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Abstract: Selecting genes from microarray gene expression datasets has become an important research, because such data typically
consist of a large number of genes and a small number of samples. Avoiding information loss, neighborhood mutual information is
used to evaluate the relevance between genes in this work. Firstly, an improved Relief feature selection algorithm is proposed to create
candidate feature subsets. Then, the cohesion degree of the neighborhood of an object and coupling degree between neighborhoods of
objects are defined based on neighborhood mutual information. Furthermore, a new initialization method of cluster centers for the Fuzzy
C-means (FCM) algorithm is proposed. FCM is a method that allows one piece of data to belong to two or more clusters. Moreover, in
view of neighborhood rough set is an effective tool to extract and select features, a novel algorithm for gene selection based on FCM
algorithm and neighborhood rough set is proposed. Finally, to evaluate the performance of the proposed approach, we apply it to five
well-known gene expression datasets. Experimental results show that the proposed approach can select genes effectively, and can obtain
high and stable classification performance.
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1 Introduction

Microarray technology has made it possible to
simultaneously measure the expression levels of large
numbers of genes in a short time [1,2]. However, among
the large amount of genes presented in microarray gene
expression datasets, only a small fraction of them is
effective for performing a certain diagnostic test. So, the
curse of dimensionality caused by high dimensionality
and small sample size of tumor dataset seriously
challenges the tumor classification [3,4]. How to select
important gene subsets from thousands of genes in gene
expression profiles dataset to drastically reduce the
dimensionality of tumor dataset is the key step to address
this problem.

Many gene selection methods have been proposed for
the analysis of gene expression datasets [5,6]. Usually,
the feature selection methods can be divided into three
broad categories: filter, wrapper, and embedded methods
[7,8,9]. The filter method is to design a measure
independent of a specific classification algorithm. Thus
features that accurately present the original data set can

be identified. The filter methods include correlation-based
feature selection [10], t-test, information gain, mutual
information, and entropy-based methods [11]. However,
they ignore feature dependencies, resulting in poor
classification performance. Wrapper methods focus on
improving classification accuracy of pattern recognition
problems and typically perform better than filter methods.
However, wrapper methods are more time-consuming
than filter methods [12]. Embedded techniques combine
filter methods and wrapper methods. The advantage of the
embedded algorithms is that they take the interactions
with the classifiers into account.

Clustering analysis is an important technique in
pattern recognition, which aims to divide a data set into
several clusters [13]. The clustering algorithms can be
broadly classified as Hard, Fuzzy, Possibilistic, and
Probabilistic [14]. The ability of clustering methods is to
extract groups of genes with similar functions from huge
datasets according to the fact that genes with similar
functions evince similar expression patterns of
co-regulation [15,16]. Intuitively, genes in a cluster are
more correlated with each other, whereas genes in
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different clusters are less interdependent [17]. K-means is
one of the most popular hard clustering algorithms which
partitions data objects into k clusters where the number of
clusters, k is decided in advance according to application
purposes. However, hard clustering methods which assign
each gene exactly to one cluster are poorly suited to the
analysis of gene expression datasets because in such
datasets the clusters of genes frequently overlap [4]. To
overcome the limitations of these hard clustering
methods, fuzzy clustering has been widely studied, in
which a data point is associated with multiple clusters to
different extents based on its membership values to these
clusters [18,19]. FCM algorithm is one of the most
popular fuzzy clustering techniques because it is efficient,
straightforward, and easy to implement.

In FCM, the objective is to minimize the sum of
cluster variations, which depends on the distances
between data and the cluster centers [19,20]. Since the
Euclidean distance is used, the cluster structures are all
hyper spherical. In order to improve the ability to detect
cluster structures of other shapes, many researchers
extended FCM by redefining the distance and cluster
centers [19,21,22]. FCM clustering is an effective
algorithm, but the random selection in cluster centers
makes iterative process falling into the local optimal
solution easily. The algorithm with random initialization
method needs to be rerun many times with different
initializations in an attempt to find a good solution.
Furthermore, random initialization method works well
only when the number of clusters is small and chances
well that at least one random initialization is close to a
good solution [23]. Therefore, how to choose proper
initial cluster centers is extremely important as they have
a direct impact on the formation of final clusters. In this
paper, an initialization method of cluster centers for the
FCM algorithm is proposed which based on the cohesion
degree of neighborhood of an object and the coupling
degree between neighborhoods of objects.

Rough set (RS) theory, proposed by Pawlak [24], can
be seen as a new mathematical approach for vague
questions. It has been successfully applied to pattern
recognition, expert system, machine learning, knowledge
discovery, decision analysis and data mining. RS has been
applied mainly in mining tasks like classification,
clustering and feature selection [25,26]. The gene
expression datasets often consist of small number of
samples and large number of genes. The curse of
dimensionality makes it necessary to reduce the
computation cost and improve the classification accuracy.
RS provides a feasible way to deal with redundancy to
find out a minimum set of relevant attributes that describe
the dataset as well as all the original attributes do [25].
However, the feature reduction in classical RS must
discretize the attributes before reduction, which maybe
leads to information loss. As we know that gene
expression data is numerical, in order to deal well with
the datasets, we have to avoid the discretization. Hu et al.
[27] introduced the neighborhood rough set (NRS) model,

which based on classical RS and neighborhood relevance,
avoiding the discretization procedure, so no information
loss occurs. Zhang et al. [25] designed a tumor
classification method based on wavelet packet transforms
and neighborhood rough set. Wang et al. [28] proposed a
novel feature selection method by combining PNN
classifier ensemble with neighborhood rough set. A quick
search of biological literatures shows that NRS is still
seldom used in bioinformatics. Based on FCM and NRS,
a novel gene selection method is proposed in this paper.
Firstly, an improved Relief feature selection algorithm
which based on neighborhood mutual information is
proposed to sequence genes, and generate candidate
feature subsets. Then an initialization method of cluster
centers for the FCM algorithm is proposed which based
on the cohesion degree of neighborhood of an object and
the coupling degree between neighborhoods of objects.
Moreover, the significance of attributes based on
neighborhood rough set is defined. Finally, a novel gene
selection algorithm (NMINR-FCM) is proposed, which
based on FCM and neighborhood rough set, to obtain
both better performance and superior classification
accuracy.

The structure of the rest of this paper is as follows:
Section 2 introduces the concepts of FCM clustering and
neighborhood rough set. An effective and efficient gene
selection method NMINR-FCM is proposed in Section 3.
To evaluate the performance of the proposed algorithm, we
apply it to five gene expression datasets. The experimental
results are presented in Section 4. Finally, the conclusion
is drawn in Section 5.

2 Related work

2.1 Fuzzy C-means Clustering

FCM clustering algorithm is developed by Dunn [29] and
later refined by Bezdek [30], is an unsupervised fuzzy
clustering algorithm with multiple applications, ranging
from attribute analysis, to clustering and classifier design.
Let the sample set beX = {x1, x2, . . . , xn} wheren is the
number of sample. FCM algorithm divide the sample set
X into c (2 6 c 6 n) classes isU = [ui j ]c×n, where
ui j (1 6 i 6 c,16 j 6 n) is the fuzzy membership degree
of the jth samplex j belongs to theith class, andui j
should satisfy the following constraint

c

∑
i=1

ui j = 1,06 ui j 6 1,16 i 6 c,16 j 6 n. (1)

The objective function of FCM algorithm is defined as

minJm(U,P) =
c

∑
i=1

n

∑
j=1

um
i j d

2
i j , (2)

wheredi j = ||x j − pi || is the distance betweenx j andpi , pi
is the center of theith class. The fuzziness of the
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membership is controlled bym which takes value higher
than 1. The closer is them value to 1, the more crisper the
membership values are. As the values ofm become
progressively higher, the resulting memberships become
fuzzier [31]. Pal and Bezdek advised thatm should take
value between 1.5 and 2.5 [32]. FCM algorithm is an
process to minimize the objective function minJm(U,W).
To achieve minJm(U,W) should meet the following
conditions

ui j = (
c

∑
k=1

(
di j

dk j
)2/(m−1))−1, (3)

pi =

n
∑
j=1

um
i j x j

n
∑
j=1

um
i j

. (4)

A iteration alternating between equation (3) and (4)
adjust ui j and pi until the change inJm falls below a
threshold ε or a maximal number of iterationst is
reached. In this study, we choseε = 0.001 andt = 100.

2.2 Neighborhood rough set

In order to effectively cope with continuous attributes,
avoiding the information loss which caused by
discretization, Hu et al. [33] proposed neighborhood
rough set based on classical rough sets and the concept of
neighborhood. In this subsection, we will introduce the
basic concepts of neighborhood rough set. The basic
concepts of neighborhood rough set are explained as
follows.

Given arbitraryxi ∈U andB⊆ A, δ > 0 is a constant,
then the neighborhood of samplexi is denoted by

δB(xi) = {x∈U |∆B(x,xi)≤ δ}, (5)

where∆ is a distance function onU .
Let A = {a1, a2, . . . ,an} be a discrete random variable.

P(ai) is the probability ofai , the entropy ofA is denoted
by

H(A) =−
n

∑
i=1

p(ai) logp(ai). (6)

Let U = {x1, x2, . . . ,xn} be a set of samples described
with gene setF , andxi ∈ RN, S⊆ F is a subset of genes,
the neighborhood of samplexi in S is denoted byδS(xi).
The neighborhood uncertainty ofxi is denoted by

NHxi
δ (S) =− log

||δS(xi)||

n
, (7)

and the average uncertainty of the set of samples is
computed as

NHδ (S) =−
1
n

n

∑
i=1

log
||δS(xi)||

n
. (8)

If δ = 0, thenNHδ (S) =H(S), whereH(S) is Shannon
entropy.

Given R,S ⊆ F are two subsets of genes, the
neighborhood of samplexi in gene subspaceS∪ R is
denoted asδS∪R(xi), then the joint neighborhood entropy
of S∪R is computed as

NHδ (R,S) =−
1
n

n

∑
i=1

log
||δS∪R(xi)||

n
. (9)

The conditional neighborhood entropy ofR is defined
as

NHδ (R|S) =−
1
n

n

∑
i=1

log
||δS∪R(xi)||

||δS(xi)||
. (10)

Hence the following property holds,
NHδ (R|S) = NHδ (R,S)−NHδ (S).

3 Efficient gene selection algorithm

3.1 Neighborhood Mutual Information Measure

Generally speaking, Euclidean distance, Pearson’s
correlation coefficient and mutual information are widely
used as the measure to compute relevance between
attributes. However, for measuring the correlation
between genes, Euclidean distance is not effective enough
to describe functional similarity such as positive or
negative correlation in values [33]. Thus, Pearson’s
correlation coefficient [34] is put forward by some
researchers. Empirical studies have shown that it may
assign a high similarity score to a pair of dissimilarity
genes. There is a problem to employ mutual information
in gene evaluation due to the difficulty in estimating
probability density of genes. However, most methods are
not able to effectively cope with continuous attributes,
which is also a distinctive characteristic of gene
expression datasets. When applied to the continuous
attributes, conventional methods commonly discretize the
continuous data into a finite number of intervals for data
mining. But discretization may lead to information loss
[27]. Hu et al. [33] proposed neighborhood mutual
information to cope with continuous attributes, evaluate
the relevance between attributes. The neighborhood
mutual information combines the concept of
neighborhood with information theory, and generalizes
Shannon’s entropy to numerical information.

Let R,S ⊆ F are two subsets of genes, then the
neighborhood mutual information ofR and S is denoted
by

NMIδ (R;S) =−
1
n

n

∑
i=1

log
||δR(xi)|| · ||δs(xi)||

n||δS∪R(xi)||
. (11)

The following properties hold
(1) NMIδ (R;S) = NMIδ (S;R);
(2) NMIδ (R;S) = NHδ (R) + NHδ (S)−NHδ (R,S);
(3) NMIδ (R;S) = NHδ (R)−NHδ (R|S) = NHδ (S)−

NHδ (S|R).
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3.2 The Improved Relief Algorithm

Relief as a kind of attribute ordering algorithm has been
widely applied in the field of feature selection. Its core
idea is to distinguish similar samples as the standard of
evaluation attribute importance, and thus gives the
attribute weights in classification. The advantage of this
algorithm is less computational complexity, considering
the correlation between attributes to a certain extent. For
arbitrary sample, searching out two class neighbors which
nearest to this sample, one kind with the same classes of
groups (called nearest hit), and another kind is the
category with its distinct groups (called nearest miss).
Then the search process in a sample of nearest neighbors
is to take the distance between the two samples as the
standard. In the Relief algorithm, all the attributes are
involved in the distance calculation process. However, in
gene expression datasets, only a small number of genes
associated with the sample type, the vast majority of
genes as noise properties exist. If use Relief algorithm to
select the gene expression datasets directly, will make the
noise drowned out the useful information, resulting in the
classification weights calculated of genes deviate from the
true value. The RFERelief algorithm presented in [35],
firstly, computed the attribute classification weights using
Relief algorithm, and then remove the attribute with the
minimum weight, and so on, the effect of noise properties
reducing gradually. However, this algorithm did not take
into account the relationship between features of each
sample, which affects the accuracy of classification. In
this paper, we improve the RFERelief algorithm and
propose an improved Relief algorithm to select sample
classification genes, which uses the neighborhood mutual
information to measure the correlation between genes.
The algorithm is described as follows:

Algorithm 1. NRFE Relief algorithm
Input: Sample setX = {x1, x2, . . . ,xM} and gene setG

= {g1, g2, . . . ,gN}
Output: Gene subsetB
Step1: Set the weight vectorW;
Step2: For arbitrary samplexi (i = 1, 2, ...,M, M as

sample number), search itsP nearest hit andP nearest
miss;

Step3: For any geneg j ( j = 1, 2, ...,|G|, |G| as gene
number), calculate the weight of it:W(g) =
W(g)− di f f (g,xi ,H)/P+ di f f (g,xi ,M)/P, whereH is
the nearest neighbors with the same type with samplexi ,
M is the nearest neighbor has different categories with
samplexi . The functiondi f f (g,xi ,x j) is used to calculate
the difference between samplesxi and x j of gene g,
di f f (g,xi ,x j) = |NMIδ (g;xi)−NMIδ (g;x j)|;

Step4: Finding the locate of attribute with minimum
weight, according to thec= argminW;

Step5:B = G−{gc};
Step6: END.
In actual operation process, the 10% of the total

attributes was removed to speed up the operation of the
algorithm, and neighbor number K = 15.

3.3 Cohesion Degree of the Neighborhood of An
Object and Coupling Degree between
Neighborhoods of Objects

Formally, the structural data used for classification
learning can be written as an information system, denoted
by IS = <U,A,V, f >, whereU is the is the nonempty set
of samples{x1, x2, . . . , xM}, called a universe;A is a set
of attributes{a1, a2, . . . , an} to characterize the samples;
V is the union of all attribute domains, ie.,V = ∪Va,
whereVa is the value domain of attributea andV ⊂ R; f
is a mapping called an information function such that for
anyx∈U anda∈ A, f (x,a) ∈Va.

Definition 3.1. Let IS = < U,A,V, f > be be a numeric
information system andB ⊆ A. For anyxi ,x j ∈ U , the
correlation between this two attributes is denoted by
NMIδ (xi ,x j), the average correlation among attributes is
defined as

x=
2

|U |(|U |−1)

|U |−1

∑
i=1

|U |

∑
j=i+1

NMIδ (xi ,x j), (12)

the size ofx measures the distribution of objects inU .
The greaterx is, the looser distribution among objects is.
Hence, in the rest of this paper, we usex to denote the
size of neighborhood of objects, that isε = x.

Definition 3.2. Let IS = < U,A,V, f > be be a numeric
information system,B⊆A andX ∈U , the lower and upper
approximations ofX in U with respect toB are defined as

BX = {xi |δB(xi)⊆ X,xi ∈U}, (13)

and
BX = {xi |δB(xi)∩X 6=∅,xi ∈U}, (14)

BX is a set of objects whose neighborhood belongs toX
with certainty, while BX is a set of objects whose
neighborhood possibly belongs toX.

Obviously,BX ⊆ X ⊆ BX. The boundary region ofX
in the approximation space is defined as

BNX= BX−BX. (15)

Definition 3.3. Let IS = < U,A,V, f > be be a numeric

information system,B ⊆ A. For anyxi ∈ U , the cohesion
degree ofδB(xi) is defined as

Cohesion(δB(xi)) =
|B(δB(xi))|

|B(δB(xi))|
, (16)

where 0<Cohesion(δB(xi))≤ 1.
The greaterCohesion(δB(x)) is, the less boundary

region of neighborhood of objectx is, which means thatx
is a better cluster center of its neighborhood. Therefore,x
is likely taken as an initial cluster center inU .
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Definition 3.4. Let IS = < U,A,V, f > be be a numeric
information system,B⊆A. For anyxi ,x j ∈U , the coupling
degree ofδB(xi) andδB(x j) is defined as

coupling(δB(xi),δB(x j)) =
|δB(xi)∩δB(x j)|

|δB(xi)∪δB(x j)|
, (17)

where 0< coupling(δB(xi),δB(x j))≤ 1.
The greatercoupling(δB(xi),δB(x j)) is, the more

possiblyxi andx j belong to the same cluster will be. In
this paper, if(δB(xi),δB(x j)) > ε, we consider thatxi and
x j belong to the same cluster. On the contrary,xi andx j
are likely taken as initial cluster centers.

The cohesion degree and coupling degree reflect the
intracluster similarity and the intercluster similarity,
respectively. In this section, based on the cohesion degree
of neighborhood of an object and the coupling degree
between neighborhoods of objects, an initialization
method of cluster centers for the FCM algorithm is
described as Algorithm 2:

Algorithm 2. An initialization method of cluster
centers for the FCM algorithm

Input:S= <U,A,V, f > andK
Output: Cluster Centers
Step1: InitializeCenters=∅ andTempcohesion=∅;
Step2: Computeε;
Step3: For anyx ∈ U , computeCohesion(δB(xi)),

Centers = Centers∪ {x} and Tempcohesion =
Tempcohesion∪ {x}, wherex satisfiesCohesion(δB(xi))

= max|U |
i=1{Cohesion(δB(xi))}, the first initial cluster

center is selected;
Step4: Find the next most coherent objectx, wherex

satisfies Cohesion(δB(xi)) =
max{Cohesion(δB(xi))|xi ∈U −Tempcohesion};

Step5: For any x
′

∈ Centers, if
coupling(δB(x

′
),δB(x)) < ε, then Centers =

Centers∪{x} andTempcohesion= Tempcohesion∪{x};
Step6: If |Centers| < K, then goto step4, else goto

step7;
Step7: END.

3.4 The Significance of Attributes based on
Neighborhood Mutual Information

The significance of attributes can be used as heuristic
information in greedy algorithm to compute a minimal
attribute reduct. In this paper, the significance of an
attribute is proposed based on neighborhood mutual
information. If the neighborhood mutual information is
larger, the two attribute sets are closely related. If the
neighborhood mutual information becomes zero, the two
attributes are independent.

Definition 3.5. Let Ai and A j be two attributes,
i, j ∈ {1,2, . . . , p}, i 6= j, the significant factor of an

attribute A within an attribute cluster C =
{A j | j = 1,2, . . . , p} is defined as

F(Ai) =
p

∑
i=1

NMIδ (Ai ;A j), (18)

whereNMIδ (Ai ;A j) is the correlation betweenAi andA j .
Based on the concept ofF(Ai), we introduce the concept of
thecore, which is an attribute with the highest significant
factor in an attribute cluster. Thecoreof an attribute cluster
C = {A j | j = 1,2, . . . , p}, denoted byη(C), which is an
attribute, sayAi , in that cluster such thatF(Ai) ≥ F(A j),
for all j ∈ {1,2, . . . , p}.

3.5 The Description of the Improved Gene
Selection Algorithm

In this study, a novel gene selection algorithm based on
FCM algorithm and neighborhood rough set
(NMINR-FCM) is proposed. Firstly, an improved Relief
feature selection algorithm is proposed to sequence genes,
and generate candidate feature subsets. Then, utilizing
FCM algorithm which the cluster centers are initialized
based on Algorithm 1 to cluster candidate feature gene
subsets. Furthermore, the relevancies between attributes
are evaluated by neighborhood mutual information, and
the significance of attributes is defined. Finally, select the
attribute to represents the cluster which has the highest
significance within each cluster. The detailed processing
steps in the proposed algorithm are illustrated in flow
chart form in Fig.1 and can be described as follows:

Algorithm 3. An efficient gene selection based on
FCM algorithm and neighborhood rough set
(NMINR-FCM)

Input: Sample setX = {x1, x2, . . . ,xM} and gene setG
= {g1, g2, . . . ,gN}

Output: Genes selected
Step1: Utilizing Relief feature selection algorithm to

sequence genes, and generate candidate feature subsets;
Step2: Initialize the number of clusters,k, wherek is

an integer greater than or equal to 2. The fuzziness of the
membership is controlled bym which takes value equal to
2;

Step3: Calculate the cluster centers of the FCM by
Algorithm 2, the number of cluster centers is K;

Step4: Calculate the objective function minJm(U,W)
according to Eqs.9;

Step5: If||JK
M −JK−1

M || ≤ ε, then go to step6, else go to
step2;

Step6: For any attribute of each cluster, compute the
correlation betweenAi andA j , i, j ∈ {1,2, . . . , p}, i 6= j,
Ai andA j are two attributes within an attribute clusterC =
{A j | j = 1,2, . . . , p};

Step7: Calculate the significant factorF(Ai) of an
attribute Ai within an attribute cluster C =
{A j | j = 1,2, . . . , p};
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Step 8: Computation ofcore for each attribute cluster.
For each clusterCr , r ∈ {1,2, . . . ,k}, we setη(C) = F(Ai),
if F(Ai)≥ F(A j) for all Ai ,A j ∈Cr , i 6= j;

Step 9: Termination. Steps 6, 7 and 8 are repeated until
theη(C) for the clusters does not change.Alternatively, the
algorithm also terminates when the prespecified number of
iteration is reached.

Fig. 1: The framework of the proposed gene selection algorithm
(NMINR-FCM)

It is important to note that the number of clusters,k, is
fed to the proposed algorithm as an input parameter. To
find the best choice fork, we use the sum of the
neighborhood mutual information measure

k
∑

r=1
∑

Ai∈Cr

NMIδ (Ai ;η(C)), to evaluate the overall

performance of each clustering. With this measure, we
can run the proposed algorithm for allk ∈ {2, . . . , p} and
select the valuek that maximizes the sum of the
neighborhood mutual information correlation measure
over all the clusters as the number of clusters. That is,

k= arg max
k∈{2,...,p}

k
∑

r=1
∑

Ai∈Cr

NMIδ (Ai ;η(C))

4 Efficient gene selection algorithm

In this section, the performances of our proposed
algorithm shall be demonstrated. In this experiment, the
operating environment is Lenovo Windows7 PC with 3.1
GHZ CPU and 4GB RAM, and the algorithm is coded by
VC++. In order to test the proposed algorithm, five
different datasets which are from UCI datasets, used to
study. A review of these datasets given in Table1 are as
follows: (1) Dataset of breast cancer data is reported in
[36], consists of 9,216 genes and 84 samples; (2)
Leukemia1 is a collection of 7,129 genes and 72 samples,
which is reported in [37]; (3) Leukemia 2 is another set of
Leukemia [38], which contains 12,582 genes and 72
samples; (4) Small round blue cell tumors (SRBCT),
reported in [39], are five different childhood tumors
named so because of their similar appearance on routine
histology, contains 2,308 genes and 88 samples; (5)
Colon cancer contains 2000 genes and 62 samples,
reported in [40].

Table 1: Gene expression data sets

Dataset Genes Classes Samples

Breast 9,216 5 84

Leukemial 7,129 3 72

Leukemia2 12,582 3 72

SRBCT 2,308 5 88

Colon 2,000 2 62

In order to show the effectiveness of the proposed
technique, several feature selection algorithms are
compared. We conduct experiments with features
selection algorithms of ReliefF [41], CFS [42], NRS [43]
and NMI-EmRMR [33]. After features selection, three
popular classification algorithms (Linear support vector
machine (LSVM) and k-nearest-neighbor classifier
(KNN) and CART) are employed for evaluating the
quality of raw data and these selected genes.

In the following experiments, we will compare the
numbers and classification accuracies of the genes
selected with different algorithms. We normalize the
feature values to the [0,1], and setδ = 0.15 according to
the experimental results. The statistics of classification
performance is evaluated by 10-fold cross validation.
Each dataset is first partitioned into 10 equal-sized sets.
Then we use nine parts to create the training set for
training the classification models and the remaining 10th
to create the test set for evaluating the performance of
each technique. In each training-test procedure of 10-fold
cross validation, we repeat the algorithms used for
comparison five times with different random seeds in
order to ensure that the comparison among different
classifiers does not happen by chance.
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Table 2: Number of genes selected with different algorithms

Data RAW ReliefF CFS NRS

Breast 9,216 20 192 5

Leukemial 7,129 9 102 3

Leukemia2 12,582 15 150 3

SRBCT 2,308 7 70 2

Colon 2,000 6 46 2

Table 2 gives the numbers of genes selected with
different algorithms, where raw denotes the feature
numbers and accuracies of the raw datasets, ReliefF, CFS
and NRS denote the results produced with ReliefF, CFS
and neighborhood rough sets, respectively. From Table 2,
we can see that only several genes are selected though
gene selection algorithms. However, it is obviously that
the number of genes selected decreases significantly. NRS
just selects 5, 3, 3, 2, 2 genes for this task. The
classification performances of these features are given in
Tables 3, 4 and 5.

Table 3 gives linear support vector machine based
classification accuracy computed with the raw data and
the selected data, respectively. CART based classification
performances of the raw data and selected data are shown
in Table 4. KNN based classification accuracies, shown in
Table 5, are similar with CART. From Tables 3, 4 and 5,
we can see that ReliefF and CFS based gene selection
algorithms are effective for LSVM and KNN based
cancer recognition. However, they are not effective for
CART. CART is much weaker in recognizing cancers
than LSVM. Furthermore, NRS is not better than the
other two gene selection algorithms. The results show that
all the accuracies gotten from the raw data in Tables 4 and
5 are worse than those obtained with LSVM. However,
classification performances improve much after gene
selection.

Table 6 gives the number of genes selected and the
performance based on NMI-EmRMR. Compared Table 6
with Table 2, we can see that the number of genes
selected with NMI-EmRMR is more than NRS, and less
than ReliefF and CFS. The results in Tables 3, 4, 5 and 6
show that the classification accuracies significantly rise
with the genes selected with NMI-EmRMR. As to these
gene selection algorithms, NMI-EmRMR is much better
than ReliefF, CFS and NRS. Moreover, the genes selected
with NMI-EmRMR are also more powerful than the raw
data. The average accuracy rate rises from 90.3 to 93.1 as
to LSVM, from 72.9 to 84.1 as to CART, and from 74.1 to
91.7 as to KNN. It shows that NMI-EmRMR is effective
for gene selection.

The number of the selected genes and the
corresponding classification performances based on the
proposed algorithm NMINR-FCM are shown in Table 7.
During the comparing between Tables 6 and 7, we can
find that the proposed algorithm obtain better average

Table 3: LSVM accuracy of genes selected with genes selection
algorithms (%)

Data RAW ReliefF CFS NRS

Breast 95.4± 8.4 84.5± 5.7 98.0± 2.1 67.5± 8.7

Leukemial 94.5± 6.5 98.6± 7.4 96.3± 5.3 83.7± 8.9

Leukemia2 94.6± 3.2 96.1± 6.9 95.6± 5.8 90.3± 6.8

SRBCT 82.4± 8.3 79.9± 8.3 86.0± 9.6 67.0± 7.9

Colon 84.6± 6.4 76.4± 9.8 82.6± 6.9 70.5± 5.3

Average 90.3 87.1 91.7 75.8

Table 4: CART accuracy of genes selected with genes selection
algorithms (%)

Data RAW ReliefF CFS NRS

Breast 65.8± 4.7 76.3± 7.8 70.8± 7.5 77.5± 4.2

Leukemial 78.8± 2.6 93.6± 8.9 76.5± 6.3 88.5± 5.4

Leukemia2 90.3± 9.8 93.4± 8.6 88.5± 9.6 94.1± 9.8

SRBCT 65.7± 6.3 72.1± 3.5 74.2± 6.3 65.6± 9.0

Colon 63.9± 5.6 70.6± 7.4 74.0± 8.6 62.3± 6.7

Average 72.9 81.2 76.8 77.6

Table 5: KNN accuracy of genes selected with genes selection
algorithms (%)

Data RAW ReliefF CFS NRS

Breast 68.7± 2.6 81.7± 3.6 97.5± 5.3 81.3± 6.2

Leukemial 82.8± 5.6 96.6± 6.5 97.5± 5.3 86.1± 2.7

Leukemia2 86.7± 2.3 94.3± 6.5 98.0± 4.3 93.2± 1.3

SRBCT 66.4± 9.8 79.0± 7.8 80.2± 9.8 66.5± 6.1

Colon 65.9± 6.2 75.9± 9.2 78.8± 8.9 69.9± 8.5

Average 74.1 85.5 90.4 79.4

accuracy than the NMI-EmRMR with similarity of genes
selected. According to the experimental results presented
in these tables, the proposed algorithm yields top-notch
performance among these algorithms for all five datasets.
For example, in Leukemia1 dataset, the accuracy value of
the proposed algorithm is 98.8% as to LSVM, which is
approximately 0.2% higher than that of NMI-EmRMR,
0.2% higher than that of ReliefF, 2.5% higher than that of
CFS, 15.1% higher than that of NRS.

In these tables, average shows summarized result
which is calculated by averaging the accuracy values over
all datasets. The average classification performance of the
proposed algorithm beats ReliefF by about 8.1%, CFS by
about 3.5%, NRS by about 19.4%, and NMI-EmRMR by
2.1%, as to LSVM.
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Table 6: Number of genes selected and performance based on
NMI-EmRMR

Data LSVM(%) CART(%) KNN(%)

n Accuracy n Accuracy n Accuracy

Breast 18 100.0± 0.0 5 80.8± 10.4 15 98.8± 4.0

Leukemial 11 98.6± 4.5 2 94.3± 6.8 16 98.6± 4.5

Leukemia2 15 100.0± 0.0 17 96.5± 5.9 15 98.6± 4.5

SRBCT 9 84.0± 22.3 4 75.6± 3.7 14 82.3± 22.1

Colon 7 82.9± 5.3 2 73.3± 8.4 10 80.2± 9.2

Average 12 93.1 6 84.1 14 91.7

Table 7: Number of genes selected and performance based on
NMINR-FCM

Data LSVM(%) CART(%) KNN(%)

n Accuracy n Accuracy n Accuracy

Breast 16 100.0± 0.0 4 84.7± 9.1 15 99.4± 3.5

Leukemial 10 98.8± 3.2 2 95.8± 8.6 12 99.2± 2.2

Leukemia2 12 99.6± 5.8 14 97.2± 7.8 13 98.6± 4.3

SRBCT 8 89.0± 9.6 3 83.2± 6.2 10 85.4± 11.8

Colon 6 88.6± 11.9 2 80.1± 5.3 5 84.9± 8.9

Average 10.4 95.2 5 88.2 11 93.5

Now we show the classification power of the first 20
genes selected with NMI-EmRMR and NMINR-FCM in
Figs.2 and 3, where Leukemia1 and SRBCT are used as
examples. Observing these two figures, we can observe
that the NMINR-FCM is better than NMI-EmRMR.
These results show that the genes selected can obtain high
and stable classification performance. From the
experimental results above, we conclude that our
proposed approach is superior to other methods.

(a)LSVM

(b)KNN

Fig. 2: Variation of classification accuracy with number of genes
(Leukemia1)

(a)LSVM

(b)KNN

Fig. 3: Variation of classification accuracy with number of genes
(SRBCT)

5 Conclusions

Since gene expression data sets have thousands of genes
and only a small number of samples, feature selection is
an essential step to perform cancer classification, which to
predict classes and a relatively small number of samples.
Clustering and classification are key tasks of gene
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identification. Rough set theory has been used widely as
an attribute selection approach. While the gene expression
data sets are always continuous, the classical rough set
methods cannot handle this case directly. Neighborhood
rough set is introduced to deal with the continuous data in
gene expression. In this paper, we introduce NMI to
compute the relevance between genes and define the
cohesion degree of the neighborhood of an object and
coupling degree between neighborhoods of objects which
based on neighborhood mutual information. Furthermore,
the new initialization method of cluster centers for the
Fuzzy C-means algorithm and the novel algorithm for
gene selection based on Fuzzy C-means algorithm and
neighborhood rough set are proposed. Five cancer data
sets are gathered to test the proposed gene selection
algorithm. Compared with ReliefF, CFS, NRS and
NMI-EmRMR, NMINR-FCM gets good genes for cancer
classification. Experimental results show that this
algorithm outperforms than other approaches. In
summary, we can get the conclusion that NMINR-FCM is
effective and efficient for gene selection. In addition, we
also find that the genes ranking the first several hundred
are enough for cancer recognition.
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