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Abstract: Image deblurring is a classic problem which has been extensively studiedin image processing. The challenge of image
deblurring is how to devise efficient and reliable algorithms for recovering the original, sharp image from a blurred and noisy one.
In this paper, we consider the implementation of the LSMR method for computing an approximate solution of an ill-posed problem
arising from image deblurring. When equipped with a stopping rule based on the discrepancy principle, the LSMR method acts as a
regularization method. The numerical examples illustrate that the LSMR method is able to give restored images of higher quality with
less computational effort than other widely used regularization methods.
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1 Introduction

In the process of recording image, there is more or less
blurry that prevents us from producing an ideal sharp
image [7,8,10,16,17,18]. For example, the blurring in
image can arise from relative motion between the camera
and the original scene, or an optical system that is out of
focus in the recording of a digital image. Yet another type
of blurring is due to variations caused by turbulence in the
air. Besides, such blurring is not confined to optical
images, for instance electron micrographs are corrupted
by spherical aberrations of the electron lenses, and CT
scans suffer from X-ray scatter. In these and similar
situations, the inevitable result is that we record a blurred
image. With the exception of these blurring effects, the
noise influence always corrupts any recorded image.

In these situations we need to take such imperfections
into account so that we are able to estimate an
uncorrupted image from distorted and noisy one by using
a mathematical model of the blurring process. The task of
image deblurring is to reconstruct an approximation of
the original image, given a blurred and noisy image and a
point spread function (PSF). Mathematically, image
deblurring can be modeled as a Fredholm integral
equation of the first kind

g(x,y) =
∫ b

a

∫ b

a
k(x,s;y, t) f (s, t)dsdt + e(x,y), (1)

where the functiong(x,y) is the observed image,e(x,y)
represents the additive noise,f (s, t) is the original image,
and k(x,s;y, t) is the point spread function (PSF). The
discretization of (1) leads to the following matrix-vector
equation

g̃ = A f + e, (2)

where A is an n2 × n2 matrix representing the blurring
phenomena, which can be constructed from the PSF and
the imposed boundary condition,f is ann2-dimensional
vector representing the original image and ˜g is an
n2-dimensional vector representing the blurry and noisy
image.

In the applications of image deblurring, since the
noise-free imageg is not available, instead, the vector
g̃ = g+ e is known, we expect to determine a solution of a
noise-free problem

g = A f (3)

by solving an ill-posed problem

g̃ = A f̃ . (4)

In this work,δ = ‖e‖ representing the Euclid norm of the
noise is assumed explicitly known. SinceA is strictly
ill-conditioned and has many singular values decay to
zero, the exact solution of (4), if it exists, typically is not a
meaningful solutionf ∗ of (3) owing to the small noisee.
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In general, many regularization methods are
considered to compute a slightly stabilized solution which
is less sensitive to errors. Some popular direct methods
such as TSVD, Wiener filtering and Tikhonov
regularization can get an approximate solution off ∗.
However, it is generally infeasible to calculate the QR
factorization or the singular value decomposition (SVD)
of A explicitly when A is very large. In this way, direct
methods become impractical. Fortunately, iterative
methods may be an alternative method for large scale
ill-posed problems. As is well known, iterative methods
such as CGLS, GMRES and LSQR equipped with a
suitable stopping rule, are some of the most popular and
powerful iterative regularization methods [1,3,11,12,13,
19,20,21]. For these iterative methods, the iterations can
be identified as a regularization parameter. For a
regularization parameterk, in the first k iterations, the
methods converge to the solutionf ∗, and then suddenly
start to diverge and the noise begins to dominate the
solution. Hence, at this stage the iterations should be
stopped to avoid interference from the noise components.
There are different methods for finding this regularization
parameter, such as the discrepancy principle, the L-curve
and generalized cross validation. There is merit and
demerit to each of these approaches. For instance,
discrepancy principle requires the information of the
noise level. Regarding generalized cross validation, the
computation of the singular value decomposition for large
scale problems is infeasible. For the L-curve, it has been
advocated for many applications where no prior
information about the noise is available. But it may be
necessary to solve the corresponding linear systems for
several regularization parameters.

It is shown that the LSQR method for image
deblurring proceeds in two steps [3,14]. Firstly, the image
deblurring problem is projected on an economical
subspace which is computationally much more. Secondly,
the standard techniques of regularization can be applied
to the simplified problem. The LSMR method [4] being
based on the Golub-Kahan iterative bidiagonalization is
alike to the famous LSQR method. As reported in [4], the
LSMR method is safer than LSQR method for solving
linear systems and least-squares problems, since it is the
analytical equal of the MINERES method which puts into
use the corresponding normal equation, so that not only
the‖rm‖ is monotonically decreasing in practice, but also
the quantities‖Arm‖ are monotonically decreasing where
rm = g̃−A f̃m is the residual for the current iteratẽfm.

However, little is known about the performance of the
LSMR method when it is applied to an ill-posed problem
from image deblurring. In view of the advantage and
characteristic of the LSMR comparing with the LSQR, in
this research we consider the implementation of the
LSMR iterative method combined with regularization for
image deblurring problem with a stoping rule based on
the discrepancy principle.

We summarize briefly the content of our paper. In
Section 2, we give a brief recollection of the

Golub-Kahan iterative bidiagonalization. In Section 3, we
introduce the LSMR algorithm and discuss its application
to an ill-posed problem from image deblurring.
Numerical examples are provided in Section 4 to illustrate
the satisfactory performance of the LSMR method.
Conclusions are the subject of Section 5.

2 Golub-Kahan iterative bidiagonalization

In the section, we are going to review the Golub-Kahan
iterative bidiagonalization [2] and its some properties that
will be used in the LSMR method for solving ill-posed
problems. At first, some notations that will be used
throughout the paper. LetC, D... and u, v, ... denote
matrices and vectors respectively, andα, β ... denote
scalars, in addition, we refer toa and b contenting with
a2 + b2 = 1 as the significant components of a plane
rotation matrix. ‖C‖ and‖u‖ are used to denote the
Frobenius norm of a matrixC and 2-norm of a vectoru
respectively.

According to a matrixA and a starting vector ˜g, the
Golub-Kahan iterative bidiagonalization could generate a
sequence of vectorsvi andui, as well as scalarsαi andβi
such thatA is reducing to lower bidiagonal form. A brief
computational process of the method is described as
follows.

Algorithm 1. Golub-Kahan iterative bidiagonalization
Input: A andg̃.
Output: two orthonormal basesv1,v2, · · · ,vm and

u1,u2, · · · ,um, scalarsα1, · · · ,αm andβ1, · · · ,βm+1.
β1 = ‖g̃‖, u1 = g̃/β1, v1 = AT u1, α1 = ‖v1‖ andv1 =

v1/α1.
for i = 1,2, · · · ,m do

ui+1 = Avi −αiui;
βi+1 = ‖ui+1‖; if βi+1 = 0 stop;
ui+1 = ui+1/βi+1;
vi+1 = AT ui+1−βi+1vi
αi+1 = ‖vi+1‖; if αi+1 = 0 stop;
vi+1 = vi+1/αi+1;

end do
Note that in Algorithm 1, αi ≥ 0 and βi ≥ 0,

i = 0,1,2, ... are normalization constants chosen so that
‖ui+1‖ = ‖vi+1‖ = 1. In particular,β1 = ‖g̃‖. With the
definitions

Um = (u1,u2, · · · ,um), Vm = (v1,v2, · · · ,vm),

and

Bk =















α1
β2 α2

β3
. . .
. . . αm

βm+1















,

the recurrence relations in Algorithm 1 may be rewritten
as

Um+1(β1e1) = g̃,
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{

AVm = Um+1Bm

ATUm+1 = VmBT
m +αm+1vm+1eT

m+1
.

By straightforward computations, it is easy to observe that

AT AVm =VmBT
mBm +αm+1βm+1vm+1eT

m.

In fact, this is the equal of the result produced by the
symmetric Lanczos process with regard to matrixAT A .

3 The LSMR method

We begin this section by reviewing properties of the
LSMR method. For further details and extensions of the
method, we refer to the work by Fong and Saunders [4].
Introduce the Krylov subspaces

Km(A, g̃) = span{g̃,Ag̃, · · · ,Am−1g̃}, m = 1,2,3· · · .

Denote an approximate solutioñfm ∈ Km(AT A,AT g̃)
determined by applyingm steps of the LSMR method to
the linear system of equation (4). Thenf̃m satisfies

‖AT rm‖= min f̃∈Km(AT A,AT g̃)‖AT (g̃−A f̃ )‖,

whererm = g̃−A f̃m is the residual. It is obvious that the
LSMR method is analytically equivalent to the MINRES
method applied to the normal equationAT A f̃ = AT g̃.
Hence the quantities ‖AT rm‖ are monotonically
decreasing. In practice, Fong and Saunders have showed
that‖rm‖ also decreases monotonically. It follows that the
approximate solutions determined by the LSMR method
satisfy ‖g̃ − A f̃m‖ ≤ ‖g̃ − A f̃m−1‖, m = 1,2,3, · · · . Here
the initial guessf̃0 = 0.

For an ill-posed problem arising from image
deblurring, if the associated residual errorrm is of norm
smaller than or equal toγδ , whereδ is the norm of the
noise in the right-hand side vector ˜g and γ ≥ 1 is a
specified constant [11,12,13,15,17], we terminate the
iterations and determine an approximate solutionf̃m,
such that

‖A f̃m − g̃‖ ≤ γδ , ‖A f̃m−1− g̃‖> γδ .

The residual errorA f̃m − g̃ is sometimes referred to as the
discrepancy and this stopping criterion as the discrepancy
principle; see [5,6] for a discussion of its properties.

The Golub-Kahan iterative bidiagonalization forms the
basis of the implementation of the LSMR method. We now
seek an approximate solutioñfm =Vmym for someym. Let
β̄m = αmβm for all m. The minimization of‖AT rm‖ leads
to the subproblem

minym = ‖AT rm‖= minym‖β̄1e1−

(

BT
mBm

β̄m+1eT
m

)

ym‖.

How to solve this least squares subproblem efficiently is
the core of the LSMR algorithm.

We are in the position to describe the LSMR
algorithm based on the discrepancy principle for an
ill-posed problem arising from image deblurring.

Algorithm 2. The LSMR method with the discrepancy
principle for image deblurring

Input: A, g̃, γ andδ .
Output: a good approximate solutioñfm.
Start:β1 = ‖g̃‖; u1 = g̃/β1; v1 =AT u1; α1 = ‖v1‖; v1 =

v1/α1; ᾱ1 = α1;
ζ̄1 = α1β1; ρ0 = 1; ρ̄0 = 1; c̄0 = 1; s̄0 = 0; h1 =

v1; h̄0 = 0; f̃0 = 0;
m = 0;

Iterate:
while ‖rm‖> γδ do

m = m+1;
compute themth basis vectorsvm and um, and

update the matrixBm by
Algorithm 1;
form the first QR factorization

ρm = (ᾱ2
m +β 2

m)
1
2 ;

cm = ᾱm/ρm; sm = βm+1/ρm;
θm+1 = smαm+1; ᾱm+1 = cmαm+1;

perform the second QR factorization

θ̄m = s̄m−1ρm; ρ̄m = ((c̄m−1ρm)
2+θ 2

m+1)
1
2 ;

c̄m = c̄m−1ρm/ρ̄m; s̄m = θm+1/ρ̄m;
ζm = c̄mζ̄m; ζ̄m+1 =−s̄mζ̄m+1;

form the approximate solution
h̄m = hm − (θ̄mρm/ρm−1ρ̄m−1)h̄m−1;
f̃m = f̃m−1+(ζm/(ρmρ̄m))h̄m;
rm = g̃−A f̃m
hm+1 = vm+1− (θm+1/ρm)hm;

end do

4 Numerical examples

This section presents several computed examples which
illustrate the effectiveness of the LSMR method for the
image deblurring problems. All computations were
carried out in Matlab 7.0. In all tests, the black image
(zero matrix) is the initial guess. The LSMR method is
terminated as soon as an approximate solution that
satisfies the discrepancy principle was computed. In the
discrepancy principle, we chooseγ = 1.05.

The aim of our first example is to give evidence of the
usefulness of the LSMR method for computing the
approximate solution of equation (4) from image
deblurring. This numerical example is a test problem
which is popular in the literature concerned with medical
image processing [22,23]. The true image is 128× 128
simulated MRI of a human brain, available in the the
Matlab Image Processing Toolbox. To generate the
distorted image, convolve the Guassian PSF making use
of the function ps f Gauss in [24] with the MRI image,
then add 2% Gaussian noise to the result with the built-in
MATLAB function randn. The test data used in this
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Fig. 1: True image (left), the Gaussian PSF (center) and the blurred and noisy image (right).

example is shown in Figure 1. The symmetric truncated
Guassian PSF given by

hi j =

{

ce−0.1(i2+ j2) if |i− j| ≤ 8,
0 otherwise,

wherec is the normalization constant.
For a bandlimited image deblurring, one must make

full use of not only the image in the Field of View (FOV)
of the given observation but also part of the scenery in the
area bordering it [29]. Given the imposed boundary
conditions, the blurring matrixA should reflect special
structure. In practice, different boundary condition is
selected for algebraic simpleness and computational
convenience. For example, with the periodic boundary
condition, the matrix A has a block circulant with
circulant blocks (BCCB) structures, and the computation
will be efficient by making use of the fast Fourier
transforms (FFTs); the zero boundary condition produce a
block Toeplitz with Toeplitz blocks (BTTB) blurring
matrix. Although direct methods cannot be carried out
efficiently, it is applicable to put iterative methods to use,
since matrix-vector multiplications involving BTTB
matrices can be implemented efficiently by FFTs; In the
case of the reflexive boundary condition, the matrixA will
transform into a block Toeplitz-plus-Hankel with
Toeplitz-plus-Hankel blocks (BTHTHB) structure. For
any symmetric PSF, the resulting matrixA can be
diagonalized by the discrete cosine transform (DCT III)
matrix; For the antireflexive boundary condition, the
matrix A is a block Toeplitz plus Hankel plus 2 rank
correction matrix. Owing to the design, the resulting
matrices from symmetric PSFs can be diagonalized by the
discrete sine transform (DST I) matrices; check [9,24,25,
26] for more details.

In this test, we consider solving image restoration by
the LSMR method under four different boundary
conditions. Since the original imagef ∗ is available, we
can evaluate the LSMR method by the relative error.
Relative error of the restored image is denoted as
‖ f̃m − f ∗‖2/‖ f ∗‖2 , where f ∗ denotes the original image

and f̃m is the restored image obtained by regularization
methods with truncation parameterm. Besides, another
main term of comparison is the peak signal-to-noise
ratio(PSNR) defined as PSNR= 10log10

2552n2

‖f̃m−f∗‖2
F
, where

n is the size of the restored image .

In Table 1, we give the numbers of iterations for
obtaining the restored images by the LSMR method with
the four different BCs. Besides, the relative error and the
PSNR for Test 1 are shown in Table 1. We denote the
original PSNR and original relative error by oriPSNR
and ori rel err. From Table 1, we can see that the relative
error computed by the LSMR method are much smaller
than the relative error of the contaminated image. The
LSMR method under the four BCs displays a higher
PSNR than the blurred and noisy image. The computed
images by the LSMR method are displayed in Figure 2.
From Figure 2, we observe that the restored images that
satisfy the discrepancy principle by the LSMR method
with the four BCs are all better than the blurred and noisy
image. The results of the four BCs state that the LSMR
method can restore the images and suppress the noise
magnification effectively.

In Test 2, we illustrate the efficiency of employing the
LSMR method for image deblurring problems over the
other two popular regularization methods (truncated
singular value decomposition and Tikhonov
regularization). The second test data we use is shown in
Figure 3. In the true 168× 168 image, the original
128×128 imagef ∗ to be deblurred is delimited by white
lines. In the test, the natural boundary condition will be
considered contributing to the blur. We produce the
blurring image by performing the blurring operation on a
true image and adding 2% Gaussian white noise, from
which a central part is cut out. Here the PSF we consider
is the out-of-focus PSF constructed by using the function
ps f De f ocus in [24] with r = 3, dim = 7.

In this test, we consider two widely used BCs:
reflexive BC and antireflexive BC. For the truncated
singular value decomposition method (TSVD) and the
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(a) LSMR method with the zero BC (b) LSMR method with the periodic BC

(c) LSMR method with the reflexive BC (d) LSMR method with the antireflexive
BC

Fig. 2: Restored images obtained by the LSMR with four different boundary conditions

Table 1: Iterations, relative error, PSNR for the LSMR method with four different BCs.
Zero BC Periodic BC Reflexive BC Antireflexive BC

Iterations 13 14 13 13
Relative error 0.2376 0.2361 0.2377 0.2388

Ori rel err 0.3054
PSNR 34.9355 34.9911 34.9328 34.8927

Ori PSNR 32.7556

Table 2: The relative error and PSNR by three different methods with differentBCs.
BCs Method Relative error PSNR

LSMR 0.1337 31.4151
Reflexive TSVD 0.1527 30.2618

Tikhonov 0.1624 29.8384
LSMR 0.1369 31.2109

Antireflexive TSVD 0.1603 29.7301
Tikhonov 0.1624 29.4934
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Fig. 3: True image, PSF and observed image of Test 2.

(a) (b) (c)

(d) (e) (f)

Fig. 4: Restored images for three different methods with two BCs of Test 2. (a)The approximate image determined after 8 steps
of the LSMR method with the reflexive BC, (b) TSVD with the reflexive BC, (c) Tikhonov regularization method with the reflexive
BC, (d) The approximate image determined after 7 steps of the LSMR method with the antireflexive BC, (e) TSVD method with the
antireflexive BC, (f) Tikhonov regularization method with the antireflexive BC.

Tikhonov regularization method, we apply the
generalized cross validation (GCV) to find their
regularization parameters based on the Kronecker product
approximation method; see [24,27,28].

The relative error and PSNR of the restored images by
the three different methods are shown in Table 2. The
relative error and PSNR of the observed image are
ori rel err=0.1815 and oriPSNR=28.7595. From Table 2,
we see that under the two BCs, the relative error by the
LSMR method with discrepancy principle is smaller than
that by the TSVD method and the Tikhonov

regularization method with GCV method obtaining
regularization parameter, while the PSNR by the LSMR
method is higher than that by the TSVD method and the
Tikhonov regularization method. For the LSMR method,
the stopping rule based on the discrepancy principle is
satisfied after 8 steps under the reflexive BC and after 7
steps under the antireflexive BC. We remark that the
computation of 8 steps under the reflexive BC and 7 steps
under the antireflexive BC require the evaluation of 16
matrix-vector products and 14 matrix-vector products
with the matrixA respectively, while the TSVD method
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and the Tikhonov regularization method need the singular
value decomposition of the matrixA of sizen2×n2.

In Figure 4, we show the restored images using the
LSMR method, the TSVD method and the Tikhonov
regularization method under the two BCs for Test 2. It is
easy to see from Figure 4 that the LSMR method can give
restored images of higher quality than the other two
popular methods. As expected, the LSMR method under
the two BCs has addressed the problem of ringing effects
at the image boundary.

5 Concluding remarks

This paper first discusses the properties and advantages of
the LSMR iterative method. Two numerical examples are
given to illustrate the performance of the scheme for
computing the approximate solutions of large-scale
ill-posed problems arising from image delurring. In order
to be able to exhibit the effectiveness of the LSMR
method, a comparison among the LSMR and the other
two widely used methods is considered in the numerical
test. Experiment results are provided to show the
satisfactory performance of the LSMR method for image
deblurring, with respect to the quality of the restored
images and the computational saving.
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