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Abstract: Unmodelled dynamics and perturbations are always immeasurable. In this paper, an adaptive sliding mode control (ASMC)
based on wavelet network (WN) for a class of non-affine multi-variablenonlinear discrete systems is presented in order to compensate
them. Wavelet network which parameters are tuned on-line is adopted to realize the equivalent control, and hitting controls are added
in order to satisfy reaching conditions. By combining the adaptive WN with SMC strategy, the constructed control law has many
advantages such as robustness, adaptive characters, and the precise mathematic models of controlled plants are not required. Finally,
experiment on an inverted pendulum control system based on the proposed control design method is given to verify its effectiveness
and performance.
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1 Introduction

In practical control systems, highly unknown
uncertainties, disturbances and nonlinearities always
exist. Many efforts on this problem have been made by
researchers of robust control, adaptive control and
intelligent control etc. In recent years, wavelet network
(WN) is used as a powerful tool for signal and data
processing, time-series analysis and the approximation of
arbitrary unknown functions such as literatures
[1],[2],[3],[4] and [5]. Using WN for function
approximation and identification of nonlinear systems has
been studied by literatures[1],[2],[3] etc.

Adaptive neural network control has been widely
investigated by many researchers such as literatures
[6],[7],[8],[9] and [10]. The parameters of neural network
(NN) are tuned on-line to approximate the unknown
nonlinear dynamic. However the precision depends on the
structure selection which is a difficult problem at present.
Inspired by the theory of adaptive NN, adaptive wavelet
network methods are reported dealing with on-line
application in the control problem of dynamic nonlinear
systems, it refers to literatures [11]-[18]. WN can be
regarded as a class of NN, but it has its special
characteristics such as the linearity in parameter space

and the orthonormality. These make WN is suitable for
on-line estimating, and there is not the problem of
structure selection in adaptive wavelets networks.
Therefore, successful application of adaptive WN to
nonlinear systems is researched[17]. Based on the
conception of multi-resolution approximation (MRA),
WN is a three-layer network consisting of orthonormal
father wavelets and mother wavelets. Because of the
orthonormal property, it is possible to regulate the
network structure and parameters on-line. Moreover, the
multi-resolution approximation ensures that the
approximation precision can be improved quickly as
resolution increases. Although the precision can be
improved arbitrarily, there exist many perturbation and
disturbance that impact on the system performance such
as stability, steady-state error and so on.

Sliding mode control (SMC) theory has been proved
to be an effective way to control nonlinear dynamic
system with strong robustness[19][20]. If we combine
SMC theory into the adaptive wavelet network, the
designed controller will possess many advantages. The
wavelets neural network control (WNNC) based on SMC
control theory and adaptive theory for the linear motor
and induction motor drive has been studied by [15][18].
Nevertheless, their research works aim at special plants.
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Furthermore, the adaptive wavelets sliding mode control
(AWSMC) for multi-variable affine nonlinear system has
been studied by [14].

The purpose of this paper is to combine the
advantages of SMC and the adaptive wavelet network to
develop a control strategy with robustness and self-tuning
property for non-affine multi-variable discrete nonlinear
systems. Firstly, appropriate sliding surfaces are selected;
secondly, the parameters of the wavelet network are tuned
on-line to approximate the equivalent control; thirdly,
hitting controls are added to ensure that the reaching
condition can be satisfied. The final AWSMC controller
comprises three parts: the equivalent control
approximator, hitting control and the adaptive machine.
The closed-loop system is proved to be asymptotically
stable globally.

This paper is organized as follows. Problem
formulation is given in section 2. The fundamentals of
MRA and the function approximation are stated in section
3. The adaptive wavelet network and the hitting control
designs, stability and robustness analysis are in section 4,
additionally the network structure of the AWSMC. In
section 5, the presented AWSMC is applied to an inverted
pendulum system to confirm its validity and performance.
Experiment results are presented. In the end conclusions
are in section 6.

The signs of mathematics in this paper are general
regular as follows.

R represents real number space, and so,Rn andRn×m

denoten vector space andn×m vector space, respectively.
Z expresses the whole round number,|·| indicates absolute
value and‖·‖ denotes Euclidean norm. If matrixA ∈ Rn×m

then,‖A‖ denotes its induced norm andλmin (·)/λmax (·)
defines its minimum or maximum characteristic value.L∞
denotes Lebesgue integrable function space, namely for all
functions f ∈ R which satisfy

∫ ∞
−∞ f (t)dt < ∞ form L∞.

All such functionsf : Rn → R that fulfill
∫ ∞
−∞ ‖ f (t)‖2dt <

∞ form the spaceL2(R).

2 Problem Formulation

Consider a class of multi-variable non-affine nonlinear
system with the form of

y(r)k = f (xk,uk), (1)

whereyk = [y1,k,y2,k, · · · ,ym,k]
T denotes the output vector

andy(r)k = [y(r1)
1,k ,y(r2)

2,k , · · · ,y(rm)
m,k ]

T
denotes its derivative for

i = 1,2,m. r = [r1,r2, · · · ,rm]
T is defined as the system

relative degree with ∑m
i=1 ri = n and

uk = [u1,k,u2,k, · · · ,um,k]
T denotes the control input vector.

Followingxk = [x1,k,x2,k, · · · ,xn,k]
T= [yT

1,k,y
T
2,k, · · · ,y

T
m,k]

T

constitutes the system state vector with depicted as
yi,k = [yi,k,yi,k+1, · · · ,yi+ri−1]

T
, i = 1,2, · · · ,m.

Additionally,

f (xk,uk) = [ f1(xk,u1,k), f2(xk,u2,k), · · · , fm(xk,um,k)]

is defined as the nonlinear dynamic vector, which
componentsfi(xk,ui,k) ∈ L2(R), i = 1,2, · · · ,m are all
unknown. And about all, the subscriptk denotes the
discrete time instant.

If ȳk = [ȳ1,k, ȳ2,k, · · · , ȳm,k]
T represents the known

trajectory and comprises vector

ȳi,k = [ȳi,k, ȳi,k+1, · · · , ȳi,k+ri−1]
T (i = 1,2, · · · ,m),

the problem is to design a controller for the system (1) such
that the tracking error

ek = [eT
1,k,e

T
2,k, · · · ,e

T
m,k]

T
, (2)

where ei,k = yi,k − ȳi,k = [ei,k,ei,k+1, · · · ,ei,k+ri−1]
T with

ei,k = yi,k − ȳi,k, i = 1,2, · · · ,m, will converge to the origin
asymptotically.

Define the sliding manifold as follows,

Sk = [S1,k,S2,k, · · · ,Sm,k]
T
, (3)

where Si,k = Ciei , i = 1,2, · · · ,m and
Ci = [ci,1,ci,2, · · · ,ci,ri−1,1]

T which satisfy Hurwitz
polynomial

hi(ei,k) = ei,k+ri−1+ ci,ri−1ei,k+ri−2+ · · ·+ ci,1ei,k. (4)

Then the main problem is to look for a SMC controller

ui,k = ueq,i +uv,i, i = 1,2, · · · ,m, (5)

where ueq,i is the equivalent control,uv,i is the hitting
control such that the manifoldSk can be reached.

Because the functionfi(xk,ui,k) is unknown, the
control input uk cannot be designed directly. In the
following section, an adaptive wavelet network will be
adopted to realize a SMC controller. The following are
necessary to underlie the reminder of this paper.
Assumption 1.The functionfi(xk,ui,k) ∈ L2(R) and

fi,ui

de f
=

∂ fi(xk,ui,k)

∂ ui,k
6= 0, ∀ xk ∈ Ωxk ,

whereΩxk is the compact set of the statexk.
For all xk ∈ Ωxk the smooth function satisfiesfi,ui > 0

or fi,ui < 0. Without loss of generality, it is assumed that
fi,ui > 0.
Assumption 2.There exist positive constantsζi,1, ζi,2 and
ζi,3 such that∀ x ∈ Ωx, ζi,1 ≤ fi,ui ≤ ζi,2 and 0≤ |∆ fi,ui | ≤
ζi,3, i = 1,2, · · · ,m.

According to the Implicit Function Theorem, the
following lemma is introduced,
Lemma 1. Considering the equation(1), there exist a
subset Ωx,0 ∈ Ωxk and a unique local solution
ui,k = ui(xk,vi) such that fi(xk,ui,k) + vi = 0 for
∀ x(0) ∈ Ωx,0 holds wherevi = vi(x) is an arbitrary
smooth function of the system state variablexk for
i = 1,2, · · · ,m.
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3 Preliminaries on Wavelet Network

Wavelet network is a type of building block for function
approximation with the conception of multi-resolution
analysis (MRA). Many statements about MRA can be
found in [21]. For simplicity, we only describe its basic
structure and frame theories here.

A successive close subspace serial{Vj} ∈ L2(R), j ∈
Z composes a MRA in spaceL2(R), in which ϕ j,k(x) =

2
j
2 ϕ(2jx − k) with ϕ ∈ Vj. ϕ j,k is an orthonormal basis

of Vj namely scalling function. For∀ j ∈ Z, Wj is defined
to be the orthonormal complement ofVj in Vj+1 which
satisfies

Vj+1 =Vj ⊕Wj,Wj⊥Wi, i 6= j,∀ i ∈ Z.

Therefore f j(x) = ∑k∈Z < f (x),ϕ j,k > ϕ j,k is the
approximation off (x) at the resolutionj

2, or we call at
the resolutionj shortly. Here< ·> is defined as the inner
product inL2(R). In practical termsf j(x) is a projection
of f (x) in the spaceVj. Consequently in the spaceVj, an
arbitrary functionf (x) can be depicted as

f (x) = ∑
k∈Z

< f (x),ϕ j,k > ϕ j,k + e f , j,

wheree f , j is the approximation error at the resolutionj.
And with j → ∞, lim j→∞|e f , j|= 0. At the resolutionj+1,
the approximation off (x) has the projection in the space
Wj which is called detail.

It is clear that|e f , j| > |e f , j+1| > · · · and more details
will be added to the approximation of functionf (x) as j →
∞. So for a given resolutionJ, the projection off (x) in
the spaceVJ is called the coarse approximation. With the
increasing of the resolutionj, the detail approximations
are cumulating. Naturally, there exists a mother wavelet
{ψ j,k}k∈Z , which are canonical bases of the spaceWj. Like
the scaling function, the wavelet functionψ j,k also satisfies

ψ j,k(x) = 2
j
2 ψ(2jx− k), j,k ∈ Z.

Then∀ f (x) in L2(R), it can be described as

f (x)= ∑
k∈Z

< f (x),ϕJ,k >ϕJ,k+ ∑
j≥J,k∈Z

< f (x),ψ j,k >ψ j,k,

where J is the lowest resolution. Define
υJ,k =< f (x),ϕJ,k > and γ j,k =< f (x),ψ j,k > as the
coefficients of the basis{ϕJ,k}k∈Z and {ψ j,k} j≥J,k∈Z in
the corresponding spaceVJ and WJ ,WJ+1, · · · , the
approximation off (x) becomes

f (x) = ∑
k∈Z

υJ,kϕJ,k(x)+ ∑
j≥J,k∈Z

γ j,kψ j,k(x). (6)

The equation (6) is the approximation of scaling
function series and wavelet series forf (x) in L2(R). In
actual application, function approximation is carried out

in space with finite dimension. So the equation (6) can not
be used. Fortunately, the following theorem is introduced
by [21].

Theorem 1.For arbitrary scalarε > 0, there exists finite
integers M, N and the parametersγ∗j,k such that the

following inequality holds∀ f (x) ∈ L2(R).

∥

∥

∥

∥

∥

f (x)−
M

∑
j=−M

N

∑
k=−N

γ∗j,kψ j,k

∥

∥

∥

∥

∥

≤ ε (7)

It indicates that there always exists an optimal
approximation f ∗(x) = ∑M

j=−M ∑N
k=−N γ∗j,kψ j,k in the

form of wavelet series. Thereby the accuracy of the
following approximation

f ∗(x) =
N

∑
k=−N

υ∗
J,kϕJ,k(x)+

M

∑
j=J

N

∑
k=−N

γ∗j,kψ j,k(x)

is better than that of the equation (7) when J ≤ −M,
where υ∗

J,k are the corresponding coefficients of the
scaling basis. There is a problem that the functions in
control systems are multi-dimensional, i.e. the variablex
is a vector. The scaling function and the wavelet must be
expanded to multi-dimension as follows

ϕ(x) = ϕ(x1,x2, · · · ,xn) =
n

∏
i=1

ϕ(xi),

ψ(x) = ψ(x1,x2, · · · ,xn) =
n

∏
i=1

ψ(xi).

The approximation off (x) can then be given as

f (x) =ϒ T ΦJ +
M

∑
j=J

Γ T
j Ψj, (8)

where

ϒ = [υJ,−N ,υJ,−N+1, · · · ,υN ]
T
, (9)

Γj = [γ j,−N ,γ j,−N+1, · · · ,γ j,N ]
T
, (10)

ΦJ = [ϕJ,−N(x),ϕJ,−N+1(x), · · · ,ϕJ,N(x)]
T
, (11)

Ψj = [ψ j,−N(x),ψ j,−N+1(x), · · · ,ψ j,N(x)]
T
. (12)

In this section, it is confirmed that there exists the
optimal approximationf ∗(x) of f (x) in L2(R), thoughx
is a multi-dimensional variable. The equation (8) will be
used in the next sections.
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4 SMC based on Adaptive Wavelet Networks

Now seek for the time derivative of the elementSi,k defined
by the equations (2)(3)(4) (in the following analysis only
the elementSi,k is considered),

∆Si,k = Ci
(

ei,k+1−ei,k
)

=
ri−1

∑
j=1

ci, jei,k+ j −
ri−1

∑
j=1

ci, jei,k+ j−1

+ ei,k+ri
− ei,k+ri−1

=
ri−1

∑
j=1

ci, j
(

ei,k+ j − ei,k+ j−1

)

− ei,k+ri−1

− ȳi,k+ri
+ fi(xk,ui,k)+di(xk,k).

If we define

vi =
ri−1

∑
j=1

ci, j
(

ei,k+ j − ei,k+ j−1

)

− ei,k+ri−1− ȳi,k+ri
,

then
∆Si,k = vi + fi(xk,ui,k)+di(xk,k). (13)

The objective is to design a sliding mode controller
ui,k (the equation(5)) such that Si,k = 0. The SMC
controller composes two parts like the equation(5): the
equivalent controlueq,i and the hitting controluv,i. Here
The approach of function approximation in section 3
which is based on wavelet network will be adopted to
approximate the equivalent control in SMC controller.
Well then the equivalent controlueq,i would be designed
firstly.

4.1 Equivalent Control Design

The system dynamic functionfi(xk,ui,k) satisfies the
Assumption 1-2. According to Lemma 1 in section 2,
when the external disturbancedi(xk,k) is not considered,
there exists a unique equivalent controlueq,i(xk,vi) that
makesSi,k = 0. Namely the following equation holds by
the equation(13),

∆Si,k = vi + fi(xk,ui,k) = 0. (14)

Because the functionfi(xk,ui,k) ∈ L2(R), the equivalent
controlueq,i(xk,vi) is in L2(R) space as well. According to
Theorem 1 and the equation (8) in section 3, there exists
the optimal approximation ofueq,i(xk,vi) as the following,

u∗eq,i(xk,vi) =ϒ ∗T
i Φ i

J +
M

∑
j=J

Γ ∗T
i, j Ψ i

j ,

whereϒ ∗
i andΓ ∗

i, j are the optimal parameters of wavelet
network for ueq,i(xk,vi) defined as the equations(9),(10).

The scaling function basisΦ i
J = ΦJ(x,vi) and the wavelet

function basisΨ i
j =Ψj(x,vi) correspondingly satisfy

Ψj(xk,vi) = [ψ j,−N(xk,vi), · · · ,ψ j,N(xk,vi)]
T
,

ΦJ(xk,vi) = [ϕJ,−N(xk,vi), · · · ,ϕJ,N(xk,vi)]
T
,

ϕ(xk,vi) = ϕ(x1,k,x2,k, · · · ,xn,k,vi) =
n

∏
l=1

ϕ(xl,k)ϕ(vi),

ψ(xk,vi) = ψ(x1,k,x2,k, · · · ,xn,k,vi) =
n

∏
l=1

ψ(xl,k)ψ(vi).

An adaptive wavelet network(AWN) is used to
approximate the equivalent controlueq,i(xk,vi) for
i = 1,2, · · · ,m. Denote the approximation value as ¯ueq,i,
according to the equation(8), it can be depicted as

ūeq,i(xk,vi) =ϒi,k
T Φ i

J +
M

∑
j=J

Γi, j
TΨ i

j , (15)

whereϒi andΓi, j are coefficients of the wavelet basis which
need self-tuning on-line by the following adaptive rules,

∆ϒi,k = αiΦ i
J

[

∆Si,k
]

,∆Γi, j,k = βi, jΨ i
j

[

∆Si,k
]

, (16)

where αi,βi, j are positive scalars. Thus ¯ueq,i can
approximate to the optimal approximationu∗eq,i accurately
by the online tuning. However there exists the
approximation errorε = u∗eq,i − ueq,i. Thus the equation
(14) can be written as

∆Si,k = vi + fi(xk, ū
eq,i

(xk,vi))

= fi(xk, ū
eq,i

)− fi(xk,u
∗
eq,i)+ fi(xk,u

∗
eq,i)− fi(xk,ueq,i)

= fi,ui,k(ūeq,i −u∗eq,i)+ ε fi,ui,k . (17)

The error impels the sliding modeSi,k to tend∆Si,k 6= 0.
A hitting controluv,i is required to be added such that the
sliding mode satisfies the reaching condition. The
following assumption is necessary and with practical
significance.
Assumption 3. The error between approximation ¯ueq,i
and the optimal approximationu∗eq,iis bounded, i.e.
∣

∣

∣
ūeq,i−u∗eq,i

∣

∣

∣
≤ ζi,4.

4.2 Hitting Control Design

Obviously, the equivalent control can not insure the
stability of closed-loop system. According to the basic
theory of SMC, the hitting controluv,i can be designed as

uv,i =−kiSi,k −ηisgnSi,k, (18)

where the designed parameterski andηi correspondingly
satisfy

0≤ ki ≤
2

ζi,2 (1+ξi)
,ηi ≥ ζi,4+ ε (19)
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with

ξi = αi

[

Φ i
J

]T Φ i
J +

M

∑
j=J

βi, j

[

Ψ i
j

]TΨ i
j

that satisfies
ξi ≤ max

i, j

{

αi,βi, j

}

according to the properties of the wavelet basis functions.
Well then the whole SMC control law can be obtained

by
ui,k = ūeq,i +uv,i. (20)

Consequently the forward difference of the embranchment
Si,k can be written as

∆Si,k = fi,ui,k(ui,k −u∗eq,i)+ ε fi,ui,k

= fi,ui,k uv,i + fi,ui,k(ūeq,i −u∗eq,i)+ ε fi,ui,k . (21)

4.3 Stability Analysis of Closed-Loop System

The obtained control law (20) is designed such that the
embranchmentSi,k could reach the originSi,k = 0 for
i = 1,2, · · · ,m. The main results are presented by the
following theorem.

Theorem 2.Under the assumption 1-3, the sliding mode
(3) for multiple variable nonlinear system (1) can be
reached the switching band

Bi =
{

xk
∣

∣

∣

∣Si,k
∣

∣≤ ϕi
}

, i = 1,2, · · · ,m

by the adaptive wavelet sliding mode control (AWSMC)
(15),(18),(19),(20) with the adaptive law (16), where

ϕi =

(

ζi,2 (1+ξi)+1
)

ηi + ε

1−0.5ζi,2 (1+ξi)ki
. (22)

Proof. Choose a Lyapunov function aboutSi,k as

Vi,k = S2
i,k +

1
αi

ϒ̃ T
i,kϒ̃i,k +

M

∑
j=J

1
βi, j

Γ̃ T
i, j,k Γ̃

i, j,k
,

whereϒ̃ i =ϒi −ϒ ∗
i andΓ̃ i, j = Γi, j −Γ ∗

i, j are the parameter
estimation error. Apparently,Vi,k > 0 with Vi,k → ∞ as
Si,k → ∞. Now seek the forward difference of the
Lyapunov functionVi,k,

∆Vi,k = ∆Si,k
[

∆Si,k +2Si,k
]

+
1
αi

[

∆ ϒ
i,k

]T [

∆ ϒ
i,k
+2ϒ̃i,k

]

+
M

∑
j=J

1
βi, j

[

∆Γi, j,k
]T [∆Γi, j,k +2Γ̃i, j,k

]

=
[

∆Si,k

]2
+2∆Si,kSi,k +

1
αi

[

∆ ϒ
i,k

]T [

∆ ϒ
i,k
+2ϒ̃i,k

]

+
M

∑
j=J

1
βi, j

[

∆Γi, j,k
]T [∆Γi, j,k +2Γ̃i, j,k

]

. (23)

Substitute the adaptive law (16) into the above, we have

∆Vi,k =
[

∆Si,k

]2
+2∆Si,kSi,k +2

(

ūeq,i −u∗eq,i

)

∆Si,k

+ ξi
[

∆Si,k
]2
. (24)

Then from the equation (23) we have

∆Vi,k = (1+ξi)
[

∆Si,k

]2
+2∆Si,kSi,k

+ 2

(

ū
eq,i

−u∗eq,i

)

∆Si,k

= ∆Si,k

{(

1+2 f−1
i,ui,k

+ξi

)

∆Si,k

+ 2Si,k −2(uv + ε)
}

. (25)

Consequently, two situations are considered:
(1) If Si,k > ϕi, then

− fi,ui,k
(kiϕi +2ηi)≤ ∆Si,k ≤− fi,ui,k

kiϕi

holds according to (19),(21),(22) and assumption 3. Then
further we have

(

1+2 f−1
i,ui,k

+ξi

)

∆Si,k +2Si,k −2(uv + ε)≥

(

1+2 f−1
i,ui,k

+ξi

)

∆Si,k +2(1+ ki)ϕi +2ηi −2ε ,

namely

(

1+2 f−1
i,ui,k

+ξi

)

∆Si,k +2Si,k −2(uv + ε)≥ 0.

Therefore∆Vi,k ≤ 0 holds.
(2) If Si,k <−ϕi, then

fi,ui,k
(kiϕi +2ηi)≥ ∆Si,k ≥ fi,ui,k

kiϕi

holds according to (19),(21),(22) and assumption 3. Then
further we have

(

1+2 f−1
i,ui,k

+ξi

)

∆Si,k +2Si,k −2(uv + ε)≤

(

1+2 f−1
i,ui,k

+ξi

)

∆Si,k −2(1+ ki)ϕi −2ηi −2ε ,

namely

(

1+2 f−1
i,ui,k

+ξi

)

∆Si,k +2Si,k −2(uv + ε)≤ 0.

Therefore∆Vi,k ≤ 0 also holds.
From the above∆Vi,k ≤ 0 holds when

∣

∣Si,k
∣

∣ ≥ ϕi.
Obviously the sliding mode switching surface
Bi =

{

xk
∣

∣

∣

∣Si,k
∣

∣≤ ϕi
}

,i = 1,2, · · · ,m can be reached and
asymptotically stable for allx(0) ∈ Ωx,0. �.
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4.4 Chattering Free

However, there is an important problem for the proposed
control. It is well known that SMC has a notorious
shortcomingchattering. Luckily, it has been studied by
many researchers [22]-[25] and all of their results can be
used directly for the presented design method in this
paper. For example simple modification can be taken for
the hitting control[22],

uv,i =−kiSi −ηisat(Si), (26)

wheresat(x) is saturation function defined as

sat(x) =







1 x > ∆
1
∆ |x| ≤ ∆
−1 x <−∆

(27)

with ∆ > 0 is a selected scalar parameter.

4.5 Controller Structure

In the adaptive wavelet sliding mode control (AWSMC)
proposed in section 4, the wavelet basis and the scaling
function basis compose a wavelet network (WN) which
has a three-layer network structure like neural network
(NN)[15][16][18].

An arbitrary function inL2(R) can be decomposed as
the form of the wavelet series or the sum of the coarse
series and the detail series, but all these series
approximations are infinite. In practice, it is impossible to
use the entire infinite basis, and the equation (15) gives a
potential approximation. In the design of general NN, the
approximation error mainly depends on the structure
selection. Although it has been proven that NN is able to
approximate any nonlinear function defined on a compact
set for a pre-specified accuracy, how to choose the NN
structure is not an easy work. Moreover, any structure
change of NN will affect whole network and the
approximation accuracy. However, wavelet network is
different from NN. Firstly it composes infinite
dimensions orthonormal basis of the subspaceVj or Wj in
L2(R) space. Therefore every branch of the network is
orthonormal with each other. Namely the change of any
part of the structure does not affect other parts. Secondly,
the three-layer structure of WN is fixed because WN is
based on the MRA inL2(R). In result the approximation
accuracy mainly depends on the sufficiency of the bases
in the subspaceVj or Wj and the selection of the
resolution j. Thirdly, it has feed-forward properties and
both the structure and the parameters can be tuned
on-line. These are the most important advantages of WN
compared with general NN. In this way it doesnt need
training and can be directly used to the on-line control by
the adaptive control theory.

The proposed controller is composed with three parts:
the equivalent control approximator, the hitting control
and the adaptive machine. The predigestion map of the
AWSMC structure is shown in Fig.1.

Fig.1 The structure of the AWSMC controller.

5 Simulations

In this section, the proposed controller design approach in
this paper was applied to a single inverted pendulum
system. It is a typical nonlinear system with high
uncertainties.

The proposed AWSMC design does not need the
accurate mathematic model of the inverted pendulum, that
was regarded as a rigid body and the friction for the dolly
was not taken into account. Consequently, its rough
mathematic model is

x1,k+1 = x2,k, x2,k+1 = f (xk,uk), (28)

where xk = [x1,k,x2,k]
T = [θk,θk+1]

T is the state
variable(θk is the angle excursion of the pendulum),uk is
the control volts of the motor in the dolly. The boundaries
of unmodelled dynamics and its forward difference are
estimated as follow, 20≤ fui,k ≤ 50,∆ fui,k ≤ 200.

In case of the tracked system was ¯yk = 0, the variable
vk = cx2,k. Afterwards the sliding modeSk = [c,1]xk with
c = 0.2 and the parameters of the adaptive law (16) were
chosen asαi = 8 andβi, j = 4.

In our simulation Haar wavelet was used for wavelet
base function, namely

ψ(x) =







1, 0< x ≤ 0.5

−1, 0.5< x ≤ 1

0, others

(29)

Its corresponding scale base function is

φ (x) =

{

1, 0< x ≤ 1

0, others.
(30)

Obviously it can be verified that Haar wavelet function and
its shift and scale dropping are orthogonal. Furthermore,
Haar wavelet functions are compact support functions.

To compare the performance of presented AWSMC, a
LQR controller was designed for the system (28) based on
linearization, in which the poles of the closed-loop system
were set at−35.45 ± 34.65i with the corresponding
feedback control signalu =−

[

173.21 60.51
]

x.
The simulation results of the above two controllers are

shown in Fig.2 and Fig.3.
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Fig.2 The angle excursions using AWSMC and LQR via
linearization.
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The control signal of DAWSMC
The control signal of LQR control
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Fig.3 The control signals using AWSMC and LQR via
linearization.

What is shown in Fig.2 and Fig.3 is that the AWSMC
controller performance is as good as that of LQR
controller. Each of the above two figures has compared
the two curves of the two controllers correspondingly.
Additionally, the sliding mode value curve is shown in
Fig.4.
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Fig.4 The sliding mode value curve when using
AWSMC.

Next, when there was intense disturbance, the
robustness of the AWSMC closed-loop system was
examined as well. Fig.5 and Fig.6 show that the AWSMC
controller is with robustness.
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Fig.5 The angle excursion curve when the inverted
pendulum was disturbed at time instant using AWSMC.
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Fig.6 The control input signal curve when the inverted
pendulum was disturbed at time instant using AWSMC.

6 Conclusions

An adaptive wavelet sliding mode control (AWSMC)
design approach for a class of non-affine multi-variable
discrete nonlinear systems is constructed. With the using
of multi-resolution analysis (MRA) in wavelet theory, the
equivalent control is approximated on-line by an adaptive
wavelet network (WN) with appropriate adaptive laws.
The reachability of the sliding mode can be guaranteed
and proved to be asymptotically stable by Lyapunov
stability theory. The controller performance possesses
both the merits of SMC and the adaptive characters. The
results of simulation on an inverted pendulum system
validate its efficiency.
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