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Abstract: This study presents an ironless permanent magnet linear brushless motor (PMLBM) with three objective functions:
maximal thrust force, minimal temperature, and minimal volume. Using response surface methodology (RSM), this study presents
a mathematical predictive model with constraints using the penalty functionsconcept for each objective function. The design variables
in this study include magnetic width, magnetic height, magnetic pitch, air-gap, coil width, coil height, and coil diameter. This study
uses an elitist hybrid quantum behavior particle swarm optimization algorithm with mutation to solve this multi-objective optimization
problem (EMOHQPSO). This elitist mechanism with crowding distance sortingimproves the number and diversity of the solutions.
Results show that the proposed approach is superior to the non-dominated sorting genetic algorithm (NSGA II) and multi-objective
particle swarm optimization (MOPSO), respectively, on the 3D graph Pareto-optimal front. Compared to the initial motor, the thrust
force increased by 6.27%, the thrust density increased by 14.9%, and the temperature and volume decreased by 14.03% and 6.25%
respectively. These results confirm the satisfactory performance ofthe proposed solutions.
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1 Introduction

The permanent magnet linear brushless synchronous
motor (PMLBM) has recently become widely used in
machine tools and semiconductor devices because it
provides high-speed performance, faster response
characteristics, high controllability, and high-precision
positioning [1]. However, because of the interaction
between the edges of the finite length mover and the teeth
slotting of the stator in an iron-core PMLBM, the cogging
forces distort the thrust force waveform and cause output
power variation. Hence, an effective solution is to use
ironless PMLBMs, with no cogging force, magnetic flux
leakage reduction, iron loss, or attractive force toward the
magnets [2]. These PMLBMs can provide stable thrust
force and achieve higher efficiency and performance than
iron-core PMLBMs. Although ironless PMLBMs have
several advantages over iron-core motors and produce a
smooth linear motion, they also lead to lower thrust force

and thrust density compared to iron-core motors.
Therefore, several researchers have attempted to optimize
the design of ironless PMLBMs. Isfahani [3] analyzed
magnet dimensions using the genetic algorithm (GA) to
improve the thrust force and thrust ripple. Isfahani et
al.[4] used the multi-objective GA method further to
improve efficiency and power factor for a low-speed
single-sided linear induction motor. Tavana et al [5]
analyzed the magnet dimensions that approximate the
sine waveform by using the GA for reducing the thrust
ripple and air-gap flux density harmonics. Ender and
Ahmet [6] presented an analytical method using a hybrid
approach of an equivalent magnetic circuit. They used
finite-element analysis to minimize the total
computational time and determine the best thrust force.

Previous studies have improved the design
optimization of the ironless PMLBM. However, because
different design objectives must be simultaneously
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considered to determine the optimal design variables of
the ironless PMLBM, the optimization of one objective
may conflict with that of another. Thus, there is no single
optimal solution, and a compromise between these
objectives is required. However, these studies and findings
in the literature use formulations from a single-objective
optimization algorithm. Thus, these results are unsuitable
for most real-world applications because they do not
produce the Pareto-optimal front identifying the set of
optimal solutions in the feasible region.

The mathematical predictive model used in this study
performs the response surface methodology (RSM) to
develop the design method of the ironless PMLBM. The
central composite design (CCD) from RSM with a
second-order model calculates the individual and
interactive effects of the ironless PMLBM design
variables. The penalty function method based on the
constraint of the permeance coefficient first generates the
objective function from RSM by solving a constructed
unconstrained optimization problem [7]. To achieve faster
convergent velocity and reduce the control parameters, a
quantum behavior particle swarm optimization (QPSO)
algorithm then solves the response surface models by
simultaneously considering maximal thrust, minimal
temperature, and minimal volume. To avoid premature
convergence and local optimal solutions, the QPSO
algorithm adopts a GA mutation operator. The proposed
approach also adopts an elite-preserving mechanism with
crowding distance sorting. The main purpose of this
mechanism is to increase the number and diversity of the
optimal solutions [8]. Thus, this study uses an elitist
multi-objective hybrid quantum behavior particle swarm
optimization (EMOHQPSO) algorithm to determine the
optimal design variable values of an ironless PMLBM,
including the magnet width, magnet height, magnet pitch,
air-gap length, coil width, coil height, and wire diameter.
Results demonstrate that the proposed approach in this
study possesses superior ability to determine the Pareto
optimal front, compared to the non-dominated sorting GA
(NSGA II) and multi-objective particle swarm
optimization (MOPSO). In other words, the EMOHQPSO
algorithm achieves good performance in both converging
to the true Pareto-optimal front and maintaining a widely
distributed set of solutions. Depending on their specific
requirements, developers can adequately select the
trade-off operation along the true Pareto-optimal front.

2 Structure and topology of ironless PMLBM

2.1 Geometric Structure

The proposed ironless PMLBM contains a mover with
a copper winding and a stator with a U-shaped rack base
that has an array of alternate-pole permanent magnets
mounted on a bilateral of the U-shaped channel. Based on
cost and efficiency considerations, most designs adopt a
three-phase equilibrium winding with a phase difference

of 120◦ motor angle [9]. The forcer windings of a mover
manufactured from copper wires are embedded in epoxy
material that slides within the U-shaped channel of the
stator. Therefore, the characteristics of the windings can
affect the magnetic density [10]. For the same current
passing through the windings, an increased number of
turns increases the strength of the magnetic field and
thrust force. However, this also functions as a major heat
source of the entire motor. Hence, the area and diameter
of the windings of the mover are significant parameters.
As the winding coils commutate, they create a magnetic
field that interacts with the magnets of the stator to drive
the motor to generate linear motion. Therefore, the
magnet dimensions and air-gap length between the mover
and stator also affect motor performance. In general, a
longer air-gap decreases the thrust density and thrust
force. However, a smaller air-gap may cause
manufacturing difficulties. Therefore, the air-gap size
should be properly chosen to satisfy the requirements of
design objective and constraints. Therefore, the air-gap
size should be properly chosen to satisfy the requirements
of design objective and constraints. Figure 1 show the
structure of the ironless PMLBM. The magnet width
(wm), magnet height(hm), magnet pitch(τm), air-gap(δ ),
coil width(wc), coil height(hc) and wire diameter (dc) are
important design parameters, creating trade-off solutions
that must simultaneously consider maximal thrust force,
minimal temperature, and minimal volume. Table1 shows
the values of the geometrical parameters of the initial
motor.

2.2 Permeance Coefficient

The permeance coefficient of a magnet, referred to as
the “operating slope”, load line, or B/H [11], is an
important parameter for selecting magnetic material and
achieving the optimal effect of ironless PMLBM. A
magnet with a higher permeance coefficient generally
works at a higher operating point with a certain operating
slope. Longer magnets have greater permeance
coefficients. The shape and dimension of the magnetic
body determines the permeance coefficient. Additionally,
when the temperature rises, the permanent magnets may
become demagnetized [12]. Therefore, the magnet
thickness must be large enough to avoid thermal
demagnetization. However, the length of the air-gap
decreases as the magnet thickness increases, causing
manufacturing difficulties. Therefore, the permeance
coefficient is a constraint condition in the design problem
of the ironless PMLBM. The permeance coefficient is
defined as

Pc =
hm

δ
×

1
Cφ

, (1)

Cφ = Am/Aa, (2)

wherehm is the magnet height,δ is the air-gap length,Cφ
is the flux concentration factor,Aa =Wm×H is the surface
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Fig. 1: (a) Illustration of PMLBM (b) Geometrical structure of PMLBM

area of air-gap,Am = τ ×H is magnet surface area. For
ironless linear motor, the larger the air-gap length is, the
lower thePc of magnet is. In this study, the condition of
thePc is greater than 0.8 [13].

3 Modeling of ironless PMLBM

3.1 Description of Volume

The dimensions of a linear motor affect its mass,
dynamic response, inertia, cost, and applied situations.
Therefore, the motor volume plays an important role in
optimizing the design of the motor body. However, the
dimensions of the magnets in the stator affect the
retentivity of the linear motor, thereby affecting the thrust
force and thrust density. Hence, the volume of the entire
motor body must be properly designed to improve motor
performance. Letτ, H, hm, L, δ andhc be the pole pitch,
total height, magnet height, total length, air-gap length
and coil height of motor body, respectively. As shown in
Fig. 1(b), the volume of the total motor is defined as

V = (12τ)(2hmL+2δ +2hc)H. (3)

3.2 Thrust and thrust density analysis

Because the forcer windings in the mover are supplied
with a current in a direction perpendicular to a magnetic
field, an induced thrust force causes the mover to move
along the direction perpendicular to the directions of both
the current and the magnetic field. The formulation of
thrust force generated is generally described as

F = NcIcBlc, (4)

whereIc is the amount of current flowing throughNc turns
of wire, B is magnetic field of flux density in air-gap,lc

is the length of wound coil in air-gap. TheNc Ic, called
“ampere turns”, is described as follows [14]:

NcIc =

√
PεAc

ρ lc
, (5)

whereP is total power supplied to the coil,ρ is resistivity
of the coil,ε is the area space factor for the coil,Ac is the
coil area. The thrust density is the ratio of generating thrust
force at the certain input power and the motor volume. It
is one of the most important operational characteristics of
the ironless-type linear motor. Thus, the optimal values of
the design variables with a higher thrust force and thrust
density can improve operating performance. LetV be the
volume of the total motor. The thrust densityD is defined
as follows:

D =
F
V

=
B(PεAclc

ρ )1/2

24Hτm(2hmL+2δ +2hc)
. (6)

3.3 Temperature analysis

Because the mover slides along the U-shaped channel
of the stator in ironless-type linear motors, it creates
worse heat dissipation heat than iron-core linear-type
motors. The operating temperature of the windings in the
mover increases with high-speed operation or long
working time. Hence, the parts of the motor with various
heat coefficients may exhibit the deformation
phenomenon. Deformation affects the position precision,
operation point of permanent magnets, and dynamic
response. To analyze the heat source of the ironless
PMLBM, the following formulas consider the heat loss
dissipation from the mover:

J =
Ic
Ac

, (7)

W = MNcIc
2R= MNcIc

2κ
2lc
Ac

, (8)
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Q=
W

WCH
= MNcIc

2κ
2lc

WCHAc
, (9)

whereM is the number of winding phase,J is the density
of current,W is the copper losses of windings,R is the
resistant ratio of each copper wire,Q is heat flow density
derived from the surface of the mover,κ is the electrical
resistivity of the copper wire.

3.4 Modeling of initial motor

The FEM analysis model of the initial ironless
PMLBM calculated by COMSOL software. This model
consists of the 12-pole PMs arranged in the U-shaped
channel of stator and the three-phase winding coils of the
mover. Table1 shows the dimensions of the initial motor.

4 Response Surface Methodology

Response surface methodology (RSM) consists of a group
of mathematical and statistical techniques that can be
used to find the relationships between the response and
independent variables [15]. The RSM approach is an
appropriate approximating model for the true response
surface, and can evaluate the design variables for
generating the optimization response values. This study
uses a second-order prediction equation to model the
curvature in the true response function. The CCD of
7-factors and 3-levels selected a starting point as an
experimental center position is applied [16]. The
second-order response equation was formulated as
follows:

f = β0+
m

∑
j=1

β jx j +
m

∑
j=1

β j j x
2
j +

m−1

∑
j=1

m

∑
p=1

β jpx jxp, (10)

where x j and xp are input variables that influence the
responseY; m is the number of variables;b0 is the
constant term;b j is the j th interaction coefficient.

5 Constrained EMOHQPSO algorithm

5.1 Constraint-based Multi-Objective Optimization

A multi-objective optimization problem has a number
of optimizing objective functions. Many real-world
applications involve sets of constraints when considering
a multi-objective optimization problem. In this situation,
the constrained optimization problem in the search space
consists of two types of solutions: feasible and infeasible
[17]. A feasible solution is a vector of design variables in
which the final solutions satisfy all the constraints,
whereas infeasible regions violate at least one constraint.
The following formula presents the multi-objective

optimization problem in its general form:

Minimize/Maximize {Y1(X),Y2(X), ...,Yq(X)},

s.t.x∈ X, gk ≤ 0, k= 1,2, ...,n.
(11)

where Yi : Rm → Rl , gk : Rm → Rl for
j ∈ J = {1,2,3, ..,q}, q denotes that the number of
objective functions to be minimized or maximized,
k ∈ K = {1,2,3, ..,n}, and X ∈ Rm is a m-dimension
vector: X = {x1,x2, ..,xm}

T . Each xp(p = 1, ...,m) is
bounded by lower and upper limitsxL

p ≤ xp ≤ xU
p . gk(X) is

known as inequality constraints, respectively. In general,
no solution vectorX exits that minimizes/maximizes all
the q objective functions simultaneously. A feasible
solution is called a Pareto optimal set if no other feasible
solution is in the search space for which an improvement
in any objective does not simultaneously worsen the value
of at least one other objective.

5.2 Penalty function

For a constrained optimization problem, an
unconstrained form adding a penalty term to the objective
function is constructed. Therefore, the unconstrained
objective function is the original objective function with
constraints plus a penalty term for each constraint. The
penalty term consists of constrained functions multiplied
by a positive coefficient. This calculation process can
remove the infeasible solution in the penalty function
method from the population in each iterative algorithm. A
penalty method (for minimization problem) is, generally,
defined as [18]:

Ŷj(X) =Yj(X)+ρΦ [gi(X)], (12)

Φ [gi(X)] =

{
∑k

i=1[max(0,gi(X))]2,gi(X)< 0,

0 ,gi(X)≥ 0.
(13)

whereρ is the penalty coefficient,Yj(X) the original j th
objective function of the constrained optimization
problem in equation (11), Ŷj(X) is the modified objective
function with penalty term, andρΦ [gi(X)] is the penalty
term. For minimization problem,ρΦ [gi(X)] returns zero
if no violation occurs; otherwise, it is positive. The
penalty function approach determines the solutions of the
unconstrained objective function, eventually converging
to the solution of the original constrained optimization
problem.

5.3 Quantum-behaved particle swarm optimization

Particle swarm optimization (PSO) is a
population-based stochastic optimization technique
inspired by the social behavior of bird flocking or fish
schooling [19]. In traditional PSO withN particles, each
particle represents a potential solution to a problem in an
m-dimensional space, and its position and velocity at
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Table 1: Dimensions of initial motor

Parameter Symbol Unit Value Parameter Symbol Unit Value

Air-gap δ mm 0.6 Winding pitch Is mm 40.0
Coil width wc mm 5.0 Number of turns 122.0
Coil height hc mm 3.8 Motor length along z-axis hb mm 49.0

Number of phases M 3.0 Thickness of the back iron wcd mm 4.0
Pole pitch τ mm 15.0 Wire diameter Nc mm 0.4

Magnet height hm mm 4.0 Root mean square value dw A 3.4
Magnet width wm mm 12.4 Thrust P N 68.6
Magnet pitch τm mm 2.6 Temperature T ◦C 99.5

Motor length along x-axis L mm 18.0 Volume V 104mm3 40.1
Motor length along y-axis H mm 25.0

iteration t are denoted asXi(t) andVi(t). The following
equations update the velocity and position of particlei at
the(t +1)th iteration:

Vi(t +1) = ωVi(t)+c1r1(pbesti −Xi(t)

+c2r2(pbesti −Xi(t)),
(14)

Xi(t +1) = Xi(t)+Vi(t +1), (15)

ω = ωmax− [(ωmax−ωmin)/(iteramax)]× itera, (16)

where ω is the dynamic inertia weight factor.
Acceleration coefficientsc1 and c2 are two positive
constants, andr1 and r2 are two uniformly distributed
random numbers within [0,1]. Thepbesti (particle’s best
solution) is the position for particlei with the best fitness
found thus far. The gbest (global best solution) records
the best position discovered by the swarm thus far. In
equation (14)-(16), the traditional PSO algorithm can
prematurely converge and converge slowly later in the
search process. To strengthen optimal search abilities and
faster convergence speed, this study develops a QPSO to
overcome the disadvantages of the PSO algorithm. In the
QPSO algorithm, each particle exhibits quantum behavior
in the search process. Only the position vector and one
control parameter are considered in the entire feasible
region. The probability of each particle appearing at time
t is only described in the probability density function
| ψ(x, t) |2 of the particle’s position. The iteration
formulation of each particle’s position is as follows [20]:

mbesti(t) =
N

∑
i=1

pi(t)
N

, (17)

pi(t) = φ(t)× pbesti(t)+(1−φ(t))×gbest(t), (18)

xi(t +1) = pi ±α | mbesti(t)−xi(t) | ×ln(1/u(t)), (19)

α = (αmax−αmin)×
(maxiter − t)

maxiter
+αmin. (20)

whereN is the number of all particles,mbestis the Mean
Best position (defined as the mean of the best positions of
all particles at timet), and the random numbersu andφ
are distributed uniformly within [0,1] respectively. The
contraction-expansion coefficientα, which controls the
convegence speed of the algorithm, is the only parameter
in the QPSO algorithm. This coefficient has a dynamic
value that decreases fromαmax to αmin as the number of
iterations increases. The termpi(t) is the best position of
particlei at timet.

5.4 Mutated elitist mechanism QPSO

The QPSO algorithm has simpler evolutional equation
forms and less parameters than PSO, substantially
facilitating the control and convergence in the search
space. To avoid trapping into the local optimum region in
the search process, the QPSO performs a broader
searching through the GA mutation operator. The
mutation operation only occurs if a randomly generated
number in [0, 1] is less than or equal to the given
mutation probability. When a mutation is performed, the
number of design variables is multiplied by a random
value within [0, 1] to determine which variable in each
particle should be mutated in the variable space. Letr3
andr4 be random numbers in [0, 1]. The ceiling function
ceil(.) is the smallest integer greater than or equal to
“ r3 × m”. The real-valued mutation operators for each
updated particle in equation (21) are as follows:

xi,s(t +1)mut = xL
i,s(t +1)

+ r4× [xU
i,s(t +1)−xL

i,s(t +1)],s= ceil(r3×m). (21)

In this study, m is conducted in the space of 7 design
variables. “s”is the variable sequence position after the
mutation for a new particle. Hence, the “s”value is an
integral value in [1, 7]. In order to promote the number
and diversity of Pareto-optimal front solutions, an elitist
strategy with non-dominated sorting and crowding
distance is used for the updated particle. This approach
preserves the current best solutions from one generation
to the next. The crowding distance of a particle, defined
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as the Euclidean distance between its two adjacent
neighbors on the same front, can estimate the density of
solutions in its front. LetYi+1

q andYi−1
q represent theqth

objective function of Xi+1 and Xi−1, which are the
neighboring particles to theith particle.Ymax

q andYmin
q are

the maximal and minimal values of theqth objective in
the feasible space. The crowding distancedi is as follows:

di =
q

∑
j=1

|
Yi+1

j −Yi−1
j

Ymax
j −Ymin

j

| . (22)

6 Design Optimization Flowchart of
EMOHQPSO

The flowchart in Fig. 2 shows the steps of the entire design
procedure.

Step 1: Selection of design variables and levels

Consider that the independent design variables in an
ironless PMLBM include the magnet width (x1), magnet
height (x2), magnet pitch (x3), air-gap (x4), coil width
(x5), coil height (x6), and coil diameter (x7). Their
dimensions are the most effective in volume calculation
and performance of the motor. Table (2) shows the units,
symbols, and coded levels of variables in RSM. Each
independent variable has three levels: -1, 0, and +1. Level
-1 is the minimum value of the variables. Level 0 is the
initial design value of the variables. Level 1 is the
maximum value of the variables.

Table 2: Independent design variables and their coded levels

Coded Levels x1 x2 x3 x4 x5 x6 x7

-1 10.9 3 2.1 0.45 4.5 3.3 0.35
0 12.4 4 2.6 0.6 5 3.8 0.4
1 13.9 5 3.1 0.75 5.5 4.3 0.45

Step 2: Design of experiments (DOE)

Use the CCD from DOE with a quadratic model.
Based on the ranges of each design variable, 152 different
combinations of seven variables at three levels were
chosen in random order. The optimal levels of the design
variables and the interactions of these variables on
objective functions were estimated in this step.

Step 3: FEA calculation and creation of response surface
predictive model

Use FEA COMSOL software and MINITAB software
to find the second-order predictive models for thrust,
temperature, and volume. The variable space is

X = (wm,hm,τm,δ ,wc,hc,Nc) = (x1,x2,x3,x4,x5,x6,x7).
The formulations of the models are as follows:

YP = 65.7096+5.416x1+5.414x2+0.9175x3

−2.5533x4+2.0913x5+3.0562x6−17.571x7

−0.7885x1x1−1.6632x2x2−0.0968x3x3

+0.0973x4x4−0.5135x5x5−0.4287x6x6

+4.4143x7x7+0.4553x1x2−0.4502x1x3

−0.375x1x4+0.4472x1x5+0.4977x1x6

−1.4091x1x7+0.2933x2x3−0.1066x2x4

+0.1495x2x5+0.4193x2x6−1.2007x2x7

−0.1092x3x4−0.0383x3x5−0.0902x3x6

−0.2132x3x7+0.271x4x5+0.3098x4x6

+0.4347x4x7−2.2097x5x6−0.3972x5x7

−0.5355x6x7, (23)

YT = 75.3228−0.8687x1−2.4205x2−0.827x3

+0.5687x4+7.9311x5+3.4654x6−53.1869x7

−0.7885x1x1−1.6632x2x2−0.0968x3x3

+0.0973x4x4−0.5135x5x5−0.4287x6x6

+4.4143x7x7+0.4553x1x2−0.4502x1x3

−0.375x1x4+0.4472x1x5+0.4977x1x6

−1.4091x1x7+0.2933x2x3−0.1066x2x4

+0.1495x2x5+0.4193x2x6−1.2007x2x7

−0.1092x3x4−0.0383x3x5−0.0902x3x6

−0.2132x3x7+0.271x4x5+0.3098x4x6

+0.4347x4x7−2.2097x5x6−0.3972x5x7

−0.5355x6x7, (24)

YV = 40.131+3.7044x1+3.822x2+1.2348x3

+0.5733x4+0.9555x6+0.3528x1x2+0.529x1x4

+0.0882x1x6+0.1176x2x3+0.0176x3x4

+0.0294x3x6. (25)

Step 4: Formulation of optimization

Use equations (23)-(25) to determine the optimizing
objective functions for the ironless PMLBM, including
maximal thrustYP(X), minimal temperatureYT(X), and
minimal volume YV(X). To avoid the thermal
demagnetization of magnets, the permeance coefficient is
set to greater than 0.8. Therefore, the objective functions,
constrain conditions, and the variable ranges are as
follows:

Max YP(X)

Max YT(X) (26)

Max YV(X)
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s.t.

gi(X) = Pc =
hm

g
×

1
( wm

wm+τp
)

=
x2

(2×x4)+x6
×

x1+x3

x1

10.9mm≤x1 ≤ 13.9mm

3mm≤x2 ≤ 5mm

2.1mm≤x3 ≤ 3.1mm

0.45mm≤x4 ≤ 0.75mm

4.5mm≤x5 ≤ 5.5mm

3.3mm≤x6 ≤ 4.3mm

0.35mm≤x7 ≤ 0.45mm.

Step 5: Penalty function method for constrained objective
functions

Use equation (26) to determine the constraint
condition for the ironless PMLBM design in this study.
Equations (28)-(30) show the penalty function method by
modifying the objective functions with adding the penalty
term ρΦ [gi(X)] to constrain a condition for feasible
region violations. The formulations for objective
functions are as follows:

Φ [gi(X)] =
x2

(2×x4)+x6
×

x1+x3

x1
−0.8

(27)

ỸP(X) =YP(X)−ρ [0,
x2

(2×x4)+x6
×

x1+x3

x1
−0.8]2

(28)

ỸT(X) =YT(X)+ρ [0,
x2

(2×x4)+x6
×

x1+x3

x1
−0.8]2

(29)

ỸV(X) =YV(X)+ρ [0,
x2

(2×x4)+x6
×

x1+x3

x1
−0.8]2

(30)

whereρ is set to 20. If the feasible solutionX through the
duration of the calculations satisfies the constraint
condition, theng(X) = 0. If not, theng(X) = 1. In other
words, this infeasible solution can be removed from the
population during the next steps of the iteration
algorithm.

Step 6: Initialization of swarm positions

Use a uniform distribution number to initialize a
population of particles with random positions in the
m-dimension search space. The initial combination of the
design variables is random. Equation (26) shows the
ranges of design variables of each particle between the
upper and low limits.

Fig. 2: EMOHPSO Flowchart

Step 7: Evaluate the fitness and check if the stopping
criteria is satisfied

Evaluate the fitness value of each particle. Consider
the modified objective functions with the penalty term as
the fitness function. If the stopping criterion is satisfied,
proceed to Step 11. If not, proceed to the next step.

Step 8: Comparison to personal best (pbest) and global
best (gbest)

Compare the fitness with each particle’spbest and
with all swarm’s overall previous best values. If the
current value of the particle’s fitness is better than the
pbest, then replace the current value with thepbestvalue
and replace the current location with thepbestlocation in
the m-dimensional space. If the particle’s fitness is better
thangbest, all particles accelerate toward the location of
thegbest, and thegbestmust be reset to the current index
and value of the particle array.

Step 9: Update the positions of each particle

Using the updating mbest and contraction expansion
coefficient the new position is determined for each
particle using equation (19).

Step 10: Perform the mutation for the updating particle
If the mutation probability is less than or equal to 10%
for each updating particle, perform the mutation operation
according to equation (21) and proceed to the next step. If
not, proceed to Step 12.
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Step 11: Perform non-dominated sorting and calculate
crowding distance

Step 12: Determine the trade-off solutions

Obtain the 3D graph of the Pareto frontier surface in
the objective space from the maximal thrust, minimal
temperature, and volume. Find a discrete set of points on
the Pareto surface corresponding to high trade-off
solutions.

7 Results and discussions

This study presents a way to optimize the performance of
ironless PMLBM from RSM with constraints as a
constrained multi-objective optimization problem. The
optimizing objective functions are maximal thrust force,
minimal temperature, and minimal volume, respectively,
and the constraint condition is the permeance coefficient.
The penalty function method transforms the constrained
multi-objective optimization problem into an
unconstrained problem that can be solved using the
EMOHQPSO algorithm. The initial particles are set at
1000, the contraction expansion coefficientαmin andαmax
as 0.5 and 1.0, respectively. Each particle represents the
combination of seven design variables of ironless
PMLBM. This study presents results after 500 iterations
of the EMOHPSO performed using Matlab and FEA.

Fig. 3: 3D graph of Pareto optimal solutions of (a) NSGAII
(b)MOPSO and (c)EMOHQPSO

Figures 3(a)-3(c) show a 3D graph of Pareto-optimal
solutions for the NSGA II, MOPSO, and EMOHQPSO
algorithms. Each particle in the EMOHQPSO algorithm
appears at any position at a certain probability in the
entire feasible region. This is unlike the MOPSO
algorithm, which is restricted to searching for particles in
a fixed area and a certain track in the search space. In
addition, each particle in the EMOHQPSO algorithm has
a perfect memory capability, whereas NSGA II rejects
worse solutions during the iterations and retains only
good solutions. Therefore, in NSGA II, the population
includes only a part of the best individuals. In other
words, the solutions of the EMOHQPSO algorithm are

closer to the true Pareto-optimal front than those of
NSGA II and MOPSO. They are effective in keeping the
number and diversity of the swarm. Figures 4(a)-4(c)
show projections onto two of the objectives in the 3D
Pareto-optimal surface, and present comparisons of the
NSGA II, MOPSO, and EMOHQPSO algorithms. The
initial linear motor had a thrust force, thrust density,
temperature, and volume of 68.6 N, 1.71N/cm3, 99◦C
and 40.1× 104mm3, respectively. Table 3 shows that the
set of 14 optimization solutions in EMOHQPSO are
excellent solutions along the true Pareto-optimal front.
These 14 trade-off solutions simultaneously considering
the maximal thrust and thrust density, minimal
temperature, and volume for ironless PMLBM are all
superior to initial one. Table3 shows that the thrust force
and thrust density increase within 0.72-6.27% and
1.43-14.9 %, respectively. The temperature and volume
decrease within 0.14-14.03% and 0.01-6.25%,
respectively. According to these 14 trade-off solutions,
the solutions of the higher thrust force do not necessarily
represent those of the greater thrust density. The
temperature and volume can decrease simultaneously in
an optimized motor, but the thrust force is not necessarily
decreased. Under the same volume, the predictive
accuracy of the thrust force and temperature obtained in
RSM and FEA are 99.41% and 91.23%, respectively.
Therefore, a developer can choose proper design variables
to achieve the desired objectives of the linear motor
design according to the research results.

Fig. 4: 2D projections results for (a) NSGA II, (b) MOPSO and
(c) EMOHQPSO
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Table 3: Results of comparison of RSM-EMOHQPSO and FEA

No.
Design variables RSM FEA

x1 x2 x3 x4 x5 x6 x7 YP YT YV D YP YT YV D

(N) (◦C) (cm3) (N/cm3) (N) (◦C) (cm3) (N/cm3)

Initial 12.6 4 2.6 0.6 5 3.8 0.4 68.6 99.5 40.1 1.71
1 12.7 4.1 2.2 0.5 5 3.9 0.4 73.2 85.3 39.9 1.83 75.2 94.5 39.9 1.88
2 12.1 4.0 2.5 0.5 5 3.9 0.4 71.9 89.4 38.6 1.86 73.3 97.3 38.6 1.90
3 12.4 4.2 2.2 0.5 5.1 3.7 0.4 71.5 85.9 39.1 1.83 73.9 96.4 39.11.89
4 11.7 4.5 2.4 0.5 4.8 4.3 0.4 71.0 83.1 40.0 1.78 72.9 92.9 40.11.82
5 11.9 4.1 2.9 0.5 5.2 3.9 0.4 71 85.9 39.4 1.8 75.7 97.7 39.4 1.92
6 12.2 4.1 2.1 0.5 4.8 4.1 0.4 70.8 85.1 39.0 1.82 73.1 94.4 39.01.87
7 11.7 4.4 2.7 0.5 4.8 4.0 0.4 70.6 81.8 39.9 1.77 70.2 90.2 39.91.76
8 11.3 4.4 2.8 0.5 5.1 4.2 0.4 70.3 83.8 39.3 1.79 75.1 94.2 39.31.91
9 13.8 3.4 2.3 0.5 4.8 3.9 0.4 70.3 81.4 40.1 1.75 72.9 92.8 40.01.82
10 12.7 3.8 2.6 0.5 5.1 3.9 0.4 70.1 81.6 39.4 1.78 72.5 92.1 39.4 1.84
11 12.9 4.0 2.5 0.5 5.2 3.3 0.4 69.6 78.1 39.5 1.76 69.8 91.1 39.5 1.77
12 12.5 4.2 2.3 0.5 5.3 3.9 0.4 69.5 76.9 39.8 1.75 73.9 90.6 39.8 1.86
13 12.3 4.0 2.2 0.5 5.2 3.4 0.4 69.5 85.6 37.6 1.85 70.1 96.0 37.6 1.86
14 12.6 3.9 2.1 0.5 5.1 3.9 0.4 69.1 79.8 38.7 1.79 73.3 92.5 38.7 1.89
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