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Abstract: Image deblurring is a classic problem which has been extensively stirdiethge processing. The challenge of image

deblurring is how to devise efficient and reliable algorithms for recouetfie original, sharp image from a blurred and noisy one.
In this paper, we consider the implementation of the LSMR method for ctngpan approximate solution of an ill-posed problem

arising from image deblurring. When equipped with a stopping rule basedeodiscrepancy principle, the LSMR method acts as a
regularization method. The numerical examples illustrate that the LSMRoghétlable to give restored images of higher quality with

less computational effort than other widely used regularization methods.
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1 Introduction where the functiorg(x,y) is the observed image(x,y)
o . represents the additive noisgs,t) is the original image,
In the process of recording image, there is more or lesgng k(x, s;y,t) is the point spread function (PSF). The

blurry that prevents us from producing an ideal sharpgjscretization of (1) leads to the following matrix-vector
image [,8,10,16,17,18]. For example, the blurring in  gquation

image can arise from relative motion between the camera G=Af+e )

and the original scene, or an optical system that is out of '

focus in the recording of a digital image. Yet another typewhere A is an n? x n?> matrix representing the blurring

of blurring is due to variations caused by turbulence in thephenomena, which can be constructed from the PSF and

air. Besides, such blurring is not confined to optical the imposed boundary conditiof,is ann?-dimensional

images, for instance electron micrographs are corruptegtector representing the original image amdis™ an

by spherical aberrations of the electron lenses, and CT?-dimensional vector representing the blurry and noisy

scans suffer from X-ray scatter. In these and similarimage.

situations, the inevitable result is that we record a bhlirre In the applications of image deblurring, since the

image. With the exception of these blurring effects, thenoise-free imageg is not available, instead, the vector

noise influence always corrupts any recorded image. d =g+ eis known, we expect to determine a solution of a
In these situations we need to take such imperfectiongoise-free problem

into account so that we are able to estimate an g=Af 3)

uncorrupted image from distorted and noisy one by usin

a mathematical model of the blurring process. The task o

image deblurring is to reconstruct an approximation of

the original image, given a blurred and noisy image and a

point spread function (PSF). Mathematically, image |, this work. 5

deblurring can be modeled as a Fredholm integral §

equation of the first kind

y solving an ill-posed problem
g=Af. (4)

= ||e|| representing the Euclid norm of the
noise is assumed explicitly known. Sindeis strictly
ill-conditioned and has many singular values decay to
b /b zero, the exact solution of (4), if it exists, typically istreo
Q(X,Y)Z/a /a k(x,sy,t)f(st)dsdt +e(xy), (1)  meaningful solutiorf* of (3) owing to the small noise.
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In general, many regularization methods are Golub-Kahan iterative bidiagonalization. In Section 3, we
considered to compute a slightly stabilized solution whichintroduce the LSMR algorithm and discuss its application
is less sensitive to errors. Some popular direct methodso an ill-posed problem from image deblurring.
such as TSVD, Wiener filtering and Tikhonov Numerical examples are provided in Section 4 to illustrate
regularization can get an approximate solution fof the satisfactory performance of the LSMR method.
However, it is generally infeasible to calculate the QR Conclusions are the subject of Section 5.
factorization or the singular value decomposition (SVD)
of A explicitly whenA is very large. In this way, direct
methods become impractical. Fortunately, iterative?2 Golub-K ahan iterative bidiagonalization
methods may be an alternative method for large scale
ill-posed problems. As is well known, iterative methods In the section, we are going to review the Golub-Kahan
such as CGLS, GMRES and LSQR equipped with aiterative bidiagonalization] and its some properties that
suitable stopping rule, are some of the most popular anavill be used in the LSMR method for solving ill-posed
powerful iterative regularization methods$,8,11,12,13, problems. At first, some notations that will be used
19,20,21]. For these iterative methods, the iterations canthroughout the paper. LeE, D... andu, v, ... denote
be identified as a regularization parameter. For amatrices and vectors respectively, and (... denote
regularization parametet, in the firstk iterations, the scalars, in addition, we refer @ andb contenting with
methods converge to the solutidi, and then suddenly & +b? = 1 as the significant components of a plane
start to diverge and the noise begins to dominate theotation matrix. ||C|| and|u|| are used to denote the
solution. Hence, at this stage the iterations should be-robenius norm of a matri€ and 2-norm of a vectou
stopped to avoid interference from the noise componentstespectively.

There are different methods for finding this regularization ~ According to a matrixA and a starting vectog, the
parameter, such as the discrepancy principle, the L-curv&olub-Kahan iterative bidiagonalization could generate a
and generalized cross validation. There is merit andsequence of vectorg andu;, as well as scalarg; andf3;
demerit to each of these approaches. For instancesuch thatA is reducing to lower bidiagonal form. A brief
discrepancy principle requires the information of the computational process of the method is described as
noise level. Regarding generalized cross validation, thdollows.

computation of the singular value decomposition for large  Algorithm 1. Golub-Kahan iterative bidiagonalization
scale problems is infeasible. For the L-curve, it has been Input: Aandg:

advocated for many applications where no prior Output: two orthonormal basesi,vy,---,vy and
information about the noise is available. But it may be ug, uy,--- ,um, scalarsay,--- ,0mandfy, - - -, Bmi1.
necessary to solve the corresponding linear systems for (1 = ||§||, ur = §/B1, vi = ATuy, a1 = ||va| andvy =

several regularization parameters. vi/ds.
It is shown that the LSQR method for image fori=1,2,--- ;mdo
deblurring proceeds in two step3 14]. Firstly, the image U1 =AY — aju;;
deblurring problem is projected on an economical Bi+1 = ||Uisa]]; if Biy1 = O stop;
subspace which is computationally much more. Secondly, Uir1 = Uiy1/Bit1;
the standard techniques of regularization can be applied Vier =AU 1 — Bi1vi
to the simplified problem. The LSMR method][being Qi1 = ||Vital; if aiy1 =0 stop;
based on the Golub-Kahan iterative bidiagonalization is Vig1 = Vit1/0Qiy1;
alike to the famous LSQR method. As reported4h fthe end do

LSMR method is safer than LSQR method for solving Note that in Algorithm 1,0 > 0 and 3 > O,
linear systems and least-squares problems, since it is the= 0,1,2,... are normalization constants chosen so that
analytical equal of the MINERES method which puts into ||ui+1]| = ||vi+1]| = 1. In particular,3; = ||§]|. With the
use the corresponding normal equation, so that not onhdefinitions
the ||rm|| is monotonically decreasing in practice, but also
the quantitieg|Arm|| are monotonically decreasing where Um=(Ug,Uz,"*~,Um),  Vim=(V1,V2,"** Vi),
rm = §— Afn, is the residual for the current iteratg. and
However, little is known about the performance of the ay
LSMR method when it is applied to an ill-posed problem B az
from image deblurring. In view of the advantage and _
characteristic of the LSMR comparing with the LSQR, in By = B3 - ,
this research we consider the implementation of the .
LSMR iterative method combined with regularization for
image deblurring problem with a stoping rule based on P
the discrepancy principle. the recurrence relations in Algorithm 1 may be rewritten
We summarize briefly the content of our paper. In as
Section 2, we give a brief recollection of the Umni1(Bre1) =6,

Om
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{ATUAV"‘ ; \limg%i'_“a v T We are in the position to describe the LSMR
m1 mEm + Om-1Vm-+1€m 1 algorithm based on the discrepancy principle for an
By straightforward computations, it is easy to observe thatll-posed problem arising from image deblurring.
Algorithm 2. The LSMR method with the discrepancy
AT AV = VinBlBm + 0+ 1B+ 1Vim+ 160 principle for image deblurring
Input: A, g, y andd.

In fact, this is the equal of the result produced by the Output: a good approximate solutidp.

symmetric Lanczos process with regard to ma#bha .

Start:B1 = [|§]l; ur = §/B1; vi = ATug; a1 = ||va[; va =
vi/0d; 01 = 0z
3 TheLSMR method g RGP =tip =1 =1%=0M
11 0 - 7 O - H
We begin this section by reviewing properties of the Iterate'm:O,
LSMR method. For further details and extensions of the whilé fmll > & do
method, we refer to the work by Fong and Saunddts [ s rT1+1-y

Intr the Krylov .
oduce the Krylov subspaces compute themth basis vectorsy, and uy,, and

update the matriBg, by

(A, §) = spad§,Ad,--- . A™ 1§, m=1,23--. Algorithm 1;
n(A9) = sparlg.Ag g% form the first QR factorization
Denote an approximate solutiofy, € .#m(ATA AT§) Pm= (a2 + B2)Z;
determined by applyingn steps of the LSMR method to Cm = Om/Pm; Sn = Bm+1/Pm;

the linear system of equation (4). Thép satisfies Bmi1 = SmOms1; Omi1 = CmOmyd;

perform the second QR factorization

ATrml| = ming_ - [|AT(§— Af) |, _ - _
17wl fesmarantg A (G=AD] Om = Sn-1Pm: Pm = ((Em-1Pm)> + 62,1);

wherery, = §— Afn is the residual. It is obvious that the Cm = (i"*—lpmlpm' Sm :_eﬂ”l/pm'
LSMR method is analytically equivalent to the MINRES ¢m= Cmm; {mi1 = —Sm{my1;
method applied to the normal equatidd Af = ATg. form the approximate solution
Hence the quantities||ATry| are monotonically hm = Nm — (6mPm/ Pm-10m=1)Nm-1;
decreasing. In practice, Fong and Saunders have showed fm = Tm_1 1 ({m/(PmPm)) m;

that ||ry|| also decreases monotonically. It follows that the rm=§—Afm

approximate solutions determined by the LSMR method Pmi1 = Vi1 — (Bms1/Pm)m;
satisfy |§ — Af|| < [|§— Afm 1], m=1,2,3,---. Here end do

the initial guessp = 0.

For an ill-posed problem arising from image
deblurring, if the associated residual errgyis of norm 4 Numerical examples
smaller than or equal tgd, whered is the norm of the
noise in the right-hand side vectgy andy > 1 is a
specified constant1fl,12,13,15,17], we terminate the
iterations and determine an approximate solutifg
such that

This section presents several computed examples which
illustrate the effectiveness of the LSMR method for the
image deblurring problems. All computations were
carried out in Matlab 7.0. In all tests, the black image
Fa g s (zero matrix) is the initial guess. The LSMR method is

IAfm =gl < ¥, [[Afm-1 =Gl > vo. terminated as soon as an approximate solution that

The residual erroAfy, — § is sometimes referred to as the Satisfies the discrepancy principle was computed. In the

discrepancy and this stopping criterion as the discrepancgliscrepancy principle, we chooge= 1.05.

princip|e; SEE$, 6] for a discussion of its properties_ The aim of our first example is to give evidence of the
The Golub-Kahan iterative bidiagonalization forms the usefulness of the LSMR method for computing the
basis of the implementation of the LSMR method. We nowapproximate solution of equation (4) from image

seek an approximate solutidp, = Vinym for somey,. Let ~ deblurring. This numerical example is a test problem
B = QmpBm for all m. The minimization of|ATr|| leads ~ Which is popular in the literature concerned with medical

to the subproblem image processing2p,23]. The true image is 128 128
simulated MRI of a human brain, available in the the
. T . =~ Bl Bm Matlab Image Processing Toolbox. To generate the
Mify, = |[A"Fml] = miny, [Brer = { z or ) Yol distorted image, convolve the Guassian PSF making use

of the function psfGauss in [24] with the MRI image,
How to solve this least squares subproblem efficiently isthen add 2% Gaussian noise to the result with the built-in
the core of the LSMR algorithm. MATLAB function randn. The test data used in this
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Fig. 1. True image Igft), the Gaussian PSEdnter) and the blurred and noisy imageght).

example is shown in Figure 1. The symmetric truncatedand f;, is the restored image obtained by regularization
Guassian PSF given by methods with truncation parameter. Besides, another
o main term of comparison is the peak signal-to-noise
b = J ce O [i - j| <8, ratio(PSNR) defined as PSNR10l0g,y-25%7, | where
. 0 otherwise _ _ _ Ofm—F*[2’
nis the size of the restored image .

F bandlimited i deblurr K In Table 1, we give the numbers of iterations for
ull or af an |rr|1|teh image de h“”F'F‘@{a o?(i/_mus::g\a/l eobtaining the restored images by the LSMR method with
ull use of not only the image in the Field of View (FOV) e tour different BCs. Besides, the relative error and the
of the given observation but also part of the scenery in thqDSNR for Test 1 are shown in Table 1. We denote the
area bordering it 79. Given the imposed boundary iqina| PSNR and original relative error by dPSNR

conditions, the qurnng maltrbé should reflect SP‘?C'a'. and orirel_err. From Table 1, we can see that the relative
structure. In practice, different boundary condition is rror computed by the LSl\/iR method are much smaller
selected for algebraic simpleness and computationaf,,, e relative error of the contaminated image. The
convenience. For example, with the periodic boundaryLSMR method under the four BCs displays a higher

C_ondition, the matrixA has a block circulant With_ PSNR than the blurred and noisy image. The computed
circulant blocks (BCCB) structures, and the ComPUtat'onimages by the LSMR method are displayed in Figure 2

will be efficient k?y making use of the .ff"‘St Fourier From Figure 2, we observe that the restored images that
transforms (FFTS)' the Z€ro boundary condition proo_luce asatisfy the discrepancy principle by the LSMR method
block Toeplitz with Toeplitz blocks (BTTB) blurring i the four BCs are all better than the blurred and noisy

matrix. Although direct methods cannot be carried outjy,qe The results of the four BCs state that the LSMR
efficiently, it is applicable to put iterative methods to use method can restore the images and suppress the noise

since matrix-vector multiplications involving BTTB P :
matrices can be implemented efficiently by FFTs; In themagnn‘lcatmn effgcnvely. . i
case of the reflexive boundary condition, the madxiwill In Test 2, we illustrate the efficiency of employing the
transform into a block Toeplitz-plus-Hankel with LSMR method for image deblurring problems over the
Toeplitz-plus-Hankel blocks (BTHTHB) structure. For Otheér two popular regularization methods  (truncated
any symmetric PSF, the resulting matrik can be Singular value  decomposition and  Tikhonov,
diagonalized by the discrete cosine transform (DCT II1) "égularization). The second test data we use is shown in
matrix; For the antireflexive boundary condition, the Figure 3. In the true 168& 168 image, the original
matrix A is a block Toeplitz plus Hankel plus 2 rank 1_28x 128 imagef* to be deblurred is dellmltegllby Whlte
correction matrix. Owing to the design, the resulting 'IN€s. In the test, the natural boundary condition will be
matrices from symmetric PSFs can be diagonalized by théonsidered contributing to the blur. We produce the

discrete sine transform (DST 1) matrices; che@je, 25, Plurring image by performing the blurring operation on a
26] for more details. true image and adding 2% Gaussian white noise, from

In this test, we consider solving image restoration by Which a central part is cut out. Here the PSF we consider
the LSMR method under four different boundary IS the out-of—_focus P_SF constrgcted by using the function
conditions. Since the original image is available, we = PSfDefocusin [24] with r = 3, dim=7.
can evaluate the LSMR method by the relative error. In this test, we consider two widely used BCs:
Relative error of the restored image is denoted ageflexive BC and antireflexive BC. For the truncated
[lfm— £*]|2/] T*|l2 , wheref* denotes the original image singular value decomposition method (TSVD) and the

wherec is the normalization constant.
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(a) LSMR method with the zero BC ~ (b) LSMR method with the periodic BC

(c) LSMR method with the reflexive BC (d) LSMR method with the antireflexive
BC

Fig. 2: Restored images obtained by the LSMR with four different boundargitions

Table 1: Iterations, relative error, PSNR for the LSMR method with four diff¢@8s.
| || Zero BC | Periodic BC| Reflexive BC| Antireflexive BC |

Iterations 13 14 13 13
Relative error|| 0.2376 0.2361 0.2377 0.2388
Ori_rel_err 0.3054
PSNR 34.9355 [ 34.9911 [ 34.9328 [ 34.8927
Ori_PSNR 32.7556

Table 2: The relative error and PSNR by three different methods with diffeB&g.

BCs Method | Relative error| PSNR
LSMR 0.1337 31.4151
Reflexive TSVD 0.1527 30.2618
Tikhonov 0.1624 29.8384
LSMR 0.1369 31.2109
Antireflexive TSVD 0.1603 29.7301
Tikhonov 0.1624 29.4934
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(a) True image (b) The out-of-focus PSF (c) Observed image

Fig. 3: True image, PSF and observed image of Test 2.

Fig. 4. Restored images for three different methods with two BCs of Test 2T{a)approximate image determined after 8 steps
of the LSMR method with the reflexive BC, (b) TSVD with the reflexive BE), Tikhonov regularization method with the reflexive
BC, (d) The approximate image determined after 7 steps of the LSMR nhetttlo the antireflexive BC, (e) TSVD method with the
antireflexive BC, (f) Tikhonov regularization method with the antirefleXsC.

Tikhonov regularization method, we apply the regularization method with GCV method obtaining
generalized cross validation (GCV) to find their regularization parameter, while the PSNR by the LSMR
regularization parameters based on the Kronecker produahethod is higher than that by the TSVD method and the
approximation method; se24,27,28]. Tikhonov regularization method. For the LSMR method,
The relative error and PSNR of the restored images bythe stopping rule based on the discrepancy principle is
the three different methods are shown in Table 2. Thesatisfied after 8 steps under the reflexive BC and after 7
relative error and PSNR of the observed image aresteps under the antireflexive BC. We remark that the
ori_rel_err=0.1815 and orPSNR=28.7595. From Table 2, computation of 8 steps under the reflexive BC and 7 steps
we see that under the two BCS, the relative error by thé.]nder the antireflexive BC require the evaluation of 16
LSMR method with discrepancy principle is smaller than Matrix-vector products and 14 matrix-vector products
that by the TSVD method and the Tikhonov With the matrixA respectively, while the TSVD method
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and the Tikhonov regularization method need the singular [6] V. A. Morozov, On the solution of functional equations by
value decomposition of the matrixof sizen? x n?. the methos of regularization, Soviet Math. Dokl.414-417

In Figure 4, we show the restored images using the  (1966).
LSMR method, the TSVD method and the Tikhonov [7] A. Bovik, Handbook of image and video processing, Second
regularization method under the two BCs for Test 2. It is __Edition, Elsevier Academic Press, (2005). _
easy to see from Figure 4 that the LSMR method can give [8] P- C. Hansen, J. G. Nagy and D. P. O’Leary, Deblurring
restored images of higher quality than the other two  'Mages: Matrices, Spectra, and Filtering, = SIAM,
popular methods. As expected, the LSMR method under Philadelphia, (2006).

L [9JH. Andrew and B. Hunt, Digital Image Restoration,
the two BCs has addressed the problem of ringing effects Prentice-Hall, Englewood Cliffs, NJ, (1977).

at the image boundary. [10]M. R. Banham and A. K. Katsaggelos, Digital image
restoration, |IEEE Signal Processing Magazirigl, 24-41
(1997).

5 Concluding remarks [11] M. Hanke, Conjugate Gradient Type Methods for lll-Posed

Problems, Longman, Harlow, (1995).

Thi first di h . d ad B]TZ] D. Calvetti, B. Lewis, and L. Reichel, GMRES-type
Is paper first discusses the properties and advantages methods for inconsistent systems, Linear Algebra Appl.,

the LSMR iterative method. Two numerical examples are 315 157.169 (2000).

given to illustrate the performance of the scheme for(13]p. Calvetti, B. Lewis, and L. Reichel, On the regularizing
computing the approximate solutions of large-scale  properties of the GMRES method, Numer. Ma®t, 605-
ill-posed problems arising from image delurring. In order 625 (2002).

to be able to exhibit the effectiveness of the LSMR [14]D. P. O'Leary and J. A. Simmons, A bidiagonalization-
method, a comparison among the LSMR and the other  regularization porcedure for large scale discretizations of ill-
two widely used methods is considered in the numerical ~ posed problems, SIAM J. Sci. Statist. Comp@f.474-489
test. Experiment results are provided to show the  (1981).

satisfactory performance of the LSMR method for image[15] D. Calvetti and G. Landi, L. Reichel and F. Sgallari, Non-
deblurring, with respect to the quality of the restored negativity and iterative methods for ill-posed problems,

images and the computational saving. Inverse Problems0, 1747-1758 (2004).
9 P 9 [16] H. Engl, M. Hanke, and A. Neubauer, Regularization

of Inverse Problems, Kluwer Academic Publishers: The
Netherlands, (1996).
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