
Appl. Math. Inf. Sci.8, No. 6, 3085-3093 (2014) 3085

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.12785/amis/080649

Breadth First Search Sequence based Method for
Efficient Process Retrieval
Ye Yanming1,2,∗, Yin Yuyu3, Xu Yueshen1, Cao Bin1 and Yin Jianwei1

1 College of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China
2 College of Information Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
3 College of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou 310018, China

Received: 19 Nov. 2013, Revised: 17 Feb. 2014, Accepted: 18 Feb. 2014
Published online: 1 Nov. 2014

Abstract: With increasing improvement of the business process management (BPM) technology, large-scale business process
repositories have been adapted widely. However, due to the explosion ofthe number of business processes, a large part of enterprises
are confronting with the challenge on effective management of those massive processes. Usually, each business process is modeled as
a process graph, and therefore most existing approaches are based on graph mining algorithms. This paper puts forward a new method,
which first utilizes the breadth first search (BFS) algorithm to label the process model, and then calculates the similarity based on the
matching distance. The experimental results show that our method is efficient enough for practical use, especially suitable for fuzzy
retrieval.

Keywords: process retrieval, breadth first search, BFS code, process matching

1 Introduction

As a widely employed approach in enterprises to regulate
business logic and handle business processes, workflow
techniques gain increasing development with continuous
enterprises information construction. There are various
business processes in a company, which cooperate with
each other to accelerate the work efficiency in an
organization. In the meantime, most companies have to
modify some processes to keep pace with the frequent
requirement changes. Therefore, a company usually has a
large number of candidate business processes. In order to
manage these business processes efficiently, many
enterprises have built their own business process model
repositories, and regard them as important knowledge
bases in business process management within
organizations. There are often thousands of process
models in a single repository [1,2], and enterprises tend
to accumulate large numbers of process models along
with time. For example, Suncorp, one of the largest
Australian insurers, maintains a repository containing
more than 6000 process models [3], and Chinese Railway
Corporation holds more than 200000 models [4].

It is an intractable challenge to manage such
enormous business process model repositories. In

practice, it is a common way to retrieve existing process
models to reuse the whole process or process fragments,
when a new process model is created. Therefore, the
ability to retrieve efficiently from a business process
model repository is critical for enterprises. There is
another technology called process recommendation that
uses similar basic definitions. Generally, the process
retrieval may be the preceding step when process
recommendation is conducted, but there is no inclusion
relation between the two techniques. The main
differences of the two technologies are explicated as
follows.

1.The granularity of conduct is different. Process
recommendation requires precise retrieval, and a
certain process along with its process fragments may
be the intermediate result (in most proposed methods,
the problem is to find all the subgraphs of the
corresponding process graph). While the common
process retrieval only needs to return the whole
process or some certain process fragments.

2.Process retrieval is the basic technique in a process
repository. It may be useless when a process
repository contains numerous process models, so that
we cannot find the certain process effectively that

∗ Corresponding author e-mail:yeyanming@126.com

c© 2014 NSP
Natural Sciences Publishing Cor.

http://dx.doi.org/10.12785/amis/080649

3086 Y. Yanming et. al. : Breadth First Search Sequence based Method for...

matches the search condition. However, process
recommendation is not the requisite technology for a
process repository except for intelligent modeling
purpose.

3.In process recommendation and process retrieval
techniques, their core process sets are different.
Process recommendation technologies use candidate
process sets that are a subset of the process repository
and all frequent subgraphs of the candidate processes
as the basic analysis data. While process retrieval
technologies generally use all processes in a
repository as the compared data.

4.The usage intentions are different. Process
recommendation is mainly used in intelligent
modeling, while process retrieval is mainly used in
maintenance of the process repository.

Next, the research background will be introduced for
deeper comprehension of the paper.

A process model can be depicted with a graphical
model, which describes the way that a certain process is
composed. Usually, a process consists of different tasks,
in which resources are involved in carrying out these
tasks, and objects are being manipulated [5]. Therefore,
the core task of most of the existing process retrieval
methods is to find out all process models in a repository
that contains the given process fragment as a subgraph.
For example, a versatile graph matching algorithm based
on fix-point computation was proposed in [6], which was
announced to be usable across various scenarios. Paper
[7] focused on the application of graph matching
algorithms to the similarity search problem and studied
four kinds of graph matching algorithms. Paper [8]
proposed a DFS Code-SED method for process retrieval
that adopted depth first search (DFS) code to label the
process model and calculated DFS codes based on
Levenshtein distance to get the similarity values, which
improved the computation efficiency of measuring the
similarity between two graphs. Nevertheless, to find all
subgraph isomorphisms is a NP-complete problem [9].
Different approaches have been proposed to solve this
problem, for instance, paper [10] proposed a two-stage
approach that reduced the number of models that needed
to be checked for subgraph isomorphism.

However, all the methods are either complex or
inefficient, and most of them are not suitable for process
retrieval with loop structures. This paper presents a BFS
sequence based process retrieval method. Firstly, we
transforms each process in the process repository into the
corresponding BFS sequences, based on the matching
distance between the targeted process and reference
process in the repository. Then, we calculate the largest
process matching distance as the matching degree.
Finally, this approach will output the retrieval results that
reach or exceed the predefined matching degree
threshold. Our approach does not need to handle subgraph
isomorphism problem, which greatly reduces the
complexity. Though the process isomorphism is still

needed to be determined for filtering the process
repository, it is not a NP-complete problem. Especially,
our approach is much appropriate for fuzzy retrieval, in
all cases that the processes contain loop structures or not,
the problem of which has not been wholly solved in other
methods.

The presented paper is organized as follows. After the
above introduction, Section2 gives some definitions with
related basic instructions, and at the end of this section,
highlights how to calculate process matching degree. In
Section 3, we discuss the implementation of BFS based
process retrieval algorithm. Furthermore, in Section 4, the
method is evaluated through sufficient experiments.
Finally, Section 5 discusses the research perspective.

2 Preliminary

Business process is a series of activities that are
performed by different performers to specific target
respectively, and the order of activities represents
collaboration of these performers. In workflow systems,
the process reflects the actual business process, and the
activity node represents the business operation in
enterprises. Information or operations will flow or
conduct in turn according to the nodes sequence.
Therefore, the business process model can be abstracted
as a directed graph, in which the nodes represent
activities, with a corresponding label (implicating activity
type, content, and the serial number etc.) and the arcs
indicate nodes orders.

2.1 Business Process Graph

There are many different formalized definitions for
business process, which are used in different occasions to
describe the different features of the real business
process. In these definitions, activities and arcs are widely
used as standard terms. For simplicity, this paper gives the
definition as follows.

Definition 1(Business Process Graph): Let T be the
activity type, and a business process is a sextet
P = (A,R, f ,s,e) where:

1. A is the finite set of activities, which is represented by
nodes in a process graph.

2. R ∈ A×A is the relationship between activities, which
is represented by arcs or edges in a process graph.

3.f : A → T is the activity type function and
T = {and join−andsplit,and join−orsplit,or join−
andsplit,or join−orsplit}.

4. s ∈ A is the start activity.
5. e ∈ A is the end activity.

Activity x ∈ A is the input of activityy ∈ A if and only
if there exists a directed arc connectingx with y (that is,
(x,y) ∈ R). Nodex ∈ A is the output of nodey ∈ A if and

c© 2014 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.8, No. 6, 3085-3093 (2014) /www.naturalspublishing.com/Journals.asp 3087

only if there exists a directed arc connectingy with x (that
is, (y,x) ∈ R). The activity that has no input node is called
start activity and the activity that has no output activity is
calledend activity. In a workflow repository, any business
process can be modeled as a process graph containing only
onestart activity s and oneend activity e. So the business
process in Definition 1 can be simplified asP = (A,R, f).

Definition 2 (Business Process Isomorphism): Let
P = (A,R, f) and P′ = (A′,R′, f ′) be two business
processes. The business isomorphism betweenP and P′

(denoted asP∼= P′) is a mappingg : A→ A′ such that:

1.∀u ∈ A,(f (u) = f ′(g(u)))
2.∀u,v ∈ A,((u,v) ∈ R⇒ (g(u),g(v)) ∈ R′)

The presented method in this paper only adopts the
entire business process as the process pattern, and does
not need to handle subgraph isomorphism. However, for
efficiency, before a new process is created or added into
the process repository, the method still needs to determine
whether the process is isomorphism with one of the
processes in the repository. Canonical label is widely used
to solve the graph isomorphism problem. The canonical
label for a graph (denoted as cl(G)) is a unique code
which is a sequence of bytes, characters or numbers. It is
irrelative with the order of nodes and arcs of the graph
and fully depends on the graph topology. If the canonical
labels of two graphs are the same , then these graphs are
isomorphic to each other. This paper adopts BFS (Breadth
first search) standard sequence to construct canonical
labels. Related definitions of BFS standard sequence will
be discussed in the following.

2.2 Process Canonical Label

DFS (Depth First Search) and BFS (Breadth First Search)
are widely used in graph mining. Compared with BFS,
DFS consumes less memory, but runs slower due to the
stack utilization. On the other hand, BFS consumes more
memory, but runs faster than DFS. The fact in construc
-tion practice of process resource library and process
patterns shows that the vast majority of business
processes are of simple structure and less nodes. In the
selected process library used in this paper, there are 86%
processes including less than 20 nodes, and nearly 71%
processes have less than 10 nodes. Therefore, the problem
of memory usage is not a matter. On the contrary, because
the number of processes may be huge, the time
performance is more important. Therefore, this paper uses
BFS to realize the canonical label of the process graph.

Breadth first search by different nodes orders of the
same hierarchy may lead to different BFS sequences.
Therefore, the paper presents standard BFS sequence to
ensure that the BFS sequence of the same process is
unique. And we can reconstruct unique process with the
standard BFS sequence. Next, we give some definitions
on the BFS sequence.

In Definition 1, the activity and its type are defined
separately and the type is the output of functionf with
certain activity input. For simplicity, we can define an
activity label mapping functionL : (A, f (A)) → N that
combines the activityA and its typef (A) into a unique
activity labelN. Then the business process in Definition 1
can be simplified asP = (N,R). Next, we give some
definitions on BFS sequence.

Definition 3 (BFS Sequence): The breadth first
traversal order on a processP is a linear order. As
Definition 1 shows, the directed arc ofP can be labeled
by ordered activities. Therefore, the BFS sequence ofP
can be represented as follows:

{s},{sni : sni ∈R},{nin j : nin j ∈R}, . . . ,{nte : nte∈R},{e}

Then the BFS sequence ofP is:

BFSsequence(P) = s♯{sni}♯{nin j}♯ . . .{nte}♯{e}

Where, the symbol♯ is the separator that divides the
different traversal hierarchies. For example, as shown in

s a

c

b

d e

Fig. 1: Process Sample P

Fig. 1, the BFS sequence of the process sampleP is

BFSsequence(P) = s♯sa♯ab, ac♯bd, cd♯de♯e (1)

Definition 4 (Standard BFS Sequence): A BFS
sequence of processP is called standard BFS sequence if
the labels of the same hierarchies are by lexicographic
order, which is denoted asBFSsequence(P).

Except for Eq. (1), the BFS sequence of process shown
in Fig. 1 can also bes♯sa♯ac, ab♯cd, bd♯de♯e or others.
But only Eq. (1) follows the Definition 4, so only Eq. (1)
can be called standard BFS sequence of the process.

Generally, if there are continuous repeated fragments
in BFS sequence of a process, the process may contain
loop structures. However, as shown in Fig.2(a)(b), the
fragments ab,bc,ca in the given processes are
continuously repeated in both BFS sequences and the Fig.
2(b) apparently does not have loop structures. Therefore,
we can not determine whether a process has loop
structures or not only based on the existence of
continuous repeated fragments of its BFS sequence. It is
easy to see that for a process withN activities and no
loops, its biggest BFS sequence hierarchy is not more
than N + 1. Therefore, if the number of BFS sequence
hierarchies is more than the number of nodes in a process,
the process will certainly contain loop structures.

c© 2014 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

3088 Y. Yanming et. al. : Breadth First Search Sequence based Method for...

s a cb e

s a cb aa cb e

Fig. 2: Process samples with similar BFS sequence

Definition 5 (Extensional Standard BFS Sequence):
The extensional standard BFS sequence of the process
that containsN nodes has at mostN + 2 hierarchies, and
the first N + 1 hierarchies are the same as standard BFS
sequence and the(N +2)th hierarchy consists of all nodes
hierarchies numbers that the arcs in(N + 1)th hierarchy
may be connected to. The extensional standard BFS
sequence is denoted asEBFSsequence(P).

For example, the extensional standard BFS sequence
of process that is shown in Fig.2(a) is:

s♯sa♯ab♯bc♯ca, ce♯ab,e♯4

The set expression of the extensional BFS standard
sequence isEBFSSsequence(P) = p1, p2, . . . pm, wherepi
is the arcs set of theith hierarchy and can be denoted as
{pi1, pi2 . . .}. For example, the set expression of the
extensional BFS standard sequence of process that is
shown in Fig.2(a) is:

S EBFSSsequence(P) ={p1, p2, p3, p4, p5, p6, p7}

={s,{sa},{ab},{bc},{ca,ce},

{ab,e},{4}}

Definition 6 (BFS Determination of Process
Isomorphism): Given processP and processP′, if there
is isomorphism betweenP andP′, their extensional BFS
standard sequences ofP andP′ must be the same. That is,

P∼= P′⇔ EBFSSsequence(P) = EBFSSsequence(P′)

⇔ S EBFSSequence(P) = S EBFSSsequence(P′)

Using extensional standard BFS sequence to build
process repository every process can be uniquely
identified and whether a new process can be added into
repository depends on whether there is not isomorphism
between it and any other processes of the repository.

2.3 Process Matching Degree

As mentioned above, extensional standard BFS sequence
can help us build process repository. This part mainly
discusses how to calculate the process matching degree,
which is the basis of process retrieval.

Definition 7 (Process Matching Matrix) : Let
P = (N,R) and Q = (N′,R′) be two process graphs.

S EBFSSsequence(P) = {p1, p2, . . . , pM} and S EBFS
Ssequence(Q) = {q1,q2, . . . ,qM} are their extensional
standard BFS sequences respectively. The process
matching matrix can be expressed as:

Mat(P,Q) =





ψ(pM,q1) . . . ψ(pM,qN)
.

ψ(p1,q1) . . . ψ(p1,qN)



 (2)

where ψ(pi,q j) is the comparison function which is
defined as:

ψ(pi,q j) =
SED(pi,q j)−|length(pi)− length(q j)|

min(length(pi), length(q j))
(3)

where,SED(x,y) is the string edit distance ofx and y ,
which is the minimum number of insertions, deletions and
substitutions to transformx into y. Length(x) is the number
of characters that string x contains.

Note that it has been mentioned in Sect.2.1 that any
business process can be modeled as a process graph
containing only onestart node s and only oneend nodee.
The process matching path can be defined as follows.

Definition 8 (Process Matching Path): For processP
and Q in Definition 7, let Mat(P,Q) be the process
matching matrix. A process matching pathW , is a
contiguous set of matrix elements that define a mapping
betweenP and Q. The vth element ofW is defined as
wv = (i, j)v, so we get:

W =w1,w2, ,wV ,where max(M,N)≤V <M+N−1 (4)

The process matching path is typically subject to several
constraints.

Boundary conditions : w1 = (1,1) andwV = (M,N),
this requires the path to start and end in diagonally
opposite corner cells of the matrix.

Continuity : Given wv = (a,b) then wv−1 = (a′,b′)
where a − a′ ≤ 1 and b − b′ ≤ 1. This restricts the
allowable steps in the path to adjacent cells (including
diagonally adjacent cells).

Monotonicity : Givenwv = (a,b) thenwv−1 = (a′,b′)
wherea− a′ ≥ 0 andb− b′ ≥ 0. This forces the points in
W to be monotonically spaced in turn.

There are various matching paths that satisfy the
above conditions, but we are only interested in the path
that minimizes the distance, and the minimized distance is
also called process matching distance. The path distance
can be gained using dynamic programming to evaluate
the following recurrence which defines the cumulative
distanced(i, j) as the value of current cell(ψ(i, j)) and
the minimum of the cumulative distances of the adjacent
elements:

d(i, j)=ψ(i, j)+min{d(i−1, j−1),d(i−1, j),d(i, j−1)}
(5)

For simplicity, the process matching path is referred to the
path with minimized distance in the latter.

c© 2014 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.8, No. 6, 3085-3093 (2014) /www.naturalspublishing.com/Journals.asp 3089

Definition 9 (Process Matching Degree): For process
P and Q in Definition 7 , letMat(P,Q) be process matching
matrix andW = w1,w2, ,wV is the matching path, then the
process matching degree can be calculated by the Eq. (4):

MatchDegree(P,Q) = 1−
d(M,N)

max(M,N)
(6)

whereM andN are the BFS sequence hierarchy of process
P and Q, andd(M,N) is the cumulative distance of cell
Mat[M,N] in the top right corner of the process matrix.

When a querying process or process fragment is
retrieved, the matching degree between the querying one
and each one in the repository will be calculated and all
the processes that make the matching degree larger than
the given threshold will be returned as results. Next, the
implementation of the method will be discussed in detail.

3 Implementation

Let θ be the threshold of process matching, the BFS
sequence based process retrieval method can be divided
into four modules as shown in Fig.3.

Step 1. This step transforms the process into BFS
sequence form and abandons the isomorphism process.
When a new process is being added into the standard
process repository, it must be transformed into BFS
sequence form if it is not in this form and then process
isomorphism will be determined between the new process
and each one in repository. Only if there is no any
isomorphism, the new process can be added into the
repository.

Step 2. In this step, a user can use a graphical
interface to input the parameterθ that stands for the
precision demand that the user expects and the use the
transforming tool to transform the query process into BFS
sequence.

Step 3. In this step, the standard process repository
will be reduced to form the process candidate set
depending whether the process contains the nodes that the
input process does.

Step 4. This step is the core part that calculates
matching degree between querying process and each one
in the repository and output those that meet the user’s
precision demand.

3.1 Build the Process Candidate Set

Building process candidate set is actually to cut the
standard process repository. Obviously, a process that has
no intersection or rarely intersects intersected with the
querying process on the nodes can not match the querying
process well. Therefore, we can just remove the processes
whose nodes sets have less intersection with that of
querying process. Next, we give the pseudo code (shown
in Algorithm 1).

Algorithm 1 Pseudo code of building process candidate
set
Input:

Process: p, Standard process repository: prep, Parameter:θ
Output:

Candidate process set: CPS
1: Initialize candidate process set: CPS
2: H p← get length of BFS sequence ofp
3: N p← get number of nodes inp
4: NodeSetof P← get nodes set ofp
5: for eachq in p rep do
6: Hq← get length of BFS sequence ofq
7: if Hq < H p then
8: continue
9: Nq← get number of nodes inq

10: else ifNq < N p then
11: continue
12: NodeSetofQ← get nodes set ofq
13: diffSetofPQ← NodeSetofP− NodeSetofQ
14: else ifdiffSetofPQ.length> Hp×(1−θ) then
15: continue
16: else
17: CPS.add(p)
18: end if
19: end for
20: return CPS

3.2 Matching Degree Calculation

Process retrieval is to get the processes that satisfy the
given process matching degree from the process
candidate set. Next, we give the pseudo code to show how
to calculate the matching degree (shown in Algorithm2).

Algorithm 2 Pseudo code of building process candidate
set
Input:

Process:p,q
Output:

Matching degree:md
1: Hp← get length of BFS sequence ofp
2: Hq← get length of BFS sequence ofp
3: d[]← new[H p,Hq]
4: for i = i to H p do
5: for j = i to Hq do
6: d[i, j] = Ψ(i, j) + min{Ψ(i− 1, j),Ψ(i, j − 1),Ψ(i−

1, j−1)}
7: end for
8: end for
9: md = 1−d[H p,Hq]max(H p,Hq)

10: return md

c© 2014 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

3090 Y. Yanming et. al. : Breadth First Search Sequence based Method for...

Preprocessing

Standard

Process Repository

Query Interface

Process Candidate

Set

Process

Matching

Matrix

Retrieval

Result

Matching Degree

Calculation

Fig. 3: The process of BFS sequence based process retrieval method

4 Experimental Evaluation

In this section, experiments on the retrieval accuracy and
performance of the method and comparison between our
BFS sequence based method and DFSCode-SED based
method [8] (the latter method was claimed to be more
efficient) are carried out on the dataset that is collected
from administrative examination and approval processes
from the administrative department of a local government
(China), which contains 221 business processes involving
in totally 52 activities. All experiments are done on a
2.4GHz Intel Core 2 Duo P8600 PC with 4GB main
memory, running on Windows 7.

In order to facilitate the discussion, the experiments
are grouped into full retrieval and fragment retrieval. The
full retrieval is to judge whether the repository contains
the querying process and output it if it does. The fragment
retrieval is to find and output all processes that contain the
querying process fragments to a certain degree. The
fragment retrieval is also divided into exact retrieval and
fuzzy retrieval for better analysis.

4.1 Full Retrieval Evaluation

In our BFS sequence based method, one to full retrieve
only needs to set the parameterθ = 1. We randomly
select five processes with simple structure (no branch and
no loop) and five processes with complex structure (4
contain branch structure and 1 contains loop structure)
from the collected 221 processes as the testing querying
processes. These selected processes are divided into two
groups and labeled as ’S1, S2, S3, S4, S5’ and ’C1, C2,
C3, C4, C5’ by their nodes number order in each group
respectively. The test results are shown in Fig.4.

In Fig. 4(a), the retrieval time rises when the nodes
number of the processes rises in turn although varied
little. And the first four processes of simply structure
consumes little more retrieval time than the first processes
of complex structure respectively. It may be because the
BFS sequence length of a process with simply structure is

longer than that of complex structure if their nodes
number is the same. Similarly, the retrieval time of
process ’C5’ suffers from a sudden increase and this may
be because the BFS sequence length of process with loop
is even longer than that of simply structure with the same
nodes number. The comparison experiment between our
BFS sequence method and DFSCode-SED is also carried
out in this section and the result is shown in Fig.4(b). As
it can been seen in Fig.4(b), the average retrieval time of
the two methods is approximately the same for simple
structure . For complex structure process retrieval, the
BFS method seems need more time than DFSCode-SED
from the figure alone. That is because the DFSCode-SED
method can not retrieve the process with loop structure
and the output average time only employs the values of
the first four processes.

In conclusion, the retrieval time depends on both the
nodes number and the structure of the querying process in
our BFS sequence based method and the loop structure
has more impact on the efficiency. Our method is similar
in efficiency with the DFSCode-SED method, but our
method supports the querying process containing loop
structure, while the DFSCode-SED method can not.

4.2 Fragment Retrieval Evaluation

In fragment retrieval experiment, we cut out 5 process
fragments (labeled as F1, F2, F3, F4, F5) from the
collected processes and build 5 process fragements
(labeled as B1, B2, B3, B4, B5) based on the 52 activities
randomly as the testing querying processes to evaluate the
exact retrieval and fuzzy retrieval respectively. By setting
the parameter =0.9, 0.75, 0.6 respectively, our BFS
sequence based method is experimented in turn. Some
results are shown in Table 1 and Fig.5.

As we can see from Table1 and Fig. 5, when the
matching degree thresholdθ decreases, the number of
retrieved processes and the total retrieval time both rise.
On the one hand, the matching degree threshold is used to
control the return of retrieval results and is irrelevant to

c© 2014 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.8, No. 6, 3085-3093 (2014) /www.naturalspublishing.com/Journals.asp 3091

(a) Querying Process

(b) Simple Structure and Complex Structure

Fig. 4: Full Retrieval Evaluation

Fig. 5: Fuzzy Retrieval Evaluation

Table 1: Fuzzy Retrieval Result

Parameterθ Total Time(ms) The Number of Retrieved Processes
Exact Retrieval Fuzzy Retrieval Exact Retrieval Fuzzy Retrieval

0.9 173 221 6 14
0.75 191 249 13 29
0.6 237 286 32 47

the executing time of matching degree calculation
algorithm. On the other hand, it has been discussed in full
retrieval that the executing time of matching degree
calculation is only based on the the nodes number and
process structure. However, in the experiment results, the
total time changes so much for different thresholdθ
under the same querying process. In Sect.3.1, building
candidate process set must input the matching degree
thresholdθ , and obviously, the number of the processes
that the candidate set contains will rise by theθ being
larger. The size of candidate set increases along with the
thresholdθ decreasing and thus, although with the same
querying process, the retrieval time will increase, as a
result that the retrieval efficiency is reduced.

Both the total time and the number of retrieved
processes in fuzzy retrieval are more than in exact
retrieval and it may be also because the size of candidate
process set in fuzzy retrieval is larger than that in exact
retrieval.

It is important to note that the BFS sequence based
method can not control the switch to exact retrieval or
fuzzy retrieval, and in the experiment, it is determined by
the querying process fragments.

5 Conclusion and Future Work

Process retrieval is an important technology in manage-
ment of large business process model repositories and

c© 2014 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

3092 Y. Yanming et. al. : Breadth First Search Sequence based Method for...

most of the existing process retrieval methods use
graphical notations to find matching processes that
contain given process fragments as subgraphs. However,
the complexity of finding all subgraph isomorphisms are
known to be NP-complete, so most methods adopt
canonical labels to solve the problem. Unfortunately,
these methods are inadequate or limited in some
circumstances, such as the direct retrieval of process with
branches or loops, fuzzy retrieval and so on. This paper
proposes a BFS sequence based method that can solve
these problems, especially support fuzzy retrieval and the
retrieval of process with loop structure. The most
contribution of this paper is that it is the first time to
propose BFS sequence to label process, while other
methods mainly adopt DFS code to represent process and
can not solve the loop problem. Meanwhile, our method
can avoid the subgraph isomorphism determination that is
known to be NP-complete.

Still, much work has to be done in the future. The
BFS sequence automatic construction is important to
improve the performance of the method and the matching
degree calculation algorithm can be improved to achieve
better performance. Furthermore, the application of BFS
sequence is another issue for future work.

Acknowledgement

This work is supported by the National Natural Science
Foundation of China under Grant (No.61272129),
National High-Tech Research Program of China (NO.
2013AA01A213), New-Century Excellent Talents
Program by Ministry of Education of China (No.
NCET-12-0491), Zhejiang Provincial Natural Science
Foundation of China (LR13F020002).

References

[1] Fahland D, Favre C, Jobstmann B, et al. Instantaneous
soundness checking of industrial business process models.
Business Process Management. Springer Berlin Heidelberg,
278-293 (2009).

[2] Dijkman R M, La Rosa M, Reijers H A. Managing large
collections of business process models-current techniques and
challenges. Computers in Industry,63, 91-97 (2012).

[3] La Rosa M, Dumas M, Uba R, et al. Business process
model merging: an approach to business process consolidation.
ACM Transactions on Software Engineering and Methodology
(TOSEM),22, 11 (2013)

[4] Ekanayake C C, La Rosa M, Ter Hofstede A H M, et
al. Fragment-based version management for repositories of
business process models. On the Move to Meaningful Internet
Systems: OTM 2011. Springer Berlin Heidelberg, 20-37
(2011)

[5] Dijkman R, Dumas M, Garcła-Bauelos L. Graph matching
algorithms for business process model similarity search.
Business Process Management. Springer Berlin Heidelberg,
48-63 (2009).

[6] Melnik S, Garcia-Molina H, Rahm E. Similarity flooding:
A versatile graph matching algorithm and its application to
schema matching. Proceedings of 18th IEEE International
Conference on Data Engineering, 117-128 (2002)

[7] Dijkman R, Dumas M, Garcła-Bauelos L. Graph
matching algorithms for business process model similarity
search[M]//Business Process Management. Springer Berlin
Heidelberg, 48-63 (2009).

[8] Cao B,Yin J W,Chen H X. A Levenshtein Distance
Based Method for Process Retrieval. Computer Intergrated
Manufacturing Systems,18, 1766-1773 (2012).

[9] Shasha D, Wang J T L, Giugno R. Algorithmics and
applications of tree and graph searching. Proceedings of the
twenty-first ACM SIGMOD-SIGACT-SIGART symposium on
Principles of database systems. ACM, 39-52 (2002).

[10] Jin T, Wang J, La Rosa M, et al. Efficient querying of large
process model repositories. Computers in Industry, (2012).

Yanming Ye is a
Ph.D candidate at the
College of Computer Science
and Technology, Zhejiang
University, Hangzhou,
China. His research interests
include workflow & business
process management,
cloud computing and
social computing.

Yuyu Yin received the
Doctor?s degree in computer
science from Zhejiang
University, Hangzhou, China,
in 2010. He is currently
an assistant professor in
Hangzhou Dianzi University.
His research interests include
service computing, cloud
computing and middleware

techniques.

Yueshen Xu is a
Ph.D candidate at the
College of Computer Science
and Technology, Zhejiang
University, Hangzhou,
China. His research interests
include service computing,
recommendation system,
business process management
and applied machine learning.

c© 2014 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.8, No. 6, 3085-3093 (2014) /www.naturalspublishing.com/Journals.asp 3093

Bin Cao received
the Doctor?s degree in
computer science from
Zhejiang University,
Hangzhou, China, in 2013.
His research interests include
workflow management,
event processing and
spatial database.

Jianwei Yin is currently
a professor in the College
of Computer Science,
Zhejiang University (China).
He received his Ph.D.
in Computer Science
from Zhejiang University
in 2001. He is the visiting
scholar of Georgia Institute
of Technology, America in

2008. His research interests include distributed network
middleware, software architecture and information
integration.

c© 2014 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

	Introduction
	Preliminary
	Implementation
	Experimental Evaluation
	Conclusion and Future Work

