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Abstract: In this paper, we will prove some new dynamic inequalities on a time scaleT. These inequalities, as special cases, when
T= R contain some integral inequalities and whenT= N contain the discrete inequalities due to Leindler. The main results will be
proved by using the Ḧolder inequality and a simple consequence of Keller’s chain rule on time scales. From our results, as applications,
we will derive some new continuous and discrete Wirtinger type inequalities.The technique in this paper is completely different from
the technique used by Leindler to prove his main results.

Keywords: Hardy’s inequality, Leindler’s inequality, time scales

1 Introduction

Since the discovery of the classical Hardy inequalities
(continuous or discrete) much work has been done, and
many papers which deal with new proofs, various
generalizations and extensions have appeared in the
literature. We refer the reader to the books [14,15,21] and
the papers [2,5,11,12,13,16,18,19,20,23] and the
references cited therein. The classical Hardy inequality
states that forf ≥ 0 and integrable over any finite interval
(0,x) and f k is integrable and convergent over(0,∞) and
k > 1, then

∫ ∞

0

(

1
x

∫ x

0
f (t)dt

)k

dx ≤
(

k
k−1

)k ∫ ∞

0
f k(x)dx. (1)

The constant(k/(k−1))k is the best possible. The
classical discrete Hardy inequality is given by

∞

∑
n=1

(

1
n

n

∑
i=1

a(i)

)k

≤
(

k
k−1

)k ∞

∑
n=1

ak(n), k > 1. (2)

Some of the generalizations of the discrete Hardy
inequality (2) are due to Leindler [16,17]. In particular,
Leindler in [16] proved that ifp > 1, λ (n), g(n)> 0, then

∞

∑
n=1

λ (n)

(

n

∑
s=1

g(s)

)p

≤ pp
∞

∑
n=1

λ 1−p(n)

( ∞

∑
s=n

λ (s)
)p

gp(n),

(3)

and

∞

∑
n=1

λ (n)

(

∞

∑
k=n

g(k)

)p

≤ pp
∞

∑
n=1

λ 1−p(n)

(

n

∑
k=1

λ (k)

)p

gp(n).

(4)
The converses of (3) and (4) are proved by Leindler in [17].
He proved that if 0< p ≤ 1, then

∞

∑
n=1

λ (n)

(

n

∑
k=1

g(k)

)p

≥ pp
∞

∑
n=1

λ 1−p(n)

(

∞

∑
k=n

λ (k)

)p

gp(n),

(5)
and

∞

∑
n=1

λ (n)

(

∞

∑
k=n

g(k)

)p

≥ pp
∞

∑
n=1

λ 1−p(n)

(

n

∑
k=1

λ (p)

)p

gp(n).

(6)
Dynamic inequalities of Hardy type were established in
[22,25,26,27,28,29,30,31] on a time scaleT, which is
an arbitrary closed subset of the real numbersR. The
cases when the time scale is equal to the reals or to the
integers represent the classical theories of integral and of
discrete inequalities. In this paper, without loss of
generality, we assume that supT = ∞, and define the time
scale interval[t0,∞)T by [t0,∞)T := [t0,∞)∩T. For more
details of time scale analysis, we refer the reader to the
two books by Bohner and Peterson [3], [4] which
summarize and organize much of the time scale calculus.

The natural question now is: if it is possible to prove
some new dynamic inequalities on time scales which as
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special cases contain the inequalities (3)-(6)? The main
aim of this paper, in Section 2, is to give an affirmative
answer to this question. The main results will be proved
by making use of Ḧolder’s inequality and a simple
consequence of Keller’s chain rule on time scales. From
our results, for the sake of applications, we will derive
some new continuous and discrete Wirtinger type
inequalities (see [1]). It is worth to mention here that the
technique that we will apply in this paper is completely
different from the technique used by Leindler to prove his
main results.

2 Main Results

For completeness, before we prove the main results, we
recall the following concepts related to the notion of time
scales. A time scaleT is an arbitrary nonempty closed
subset of the real numbersR. Without loss of generality,
we assume that supT = ∞, and define the time scale
interval [a,b]T by [a,b]T := [a,b] ∩ T. The three most
popular examples of calculus on time scales are
differential calculus, difference calculus, and quantum
calculus, i.e, when T = R, T = N and
T = qN0 = {qt : t ∈ N0} where q > 1. We assume
throughout thatT has the topology that it inherits from
the standard topology on the real numbersR. The forward
jump operator and the backward jump operator are
defined by:

σ(t) := inf{s ∈ T : s > t}, ρ(t) := sup{s ∈ T : s < t},

where sup /0= infT. A point t ∈ T, is said to be left–dense
if ρ(t) = t and t > infT, is right–dense ifσ(t) = t, is
left–scattered ifρ(t) < t and right–scattered ifσ(t) > t.
A function g : T→ R is said to be right–dense continuous
(rd–continuous) providedg is continuous at right–dense
points and at left–dense points inT, left hand limits exist
and are finite. The set of all such rd–continuous functions
is denoted byCrd(T).

The graininess functionµ for a time scaleT is defined
by µ(t) := σ(t)− t, and for any functionf : T → R the
notation f σ (t) denotesf (σ(t)). Fix t ∈ T and letx : T→
R. Define x∆ (t) to be the number (if it exists) with the
property that given anyε > 0 there is a neighborhoodU of
t with

|[x(σ(t))− x(s)]− x∆ (t)[σ(t)− s]| ≤ ε |σ(t)− s|,

for all s ∈ U . In this case, we sayx∆ (t) is the (delta)
derivative ofx at t and thatx is (delta) differentiable att.
We will frequently use the following results due to Hilger
[10]. Throughout the paper will assume thatg : T → R

and lett ∈ T.

(i)If g is differentiable att, theng is continuous att.
(ii)If g is continuous att andt is right-scattered, theng is

differentiable att with g∆ (t) = g(σ(t))−g(t)
µ(t) .

(iii)If g is differentiable andt is right-dense, theng∆ (t) =

lims→t
g(t)−g(s)

t−s .
(iv)If g is differentiable at t, then

g(σ(t)) = g(t)+µ(t)g∆ (t).

Note that ifT= R then

σ(t)= t, µ(t)= 0, f ∆ (t)= f ′(t),
∫ b

a
f (t)∆ t =

∫ b

a
f (t)dt

if T= Z, then

σ(t) = t +1, µ(t) = 1, f ∆ (t) = ∆ f (t),

and
∫ b

a f (t)∆ t = ∑b−1
t=a f (t), if T=hZ, h > 0, thenσ(t) =

t +h, µ(t) = h, and

y∆ (t) = ∆hy(t) :=
y(t +h)− y(t)

h
,

∫ b

a
f (t)∆ t =

b−a−h
h

∑
k=0

f (a+ kh)h,

and if T = {t : t = qk, k ∈ N0, q > 1}, then σ(t) = qt,
µ(t) = (q−1)t,

x∆ (t) = ∆qx(t) =
(x(qt)− x(t))

(q−1)t
,

∫ ∞

t0
f (t)∆ t =

∞

∑
k=n0

f (qk)µ(qk),

wheret0 = qn0, and ifT=N
2
0 := {n2 : n∈N0}, thenσ(t)=

(
√

t +1)2,

µ(t) = 1+2
√

t, ∆Ny(t) =
y((

√
t +1)2)− y(t)

1+2
√

t
.

In this paper, we will refer to the (delta) integral which we
can define as follows. IfG∆ (t) = g(t), then the Cauchy
(delta) integral of g is defined by
∫ t

a g(s)∆s := G(t)−G(a). It can be shown (see [3]) that if
g ∈ Crd(T), then the Cauchy integralG(t) :=

∫ t
t0

g(s)∆s

exists, t0 ∈ T, and satisfiesG∆ (t) = g(t), t ∈ T. An
infinite integral is defined as
∫ ∞

a f (t)∆ t = limb→∞
∫ b

a f (t)∆ t. We will make use of the
following product and quotient rules for the derivative of
the productf g and the quotientf/g (whereggσ 6= 0, here
gσ = g◦σ ) of two differentiable functionf andg

( f g)∆ = f ∆ g+ f σ g∆ = f g∆ + f ∆ gσ (7)

and
(

f
g

)∆
=

f ∆ g− f g∆

ggσ . (8)
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We say that a functionp : T → R is regressive provided
1+ µ(t)p(t) 6= 0, t ∈ T. The chain rule formula that we
will use in this paper is

(xγ(t))∆ = γ
1
∫

0

[hxσ +(1−h)x]γ−1 dhx∆ (t), (9)

which is a simple consequence of Keller’s chain rule [3,
Theorem 1.90]. The integration by parts formula is given
by

∫ b

a
u(t)v∆ (t)∆ t = [u(t)v(t)]ba −

∫ b

a
u∆ (t)vσ (t)∆ t. (10)

To prove the main results, we will use the following
Hölder inequality [3, Theorem 6.13]. Leta, b ∈ T. For
u, v ∈ Crd(T, R), we have

∫ b

a
|u(t)v(t)|∆ t ≤

[

∫ b

a
|u(t)|q ∆ t

]
1
q
[

∫ b

a
|v(t)|p ∆ t

]
1
p

,

(11)
where p > 1 and 1

p + 1
q = 1. Throughout the paper, we

will assume that the functions are nonnegative
rd-continuous functions,∆−differentiable, locally delta
integrable and the left hand sides of the inequalities exists
if the right hand side exists. In the following theorem, we
will prove the time scale version of Leindler’s inequality
(3) on time scales.

Theorem 2.1. Let T be a time scale and p > 1. Let

Λ(t) :=
∫ ∞

t
λ (s)∆s, (12)

and

Φ(t) :=
∫ t

a
g(s)∆s, for any t ∈ [a,∞)T. (13)

Then
∫ ∞

a
λ (t)(Φσ (t))p∆ t ≤ pp

∫ ∞

a
(λ (t))1−pΛ p(t)gp(t)∆ t.

(14)
Proof. Integrating the left hand side of (14) by parts
formula (10) with u∆ (t) = λ (t), vσ (t) = (Φσ (t))p , to
obtain
∫ ∞

a
λ (t)(Φσ (t))p∆ t = u(t)Φ p(t)|∞a

+
∫ ∞

a
(−u(t))(Φ p(t))∆ ∆ t,

whereu(t) = −∫ ∞
t λ (s)∆s = −Λ(t). This and the facts

thatΦ(a) = 0 andΛ(∞) = 0, imply that

∫ ∞

a
λ (t)(Φσ (t))p∆ t =

∫ ∞

a
(Λ(t))(Φ p(t))∆ ∆ t. (15)

Applying the chain rule ([3, Theorem 1.87])f ∆ (δ (t)) =
f
′
(δ (d))δ ∆ (t), whered ∈ [t,σ(t)], we see that there exists

d ∈ [t,σ(t)] such that

(Φ p(t))∆ = pΦ p−1(d)(Φ∆ (t)) = pΦ p−1(d)g(t). (16)

SinceΦ∆ (t) = g(t)> 0, andσ(t)≥ d, we see thatΦ(d)≤
Φσ (t). This and (16) imply that

(Φ p(t))∆ (Λ(t))≤ pg(t)(Λ(t))(Φσ (t))p−1. (17)

Substituting (17) into (15), we have
∫ ∞

a
λ (t)(Φσ (t))p ∆ t

≤ p
∫ ∞

a

g(t)Λ(t)

(λ (t))
p−1

p

(λ (t))
p−1

p (Φσ (t))p−1∆ t. (18)

Applying the Ḧolder inequality (11) on the right hand side
of (18) with indicesp, p/p−1, we see that
∫ ∞

a

g(t)Λ(t)

(λ (t))
p−1

p

[

(λ (t))
p−1

p (Φσ (t))p−1
]

∆ t

≤
[

∫ ∞

a

[

Λ(t)g(t)

(λ (t))
p−1

p

]p

∆ t

]1/p

(19)

×
[

∫ ∞

a
λ (t)(Φσ (t))p∆ t

]1−1/p

.

Substituting (20) into (18), we have
∫ ∞

a
λ (t)(Φσ (t))p∆ t

≤ p

[

∫ ∞

a

(Λ(t)g(t))p

(λ (t))p−1 ∆ t

]

× 1/p
[

∫ ∞

a
λ (t)(Φσ (t))p∆ t

]1− 1
p

. (20)

This implies that
∫ ∞

a
λ (t)(Φσ (t))p∆ t ≤ pp

∫ ∞

a
(λ (t))1−pΛ p(t)gp(t)∆ t,

which is the desired inequality (14). The proof is complete.

Remark. As a special case of Theorem 2.1 whenT= R,
we have the following integral inequality of Leindler’s
type (note that whenT= R, we haveσ(t) = t)
∫ ∞

a
λ (t)

(

∫ t

a
g(s)ds

)p

dt

≤ pp
∫ ∞

a
λ 1−p(t)

(

∫ ∞

t
λ (s)ds

)p

gp(t)dt, p > 1.

From this inequality, we have the following Wirtinger type
inequality
∫ ∞

a
λ 1−p(t)

(

∫ ∞

t
λ (s)ds

)p

(G
′
(t))pdt

≥ 1
pp

∫ ∞

a
λ (t)Gp(t)dt, p > 1,
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whereG(t) is continuous and differentiable function with
G(a) = 0. As a special case ifλ (t) = 1/t2 and replace∞
by 1, we get the well-known inequality due to Hardy

∫ 1

0

(

U
′
(t)
)2

dt ≥ 1
4

∫ 1

0

1
t2U2(t), with U(0) = 0,

with the best constant 1/4.

The Wirtinger type inequalities have extensive
applications on partial differential and difference
equations, harmonic analysis, approximations, number
theory, optimization, convex geometry, spectral theory of
differential and difference operators, and others (see
[24]).

Remark. Assume thatT= N in Theorem 2.1,p > 1, a = 1.
Furthermore assume that

∞

∑
n=1

λ 1−p(n)

( ∞

∑
s=n

λ (s)
)p

gp(n),

is convergent. In this case the inequality (14) becomes the
following discrete Leindler’s inequality

∞

∑
n=1

λ (n)

(

n

∑
s=1

g(s)

)p

≤ pp
∞

∑
n=1

λ 1−p(n)

( ∞

∑
s=n

λ (s)
)p

gp(n), p > 1.

From this inequality, we have the following discrete
Wirtinger type inequality

∞

∑
n=1

λ 1−p(n)

( ∞

∑
s=n

λ (s)
)p

(∆G(n))p

≥ 1
pp

∞

∑
n=1

λ (n)(G(n)))p , p > 1,

whereG(n) is a positive sequence withG(1) = 0.

In the following theorem, we will prove a time scale
version of Leindler’s inequality (4) on time scales.

Theorem 2.2. Let T be a time scale and p > 1. Let

Λ(t) =
∫ t

a
λ (s)∆s, (21)

and

Φ(t) :=
∫ ∞

t
g(s)∆s, for any t ∈ [a,∞)T. (22)

Then
∫ ∞

a
λ (t)(Φ(t))p∆ t ≤ pp

∫ ∞

a
λ 1−p(t)

(

Λ σ
(t)
)p

(g(t))p ∆ t.

(23)

Proof. To prove the inequality (23), we integrate the left
hand side by parts formula (10) with v∆ (t) = λ (t), and
u(t) = Φ p

(t), to obtain
∫ ∞

a
λ (t)(Φ(t))p∆ t = Λ(t)Φ p

(t)
∣

∣

∞
a

+
∫ ∞

a

(

Λ σ
(t)
)

(

−Φ p
(t)
)∆ ∆ t.

Using the facts thatΦ(∞) = 0 andΛ(a) = 0, we get that
∫ ∞

a
λ (t)Φ p

(t)∆ t =
∫ ∞

a

(

Λ σ
(t)
)

(

−Φ p
(t)
)∆ ∆ t. (24)

Applying the chain rule ([3, Theorem 1.87])f ∆ (δ (t)) =
f
′
(δ (d))δ ∆ (t), whered ∈ [t,σ(t)], we see that there exists

d ∈ [t,σ(t)] such that

−
(

Φ p
(t)
)∆

=−pΦ p−1
(d)(Φ∆

(t)). (25)

SinceΦ∆
(t) =−g(t)≤ 0, andd ≥ t, we have

−
(

Φ p
(t)
)∆ (Λ σ

(t)
)

≤ pg(t)Λ σ
(t)(Φ(t))p−1. (26)

Substituting (26) into (24), we have
∫ ∞

a
λ (t)Φ p

(t)∆ t ≤ p
∫ ∞

a
(Φ(t))p−1g(t)Λ σ

(t)∆ t.

This inequality can be written in the form
∫ ∞

a
λ (t)

(

Φ(t)
)p ∆ t

≤ p
∫ ∞

a

[

λ (t)g(t)

(λ (t))
p−1

p

Λ σ
(t)

]

×
[

(λ (t))
p−1

p (Φ(t))p−1
]

∆ t. (27)

Applying the Ḧolder inequality on the right hand side with
indicesp andp/p−1, we see that

∫ ∞

a

[

g(t)Λ σ
(t)

(λ (t)) p−1
p

]

[

(λ (t))
p−1

p (Φ(t))p−1
]

∆ t

≤
[

∫ ∞

a

[

g(t)Λ σ
(t)

(λ (t)) p−1
p

]p

∆ t

]1/p

×
[

∫ ∞

a
λ (t)(Φ(t))p∆ t

]1−1/p

. (28)

Substituting (28) into (27), we have
∫ ∞

a
λ (t)(Φ(t))p∆ t

≤ p

[

∫ ∞

a
λ 1−p(t)

(

Λ σ
(t)g(t)

)p
∆ t

]1/p

×
[

∫ ∞

a
λ (t)(Φ(t))p∆ t

]1− 1
p

. (29)

c© 2014 NSP
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This implies that
∫ ∞

a
λ (t)(Φ(t))p∆ t ≤ pp

∫ ∞

a
λ 1−p(t)

(

Λ σ
(t)
)p

(g(t))p ∆ t,

(30)
which is the desired inequality (23). The proof is complete.

Remark. As a special case of Theorem 2.2 when
T= R and p > 1, we have the following integral
inequality of Leindler’s type (note that whenT= R, we
haveΦσ

(t) = Φ(t))
∫ ∞

a
λ (t)

(

∫ ∞

t
g(s)ds

)p

dt

≤ pp
∫ ∞

a
λ 1−p(t)

(

∫ t

a
λ (s)ds

)p

gp(t)dt.

Remark. Assume thatT= N in Theorem 2.2,p > 1 and
a = 1. Furthermore assume that
∑∞

s=1 λ (n)(∑n
k=1 λ (k))p gp(n) is convergent. In this case

the inequality (23) becomes the following discrete
Leindler’s inequality

∞

∑
n=1

λ (n)

(

∞

∑
k=n

g(k)

)p

≤ pp
∞

∑
n=1

λ 1−p(n)

(

n

∑
k=1

λ (k)

)p

gp(n), p > 1. (31)

In the following theorem, we will prove a time scale
version of Leindler’s inequality (5) on time scales.

Theorem 2.3. Let T be a time scale and 0< p ≤ 1. Let

Ω(t) =
∫ ∞

t
λ (s)∆s, (32)

and

Ψ(t) =
∫ t

a
g(s)∆s. (33)

Then
∫ ∞

a
λ (t)(Ψ σ (t))p∆ t ≥ pp

∫ ∞

a
λ 1−p(t)Ω p(t)gp(t)∆ t.

(34)
Proof. Integrating the left hand side of (34) by parts
formula (10) with u∆ (t) = λ (t) and vσ (t) = (Ψ σ (t))p ,
we obtain
∫ ∞

a
λ (t)(Ψ σ (t))p∆ t = u(t)Ψ p(t)|∞a

+

∫ ∞

a
(−u(t))(Ψ p(t))∆ ∆ t,

whereu(t) = −∫ ∞
t λ (s)∆s = −Ω(t). This and the facts

thatΨ(a) = 0 andu(∞) = 0 imply that

∫ ∞

a
λ (t)(Ψ σ (t))p∆ t =

∫ ∞

a
Ω(t)(Ψ p(t))∆ ∆ t. (35)

Applying the chain rule ([3, Theorem 1.87])f ∆ (δ (t)) =
f
′
(δ (d))δ ∆ (t), whered ∈ [t,σ(t)], we see that there exists

d ∈ [t,σ(t)] such that

(Ψ p(t))∆ =
p

Ψ 1−p(d)
(Ψ ∆ (t)) =

p
Ψ1−p(d)

g(t). (36)

SinceΨ ∆ (t) = g(t)≥ 0, andσ(t)≥ d, we see that(Ψ σ )≥
Ψ(d), and then

p
Ψ1−p(d)

≥ p
(Ψ σ (t))1−p , (wherep ≤ 1). (37)

Combining (36) and (37), we have that

(Ψ p(t))∆ Ω(t)≥ pλ (t)g(t)Ω(t)
(Ψ σ (t))1−p . (38)

Substituting (38) into (35), we have
(

∫ ∞

a
λ (t)(Ψ σ (t))p ∆ t

)p

≥ pp

[

∫ ∞

a

(

gp(t)Ω p(t)

(Ψ σ (t))p(1−p)

)1/p

∆ t

]p

. (39)

Applying the Ḧolder inequality

∫ b

a
F(t)G(t)∆ t ≤

[

∫ b

a
Fq(t)∆ t

]
1
q
[

∫ b

a
Gh(t)∆ t

]
1
h

,

on the term on the term
[

∫ ∞

a

(

gp(t)(Ω p(t))

(Ψ σ (t))p(1−p)

)1/p

∆ t

]p

,

with indicesq = 1/p > 1 andh = 1/(1− p) , and (note
that 1

q +
1
h = 1, whereq > 1)

F(t) =
gp(t)Ω p(t)

(Ψ σ (t))p(1−p)

and
G(t) = λ 1−p(t)(Ψ σ (t))p(1−p),

we see that
(

∫ ∞

a
F1/p(t)∆ t

)p

=

[

∫ ∞

a

(

gp(t)Ω p(t)

(Ψ σ (t))p(1−p)

)1/p

∆ t

]p

≥
∫ ∞

a F(t)G(t)∆ t
[

∫ ∞
a (G(t))

1
1−p

]1−p

=
∫ ∞

a

gp(t)Ω p(t)

(Ψ σ (t))p(1−p)

× λ 1−p(t)(Ψ σ (t))p(1−p)

[

∫ ∞
a (λ 1−p(t)(Ψ σ (t))p(1−p))

1
1−p ∆ t

]1−p ∆ t

=

∫ ∞
a gp(t)Ω p(t)λ 1−p(t)∆ t

[
∫ ∞

a λ (t)(Ψ σ (t))p∆ t]1−p .
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This implies that
[

∫ ∞

a

(

gp(t)Ω p(t)

(Ψ σ (t))p(1−p)

)1/p

∆ t

]p

≥
∫ ∞

a gp(t)Ω p(t)λ 1−p(t)∆ t

[
∫ ∞

a λ (t)(Ψ σ (t))p]1−p . (40)

Substituting (40) into (39), we have

(
∫ ∞

a λ (t)(Ψ σ (t))p∆ t)p ≥ pp
∫∞

a gp(t)(Ω p(t))λ 1−p(t)∆ t

[
∫∞

a λ (t)(Ψσ (t))p∆ t]1−p .

This implies that
∫ ∞

a
λ (t)(Ψ σ (t))p∆ t ≥ pp

∫ ∞

a
λ 1−p(t)gp(t)Ω p(t)∆ t,

which is the desired inequality (34). The proof is complete.

Remark. As a special case of (34), whenT= R and p <
1, we have the following integral inequality of Leindler’s
type (note that whenT= R, we haveΨ σ (t) =Ψ(t))
∫ ∞

a
λ (t)

(

∫ t

a
g(s)ds

)p

dt

≥ pp
∫ ∞

a
λ 1−p(t)

(

∫ ∞

t
λ (s)∆s

)p

gp(t)dt .

Remark.Assume thatT= N in Theorem 2.3,p ≤ 1 and
a = 1. Furthermore assume that∑∞

n=1 λ 1−p(n)Ω p(n)ap(n)
is convergent and define. In this case the inequality (34)
becomes the following discrete Leindler’s inequality

∞

∑
n=1

λ (n)

(

n

∑
k=1

g(k)

)p

≥ pp
∞

∑
n=1

λ 1−p(n)

(

∞

∑
k=n

λ (k)

)p

gp(n).

In the following theorem, we will prove a new time
scale version of Leindler’s inequality (6) on time scales.

Theorem 2.4. Let T be a time scale and 0< p ≤ 1. Let

Ω(t) =
∫ t

a
λ (s)∆s, (41)

and

Ψ(t) =
∫ ∞

t
g(s)∆s. (42)

Then
∫ ∞

a
λ (t)(Ψ(t))p∆ t ≥ pp

∫ ∞

a
λ 1−p(t)(Ω σ

(t))pgp(t)∆ t.

(43)
Proof. Integrating the left hand side of (43) by parts
formula (10) with v∆ (t) = λ (t), andu(t) =

(

Ψ(t)
)p

, we
obtain
∫ ∞

a
λ (t)(Ψ(t))p∆ t

= v(t)Ψ p
(t)
∣

∣

∣

∞

a
+
∫ ∞

a
(vσ (t))(−Ψ p

(t))∆ ∆ t, (44)

wherev(t) =
∫ t

a λ (s)∆s = Ω(t). From the inequality (44)
and the fact thatΨ(∞) = Ω(a) = 0, we have

∫ ∞

a
λ (t)(Ψ σ

(t))p∆ t =
∫ ∞

a
Ω σ

(t)(−Ψ p
(t))∆ ∆ t. (45)

Applying the chain rulef ∆ (δ (t)) = f
′
(δ (d))δ ∆ (t), where

d ∈ [t,σ(t)], we see that there existsd ∈ [t,σ(t)] such that

(

−Ψ p
(t)
)∆

=
−p

Ψ 1−p
(d)

(Ψ ∆
(t)) =

p

Ψ1−p
(d)

g(t). (46)

SinceΨ ∆
(t) = −g(t) ≤ 0, andd ≥ t, we see thatΨ(t) ≥

Ψ(d), and then

pg(t)

Ψ 1−p
(d)

≥ pg(t)

(Ψ(t))1−p
, (note thatp ≤ 1).

This, (46) imply that

(

−Ψ p
(t)
)∆

(Ω(σ(t)))≥ pg(t)Ω σ
(t)

(Ψ(t))1−p
. (47)

Substituting (38) into (35), we have
(

∫ ∞

a
λ (t)

(

Ψ(t)
)p ∆ t

)p

≥ pp





∫ ∞

a

(

gp(t)(Ω σ
(t))p

(Ψ(t))p(1−p)

)1/p

∆ t





p

.

The rest of the proof is similar to the proof of Theorem 2.3
and hence is omitted. The proof is complete.

Remark.Assume thatT= R in Theorem 2.4 andp ≤ 1.
In this case, we have the following integral inequality of
Leindler’s type (note that whenT= R, we haveΩ σ

(t) =
Ω(t))
∫ ∞

a
λ (t)

(

∫ ∞

t
g(s)ds

)p

dt

≥ pp
∫ ∞

a
λ 1−p(t)

(

∫ t

a
λ (s)∆s

)p

gp(t)dt .

Remark.Assume thatT= N in Theorem 2.4,p ≤ 1 and
a = 1. Furthermore assume that
∑∞

n=1 λ 1−p(n)(∑n
k=1 λ (k))p ap(n) is convergent. In this

case the inequality (43) becomes the following discrete
Leindler’s type inequality

∞

∑
n=1

λ (n)

(

∞

∑
k=n

g(k)

)p

≥ pp
∞

∑
n=1

λ 1−p(n)

(

n

∑
k=1

λ (k)

)p

gp(n).

Remark.Some Wirtinger type inequalities can be derived
form Theorem 2.2-4 as special cases. The details are left
to the reader.
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