain track in the search space. Ir
addition, each particle in the EMOHQPSO algorithm has
a perfect memory capability, whereas NSGA |l rejects Fig. 4: 2D projections results for (a) NSGA II, (b) MOPSO and
worse solutions during the iterations and retains only(c) EMOHQPSO
good solutions. Therefore, in NSGA I, the population
includes only a part of the best individuals. In other
words, the solutions of the EMOHQPSO algorithm are
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Table 3: Results of comparison of RSM-EMOHQPSO and FEA
Design variables RSM FEA
No. X1 X2 X3 X4 X5 X6 X7 Yp Y1 Yv D Yp Y1 Yy D
(N) (°C) (en?) (N/em?) (N) (°C) (en?) (N/cn)

Initial 126 4 26 06 5 38 04 68.6 995 40.1 1.71
1 127 41 22 05 5 39 04 732 853 399 1.83 752 945 399 88 1.
2 121 40 25 05 5 39 04 719 894 386 1.86 733 973 38.6 90 1.
3 124 42 22 05 51 37 04 715 859 391 1.83 739 964 39.11.89

4 117 45 24 05 48 43 04 710 831 400 1.78 729 929 40.11.82

5 119 41 29 05 52 39 04 71 859 394 1.8 757 977 394 219
6 122 41 21 05 48 41 04 708 851 39.0 1.82 731 944 39.01.87

7 117 44 27 05 48 40 04 706 818 399 1.77 70.2 90.2 39.91.76

8 11.3 44 28 05 51 42 04 703 838 393 1.79 75.1 942 39.31.91

9 138 34 23 05 48 39 04 703 814 401 1.75 72.9 92.8 40.01.82
10 127 38 26 05 51 39 04 701 816 394 1.78 725 921 4 39. 1.84
11 129 40 25 05 52 33 04 696 781 395 1.76 69.8 91.1 5 39. 1.77
12 125 42 23 05 53 39 04 695 769 398 1.75 73.9 90.6 8 39. 1.86
13 123 40 22 05 52 34 04 695 856 376 1.85 70.1 96.0 6 37. 1.86
14 126 39 21 05 51 39 04 691 798 387 1.79 73.3 925 7 38. 1.89
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