Appl. Math. Inf. Sci.8, No. 6, 3055-3062 (2014) ~ =) 3055

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.12785/amis/080646

Discrete Adaptive Sliding Mode Control via Wavelet
Network for a Class of Nonlinear Systems

Xiaoyu Zhang*

College of Electronic and Information Engineering, North China Instituaénce and Technology, Yanjiao Box206, 101601 Beijing,
China

Received: 16 Nov. 2013, Revised: 14 Feb. 2014, Accepted: 152bal
Published online: 1 Nov. 2014

Abstract: Unmodelled dynamics and perturbations are always immeasurablés pregher, an adaptive sliding mode control (ASMC)
based on wavelet network (WN) for a class of non-affine multi-variabldinear discrete systems is presented in order to compensate
them. Wavelet network which parameters are tuned on-line is adoptedlizerthe equivalent control, and hitting controls are added
in order to satisfy reaching conditions. By combining the adaptive WN wittCS8ttategy, the constructed control law has many
advantages such as robustness, adaptive characters, and tke prathematic models of controlled plants are not required. Finally,
experiment on an inverted pendulum control system based on thesgepgontrol design method is given to verify its effectiveness
and performance.
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1 Introduction and the orthonormality. These make WN is suitable for
on-line estimating, and there is not the problem of
structure selection in adaptive wavelets networks.
Therefore, successful application of adaptive WN to
Sonlinear systems is researchkEd| Based on the
Y onception of multi-resolution approximation (MRA),
N is a three-layer network consisting of orthonormal
father wavelets and mother wavelets. Because of the
rthonormal property, it is possible to regulate the
etwork structure and parameters on-line. Moreover, the

In  practical control systems, highly unknown
uncertainties, disturbances and nonlinearities alway
exist. Many efforts on this problem have been made b
researchers of robust control, adaptive control an
intelligent control etc. In recent years, wavelet network
(WN) is used as a powerful tool for signal and data
processing, time-series analysis and the approximation oﬁ

arbitrary unknown functions such as literatures . i oo ion approximation ensures that  the

21910 and Bl Uang VN o ncton,  approamaion precdon can be Impioved qucks 2
been studied by literatureB[[2],[3] etc. resolution increases. Although the precision can be

daoti | K | has b idel improved arbitrarily, there exist many perturbation and
_Adaptive neural network control has been widely yigy,hance that impact on the system performance such
investigated by many researchers such as literature

[6],[71.[8].[9] and [10]. The parameters of neural network 8s stability, steady-state error and so on.

(NN) are tuned on-line to approximate the unknown  Sliding mode control (SMC) theory has been proved
nonlinear dynamic. However the precision depends on théo be an effective way to control nonlinear dynamic
structure selection which is a difficult problem at present.system with strong robustnes$§][20]. If we combine
Inspired by the theory of adaptive NN, adaptive waveletSMC theory into the adaptive wavelet network, the
network methods are reported dealing with on-line designed controller will possess many advantages. The
application in the control problem of dynamic nonlinear wavelets neural network control (WNNC) based on SMC
systems, it refers to literatured]-[18]. WN can be control theory and adaptive theory for the linear motor
regarded as a class of NN, but it has its specialand induction motor drive has been studied b§|[18].
characteristics such as the linearity in parameter spacblevertheless, their research works aim at special plants.
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Furthermore, the adaptive wavelets sliding mode controlAdditionally,
(AWSMC) for multi-variable affine nonlinear system has
been Studled by_l[4] f(Xk7 uk) = [f]_(Xk, ul,k)? fZ(Xka UZ,k)a Tty fm(xka Um,k)}

The purpose of this paper is to combine theis defined as the nonlinear dynamic vector, which
advantages of SMC and the adaptive wavelet network tqomponentsf; (X, Uix) € L2(R), i = 1,2,---,m are all

develop a control strategy with robustness and self-tuningynknown. And about all, the subscrit denotes the
property for non-affine multi-variable discrete nonlinear giscrete time instant.

systems. Firstly, appropriate sliding surfaces are satect If Ve = [Yik Yok ,)7m,|<]T
secondly, the parameters of the wavelet network are tunegtajectory and éombrises vector
on-line to approximate the equivalent control; thirdly,
hitting controls are added to ensure that the reaching
condition can be satisfied. The final AWSMC controller
comprises three parts: the equivalent control
approximator, hitting control and the adaptive machine.
The closed-loop system is proved to be asymptotically )
stable globally. ’

This paper is organized as follows. Problem whereg =y —Vi, = (@K Bkt 6 k+r._1]T with
formulation is given in section 2. The fundamentals Ofe. K= Vi k7_)7k =12 mowill converée to the origin
MRA and the function approximation are stated in Sec“"”aéympfoticafil;}. T
3. The adaptive wavelet network and the hitting control  ~pafine the sliding manifold as follows
designs, stability and robustness analysis are in section 4 '

represents the known

E,k = [)7i7k7)7i,k+17 e 7)7i,k+ri_1]T(i = 1a 2a Ty m)7
the problem is to design a controller for the systéjrs(ich
that the tracking error

T
& = [eI,ka e-2r,k7 e 7er-51,k]

additionally the network structure of the AWSMC. In S =[Stk Sk, ;S’n,k]T7 (3)
section 5, the presented AWSMC is applied to an inverted ,

pendulum system to confirm its validity and performance.Where Sk = Ge&, i = 12..-.m and
Experiment results are presented. In the end conclusion& = [Ci1,Gi2,---,Cyr-1,1]" which satisfy Hurwitz
are in section 6. polynomial

The signs of mathematics in this paper are general

regular as follows.

R represents real number space, andRcand R™™M
denoten vector space analx mvector space, respectively.
Z expresses the whole round numbeérindicates absolute
value and|-|| denotes Euclidean norm. If matrixe R™™
then, ||A| denotes its induced norm amGhin (+)/Amax (+)
defines its minimum or maximum characteristic valug.

hi(ek) =& xr,_1+Cir-18 ki 2+ - +Ci18k (4)
Then the main problem is to look for a SMC controller
©)

where ug,i is the equivalent controlyy; is the hitting
control such that the manifolg can be reached.
Because the functionfi(x,uix) is unknown, the

Ui,k:Ueq.i'f‘Uv.,ia i :1727"' , M,

denotes Lebesgue integrable function space, namely for allonirol input u, cannot be designed directly. In the

functions f € R which satisfy [©, f(t)dt < co form L.
All such functionsf : R — Rthat fulfill [©_||f(t)[/dt <
o form the spac&?(R).

2 Problem Formulation

Consider a class of multi-variable non-affine nonlinear

system with the form of

(r)

Vi = F(Xi Ui, @)
whereyi = [y1x, Y2k, - ,ym,k]Tdenotes the output vector
T
andy\” = [y(lr_ﬁ),ygﬁ), .-, y"m1" denotes its derivative for
i=1,2mr=][r,rp--,ry" is defined as the system

relative degree with ™, ri = n and
Uk = [Ugk, Upk, - ,um,k}T denotes the control input vector.

. T T
Following x« = X1k, X2k, s Xkl = Y10 Y2k »Ymkl

following section, an adaptive wavelet network will be
adopted to realize a SMC controller. The following are
necessary to underlie the reminder of this paper.

Assumption 1.The functionf;(x, Ui x) € L?(R) and

def 9 fj(xy,U;.
fi,Ui = % 7&07 vxk S Qka

whereQy, is the compact set of the state

For allx, € Qy, the smooth function satisfies,, > 0
or fiy < 0. Without loss of generality, it is assumed that
fi,Ui > O
Assumption 2.There exist positive constanfss, ¢j » and
¢ zsuchthat' xe Qy, {1 < fiy < i2and 0< |Afiy| <
Zi,37 i = 1725"' ;M.

According to the Implicit Function Theorem, the
following lemma is introduced,
Lemma 1. Considering the equation(1), there exist a
subset Qg € Qy and a unique local solution
Uk = U(XVi) such that fi(x,uix) +Vvi = 0 for
vV x(0) € Qxo holds wherev; = vi(x) is an arbitrary

constitutes the system state vector with depicted agmooth function of the system state variablg for

Yik = kYt Y, i = 12--.m

i=12--.m
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3 Preliminaries on Wavelet Network in space with finite dimension. So the equati6hdan not
be used. Fortunately, the following theorem is introduced
Wavelet network is a type of building block for function by [21].
Zﬁglr;é(llsm?l\t/ll??rk)ww ag;e S?gtgﬁgg,%n a%fog,gu'l;l'ézsggﬁ'oé] e Theorem 1. For arbitrary scalae > 0, there exists finite
found in [21]. For simplicity, we only describe its basic integersM, N and the parameters; such that the
structure and frame theories here. following inequality holds7f (x) € LZ(R)
A successive close subspace sefi§l} € L2(R), j €

Z composes a MRA in spadé(R), in which ¢; x(x) =
I , _ s , z z Vikik| <¢ (M
22¢(2'x—k) with ¢ € Vj. ¢; is an orthonormal basis ="M k==
of Vj namely scalling function. For j € Z, W, is defined
to be the orthonormal complement df in Vj,1 which It indicates that there alw?\P/s exists an optimal
satisfies approximation f*(x) = ZI:—M Yke-n YikWik in the
L form of wavelet series. Thereby the accuracy of the
Vi1 =V OW, W LW, T # Vi e Z. following approximation
Therefore fj(X) = Yz < f(X),¢jx > ¢jk is the N
approximation off (x) at the resolution}, or we call at f*(x) = z U3 kbak(X) + ZJ Z Vi kWi k()
the resolutionj shortly. Here< - > is defined as the inner el VR =N

product inL2(R). In practical termsf;(x) is a projection
of f(x) in the spacd/;. Consequently in the spatg, an  is better than that of the equatioi)(whenJ < —M,

arbitrary functionf (x) can be depicted as where vj, are the corresponding coefficients of the
scaling basis. There is a problem that the functions in
f(x) = kz <f(X), k> djx+ter, control systems are multi-dimensional, i.e. the variable
ez

is a vector. The scaling function and the wavelet must be

wheree j is the approximation error at the resolutipn expanded to multi-dimension as follows
And with j — oo, limj_,|€f j| = 0. At the resolutiorj +1, |
the approximation of (x) has the projection in the space %) = b (X1 Xo. - - - _ X
W, which is called detail. PO) = Pl xe,--- %) = |'l¢( )
It is clear that/es j| > |ef,j+1| > --- and more details
will be added to the approximation of functidiix) asj —
0. So for a given resolutiod, the projection off (x) in X) = (X1 Xo. - -- _
the spacd/; is called the coarse approximation. With the W) = glaxe, - ) iI:l wix)
increasing of the resolutio, the detail approximations
are cumulating. Naturally, there exists a mother waveletThe approximation of (x) can then be given as

{Wj k} ez, which are canonical bases of the spageLike
the sca (:hng function, the wavelet functign « also satisfies M
f(x):YT(DJ—i—ZJI'jTWj, (8)
i ; . =
Yik(x) =224 (2'x—k), j,ke Z.
Thenvf(x) in L2(R), it can be described where
envf(x) in , it can be described as
Y = [U3 N, Us—N+1,7  UN] 9)
=Y <f(X), k> dsk+ < F(X), Yjk> Yjk,
ke; j>§ez ' .
I = j,—N> ¥j,— ERRES 4 ) 10
where J is the lowest resolution. Define P = ienYioni Vil (10)
quﬁ7< f( )f%kll( >b ang(pyjk}f (d){ N k}> as the
coefficients of the basi$¢k},., and {Yjk |>Ikez in _ 11
the corresponding spac®; and Wj,Wj,1,---, the [$3.-N 00, fa—n+2(x), -+, fan (X )] ’ (11)
approximation off (x) becomes
f(x)= Z Ugk@ak(X) + VikWik(x).  (6) W= [N 09 i1 (0, el (32)
ke j>J.kez '

In this section, it is confirmed that there exists the
The equation &) is the approximation of scaling optimal approximationf*(x) of f(x) in L?(R), thoughx
function series and wavelet series fbfx) in L(R). In is a multi-dimensional variable. The equatid) (vill be
actual application, function approximation is carried out used in the next sections.
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4 SMC based on Adaptive Wavelet Networks — The scaling function basi® = ®;(x,vi) and the wavelet
function basiswji = ¥ (x,v;) correspondingly satisfy

Now seek for the time derivative of the elemé&nt defined

by the equations2)(3)(4) (in the following analysis only W (X, Vi) = [y, —N (X, Vi), - ,L,t/,—7N(xk7vi)}T,

the elemen§  is considered),

D3(Xg, Vi) = ¢1_ Xic, Vi 7...7¢.’ X, Vi T7
ASy = Gi (61— 6k) 3 (%, Vi) = [3,-N (%, Vi) IN (X Vi)

n
i1 ri-1 & (X Vi) = @ (X Xaks > Xnko Vi) = r! d(X k)P (Vi)
= 2 Cii€krj— Z Gii€ k+j-1 I=
j=1 j=1 n
T 8k — Gikgri—1 WYX, Vi) = l,U(Xl_’k,Xz,k, e 7Xn7|<7Vi) = ll_! L»U(Xl,k)laU(Vi)-
ri—1 =
= Z cij(e kij—8 k+j_1) — i1 An adaptive wavelet network(AWN) is used to
= " ’ o approximate the equivalent controlieqi(x,Vi) for
Y e i (X Ui k) - di (X, K). i =1,2,---,m. Denote the approximation value ag,;,
Yiserrs T i Uik +Ch( k) according to the equatio8y it can be depicted as
If we define "
1 Ueq,i (X, W) = Yk @)+ > ni'Y,  (15)
J:

Vi= Z Gi,j (Q,kﬂ - Q.k+j—1) — 8 krri—1— Yikino
= whereY, andf; j are coefficients of the wavelet basis which
then need self-tuning on-line by the following adaptive rules,

AS k= Vi + fi (X, Ui k) + i (X, K). (13) AY = ai®) [ASK] AT = BW [ASk],  (16)

The objective is to design a sliding mode controller
Uik (the equatiorf)) such thatSy = 0. The SMC
controller composes two parts like the equatf)nthe
equivalent controley; and the hitting controly;. Here

where a;,3; are positive scalars. Thuslgi can
approximate to the optimal approximatiuQ” accurately
by the online tuning. However there exists the

The approach of function approximation in section 3 affroxirréation. EITOE = Ugy — Ueqi. Thus the equation
which is based on wavelet network will be adopted to (14) ¢an be written as

approximate the equivalent control in SMC controller. AS x = vi + fi(X, U (X, Vi))

Well then the equivalent contrakg; would be designed et

firstly. = fi (xhg)— fi (X, Ugqi) + fi (X, Ueg i) — Ti (X, Ueqi)
= fi7ui?k(u_eq"i - u&“) + 8fi7ui7k. (17)
4.1 Equivalent Control Design The error impels the sliding modg to tendAS i # 0.

A hitting controluy; is required to be added such that the
sliding mode satisfies the reaching condition. The

Assumption 1-2. According to Lemma 1 in section 2, g?llﬁ\i/;/ilcrg;nczzssumptlon Is necessary and with practical
when the external disturbandgx,k) is not considered, 9 '

there exists a unique equivalent contrel;(x,v) that ~ Assumption 3. The error between approximationy,
makesS x = 0. Namely the following equation holds by @nd the optimal approximationiy;is bounded, i.e.

the equation(13), ‘u_qu _qu,i‘ <l

AS k= Vi + fi(X, Ui k) = 0. (14)

The system dynamic functiorf(x, U k) Satisfies the

Because the functiorf (X, Ui k) € LZ(R), the equivalent 4.2 Hitting Control Design

controlueq (X, i) is in L*(R) space as well. According ©o - Obviously, the equivalent control can not insure the
Theorem 1 and the equatio8)(in section 3, there exists = stability of closed-loop system. According to the basic
the optimal approximation afeq;(X, Vi) as the following,  theory of SMC, the hitting contral,; can be designed as

LM , Uyi = —kiSk — NisgnS k, (18)
Ui () =Y @+ 5 T, ) o
' = where the designed paramet&rsandn; correspondingly
satisfy
where Y™ and[;j are the optimal parameters of wavelet
: <k < ——m—.ni >
network for ueqi (X, Vi) defined as the equatio®((10). Osk= Ga(1+ Ei)’n' ZGate (19)
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with Substitute the adaptive law ) into the above, we have
o (D [  rwil Twi B
G§=a[®] o+ J;B"J Rl AV = [AS,]° +24S Sk +2 (Ueqi — Ulg) ASik
2
that satisfies + &[AS )" (24)
& < max{ai»ﬁi,j}

Then from the equatior2@) we have

according to the properties of the wavelet basis functions.
Well then the whole SMC control law can be obtained AVik = (1+&) [AS, k] +2A5 kS k

by
Uik = Ueq,i + Uy,- (20) + 2( ] Ueq|>AS,k
Consequently the forward difference of the embranchment _ 1 :
S« can be written as - As*k{(lJer' “'kJrE')ASk
ASx = fi.ui‘k(ui,k—uzq.i)+5fi¢ui_k + ZS.k—Z(UV—FS)}. (25)
= i, Ui + fiuy (Ueqi — Uggi) + € fiu- (21) Consequently, two situations are considered:
(1) If Sk > ¢;, then
4.3 Sability Analysis of Closed-Loop System ~fiy, (K¢ +2m) <AS)c < —fiy ki

The obtained control law2Q) is designed such that the
embranchmensk could reach the origir§, = 0 for

i =1,2,---,m. The main results are presented by the
following theorem (

Theorem 2.Under the assumption 1-3, the sliding mode
(3) for multiple variable nonlinear systeni)(can be
reached the switching band (

:{Xk||Sk| §¢i}ai:1a2a"'am
namely

by the adaptive wavelet sliding mode control (AWSMC)
(15),(18),(19),(20) with the adaptive law6), where

holds according t01(9),(21),(22) and assumption 3. Then
further we have

L+26 ) +6) A8 +25k—2(u,+8) >
1-+2f; U.1k+Ei>AS|,k+2(1+ki)¢i +2n; — 2¢,

(1+ 2f u1k+a) AS . +2Sk—2(U,+€) >0,
(G21+8&) +1)n+e

(22) ThereforeAV, x < 0 holds.

T 1-05G,(1+&)k (2) If Sk < — ¢, then
Proof. Choose a Lyapunov function abdgj as £ k (k@ +2m) > ASk > Ty ki
Vi = §k+ Kkykju ZJ /-ITJ o holds according t01(9),(21),(22) and assumption 3. Then
B MK further we have
whereY; = ¥/ — Y’*andl’. i.j — I are the parameter 142f 1 41 &§)AS . +2S5k—2(u,+¢&) <
estimation error. Apparentlw K > 6’ with Vig — » as ( Wik ') Sk k=2 te) <
Sk — . Now seek the forward difference of the
LyapunOV fUnCUOM’k, (1+ 2f| u1k+Ei>AS7k_ (1+k1) 2”. —25
1 T .
AVi = ASx [ASk+2Sk] + o [A\d [A_\ﬁ%k} namely
i i i
M 1 T - 1
+ ZJB— (AT K] [AT jx+ 26 5] (l+ 2fiy k+Ei)AS,k+23,k—2(uv+8) <0
i
1 T . ThereforeAV, < 0 also holds.
= [AS, k] +2ASkSk+ — a [A Y} [Ai}ﬁZW,k] From the aboveAViy < 0 holds when|Sy| > ¢,.
Mg ' Obviously the sliding mode switching surface
A AT IAR = B':{x|}3|<¢}|_12 ,m can be reached and
+ Al Al k+ 26 k| - 23 K|k = @i
;[3”— [ATij AT 4 (23) asymptotically stable for ak(0) € Qy . O.
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WN Approximation

4.4 Chattering Free RN i
——— quivalent Ueg C u
However, there is an important problem for the proposed control , T
control. It is well known that SMC has a notorious R
shortcomingchattering. Luckily, it has been studied by 1, |
many researcher®®]-[25] and all of their results can be 2 4w and 5| s | Adaptive
used directly for the presented design method in this % Computing Machine
paper. For example simple modification can be taken for
the hitting controlp2], (i=1,,m)
W = —kiS —nisat(s), (26) Hitting | u,
wheresat (x) is saturation function defined as Controller
1 x>A Fig.1 The structure of the AWSMC controller.
sat(x)=4q 7 X <A (27)
—1Ix<-A

5 Simulations

with A > 0 is a selected scalar parameter. . . . .
In this section, the proposed controller design approach in

this paper was applied to a single inverted pendulum
4.5 Controller Sructure system. It is a typical nonlinear system with high
uncertainties.
In the adaptive wavelet sliding mode control (AWSMC) The proposed AWSMC design does not need the
proposed in section 4, the wavelet basis and the scalingccurate mathematic model of the inverted pendulum, that
function basis compose a wavelet network (WN) which was regarded as a rigid body and the friction for the dolly
has a three-layer network structure like neural networkwas not taken into account. Consequently, its rough
(NN)[15][16][18]. mathematic model is
An arbitrary function inL?(R) can be decomposed as . .
the form of the wavelet seri(es)or the sum of the coarse XLkt1 = Xeko Xeker1 = F(X Uk, (28)
series and the detail series, but all these seriegyhere x, = [Xl.k>X27k]T = [6c,611]" is the state

approximations are infinite. In practice, it is impossiltle t yariable@ is the angle excursion of the pendulura),is
use the entire infinite basis, and the equatibf) gives a  the control volts of the motor in the dolly. The boundaries
potential approximation. In the design of general NN, theof unmodelled dynamics and its forward difference are
approximation error mainly depends on the structureestimated as follow, 26 fu, <50,4f, <200.

selection. Although it has been proven that NN is able to | case of the tracked System was= 0, the variable
approximate any nonlinear function defined on a compact, — cx, . Afterwards the sliding mod§, = [c, 1]x with

set for a pre-specified accuracy, how to choose the NN; — 0.2 and the parameters of the adaptive 1a§) (were
structure is not an easy work. Moreover, any structurechosen as; = 8 andg, ; = 4.

change of NN will affect whole network and the |y our simulation Haar wavelet was used for wavelet
approximation accuracy. However, wavelet network ispase function, namely

different from NN. Firstly it composes infinite

dimensions orthonormal basis of the subspgcer W; in 1,0<x=<05
L?(R) space. Therefore every branch of the network is P(x)=4¢ -1, 05<x<1 (29)
orthonormal with each other. Namely the change of any 0, others

part of the structure does not affect other parts. Secondly. . o
the three-layer structure of WN is fixed because WN is lts corresponding scale base function is
based on the MRA ii.?(R). In result the approximation 1.0<x<1
accuracy mainly depends on the sufficiency of the bases P(x) = { ’ - (30)
in the subspaceVj or W, and the selection of the
resolution j. Thirdly, it has feed-forward properties and Obviously it can be verified that Haar wavelet function and
both the structure and the parameters can be tuneds shift and scale dropping are orthogonal. Furthermore,
on-line. These are the most important advantages of WNHaar wavelet functions are compact support functions.
compared with general NN. In this way it doesnt need  To compare the performance of presented AWSMC, a
training and can be directly used to the on-line control by LQR controller was designed for the syste28)(based on
the adaptive control theory. linearization, in which the poles of the closed-loop system
The proposed controller is composed with three partswere set at—35.45 + 34.65 with the corresponding
the equivalent control approximator, the hitting control feedback control signal = — [173.21 60.5]1x.
and the adaptive machine. The predigestion map of the The simulation results of the above two controllers are
AWSMC structure is shown in Fig.1. shown in Fig.2 and Fig.3.

0, others.
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_ Next, when there was intense disturbance, the
02 _ The angle excursion curves ‘ robustness of the AWSMC closed-loop system was

s —— The angle excursion under DAWSMC | examined as well. Fig.5 and Fig.6 show that the AWSMC
. — — —The angle excursion under LQR control Controller iS W|th rObUStness.
< 01y 4
g 0.05) : r 0.(K : : i . ) .
5 I / o The angle excursion curve under disturbation
2 ofht e 0.3 T T T
2 1 -
® 005" 2 :
) T - 0.2
8 -01r g N o (0 ) g
F _0.15- Igr ] GCD 0.1
-0.21 1 B
. 2 o v,
~0.25 ; ; ; ; ; i ; ; ; 2
0 01 02 03 04 05 06 07 08 09 1 3
time /s: sampling time 0.01s o 0.1
j=2]
Fig.2 The angle excursions using AWSMC and LQRvia & 02
. . . ()] .
linearization. £
-0.3
The control input curves -0.4' i i i
30, ‘ ‘ ‘ ‘ ‘ 0 1 2 3 4
—— The control signal of DAWSMC time /s: sampling time 0.01s

— — —The control signal of LQR control

20

Fig.5 The angle excursion curve when the inverted
pendulum was disturbed at time instant using AWSMC.

— L =—==07

The control signal curve under disturbation

The control input: u(k)

10
5
S
=}
£ -5
50 S S S S S R S S 3
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 £
time /s: sampling time 0.01s S -10
Fig.3 The control signals using AWSMC and LQR via § -15
linearization. e
= —-20
What is shown in Fig.2 and Fig.3 is that the AWSMC -25
controller performance is as good as that of LQR ‘ ‘ ‘
controller. Each of the above two figures has compared =% 1 2 3 4
the two curves of the two controllers correspondingly. time /s: sampling time 0.01s
Additionally, the sliding mode value curve is shown in Fig.6 The control input signal curve when the inverted
Fig.4. pendulum was disturbed at time instant using AWSMC.
The sliding mode curve
0.05 T T T .
I 6 Conclusions

|

o

R =)
i

An adaptive wavelet sliding mode control (AWSMC)
design approach for a class of non-affine multi-variable
discrete nonlinear systems is constructed. With the using
o[ RIS HE of multi-resolution analysis (MRA) in wavelet theory, the
equivalent control is approximated on-line by an adaptive

The slingding mode: sk)
1
©
s
I

oz | wavelet network (WN) with appropriate adaptive laws.

0.8 1 The reachability of the sliding mode can be guaranteed
and proved to be asymptotically stable by Lyapunov

% 01 o0z 03 04 05 06 07 08 09 1 stability theory. The controller performance possesses

time /s: sampling time 0.01s

both the merits of SMC and the adaptive characters. The
Fig.4 The sliding mode value curve when using results of simulation on an inverted pendulum system
AWSMC. validate its efficiency.
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