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Abstract: One kind of the colored noise interference systems is generalized outputerror model (OEARMA). This paper presents a
two-stage recursive least squares algorithm for OEARMA. Aiming at theOEARMA, this paper puts forward a two-stage recursive
least squares algorithm. The basic idea of the algorithm is to combinie the auxiliary model identification idea and the decomposition
technique to decompose a system into two subsystems. Each subsystem contains a parameter vector. With auxiliary model-based
recursive extended least squares theory, an unknown intermediate variable output instead of the auxiliary model identification model
vector, instead of unmeasurable noise terms in the information vector with the estimated residuals, which can use recursive identification
idea to estimated all the parameters of the system, the algorithm has a high computational efficiency. The example of simulation states
the effectiveness of the proposed algorithm.
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1 Introduction

System identification of the colored noise has always
been the domestic and foreign scholars are concerned
about areas of research [1,2]. Stochastic systems with
colored noise, the conventional least squares parameter
estimation is biased [2]. Many scholars have done a lot of
work, but also made a lot of effective methods for least
squares algorithm identification system there is a
deviation of colored noise, For example, Bias
Compensation Least Squares algorithm (BCLS) [3],
Recursive Generalized Least Squares (RGLS) algorithm
[4], Recursive Generalized Extended Least Squares
(RGELS) algorithm [4], two-stage recursive least squares
parameter estimation algorithm [5], and in 1991 the
thinking of the auxiliary model identification proposed by
Ding Feng [6], the hierarchical identification principle
[7], multi-innovation identification theory [8] and
parameter estimation error bounds theory [9,10,11,12]
and so on.

These methods can not only give the system model
parameter estimation, and the latter two can produce
noise model parameter estimation.

However, theoretical analysis shows that the unbiased
estimate of bias compensation least squares algorithm for
OEARMA model is difficult to do, and asked to enter is
smooth (Stationary), ergodic (Ergodic). Ding Feng,
improved bias compensation least squares algorithm to
overcome these shortcomings [13], [14] using the filter to
filter the input data, is bound to increase the amount of
calculation. RGLS algorithm [15] in the process of the
output signal to noise ratio is relatively large or the model
parameters for a long time, this white processing of the
data reliability will drop. May appear multiple local
convergence point recognition accuracy is also low, so
that the final identification result is biased. RGELS
algorithm convergence as well as the convergence of the
theory under what conditions proved challenging subject
gives only an approximate analysis of the literature. Feng
Ding et al. [16] proposed an iterative identification
method identify CARAR model to obtain a satisfactory
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accuracy, but because of the complexity of practical
problems, not online identification, model selection is
more difficult to whiten at the same time the algorithm is
also more complex, under what conditions convergence is
also not a good solution. However, theoretical analysis
shows that the RELS convergence of the algorithm
requirements for noise model is strictly positive real
transfer function [17,18,19].

The recursive least squares algorithm to solve the
ARX model identification problem [20], the recursive
extended least squares algorithm to solve the problem of
identification of ARMAX model [20], the auxiliary model
identification method [21,22,23,24,25] and bias
compensation method to solve the identification problem
of the output error model. Auxiliary variable least squares
algorithm can be used to identify the system, but can not
be given parameter estimation of the noise model. For
output error model, in addition to the above-mentioned
method, using the rational fraction equivalence method,
and further using of relevant technology, proposed
parameter estimation algorithm according to the finite
impulse response model order incremental. Using rational
fraction equivalence method, studied multi-input
single-output system identification problem; using
rational fraction equivalent ways to simplify the colored
noise stochastic system, use the approximate simplified
model can be extended least squares algorithm to estimate
the parameters, and then determine the parameters of the
original system.

The above-mentioned method only solves the special
OEARMA model identification when a polynomial or
two polynomials is 1. For the general form of stochastic
systems, this paper proposes a class of generalized output
error model two-stage recursive extended least squares
parameter estimation algorithm. The basic idea of this
algorithm is a combination of the auxiliary model
identification of ideas and the decomposition technique,
the system is decomposed into two subsystems, each
subsystem contains a parameter vector.

With auxiliary model and the recursive extended least
squares theory, using the auxiliary model’s output instead
of unknown intermediate variable of the identification
model vector, and using the estimated residuals instead of
unpredictable noise of the information vector, thus we can
use recursive identification ideas estimated all the
parameters of the system.

Fig. 1 The Random system block diagram

2 System description and identification
model

Defining that “A:=X” or “X:=A” signifies “A is equivalent
to X”; I signifies a unit matrix of appropriate sizes (n×n);
the superscriptT signifies the matrix/vector transpose;In
signifies an n-dimensional column vector whose elements
are 1.

Consider the output error system, described in Fig. 1,

z(k) =
B(z)
A(z)

u(k)+
D(z)
C(z)

v(k) (1)

Among them,{u(k)} is a system input at timeK ,
{z(k)} is a system output at timeK, {v(k)} is an
uncorrelated random white noise with zero mean and its
variance isσ2, A(z), B(z), C(z) andD(z) are polynomials
in the unit backward shift functor
z−1[i.e.,z−1y(k) = y(k−1)], moreover,

A(z) := 1+a1z−1+a2z−2+ · · ·+anaz−na

B(z) := b1z−1+b2z−2+ · · ·+bnbz−nb

C(z) := 1+ c1z−1+ c2z−2+ · · ·+ cncz−nc

D(z) := 1+d1z−1+d2z−2+ · · ·+dnd z−nd

We may assume thatk ≤ 0, u(k) = 0, z(k) = 0,
v(k) = 0, and the order known. The goal of this article is
based on the separation of two-stage identification
algorithm, the original recognition system into two
sub-problems of smaller order. Define parameter vectors,

θ :=

[

θs
θn

]

∈ Rn
,n = na +nb +nc +nd

θs := [a1,a2, · · · ,ana ,b1,b2, · · · ,bnb ]
T ∈ Rna+nb

θn := [c1,c2, · · · ,cnc ,d1,d2, · · · ,dnd ]
T ∈ Rnc+nd

Define the information vectors,

ϕ(k) :=

[

ϕs(k)
ϕn(k)

]

∈ Rn
,n = na +nb +nc +nd

ϕs(k) := [−x(k−1),−x(k−2), · · · ,−x(k−na),

u(k−1),u(k−2), · · · ,u(k−nb)] ∈ R(na+nb)

ϕn(k) := [−w(k−1),−w(k−2), · · · ,−w(k−nc),

v(k−1),v(k−2), · · · ,v(k−nd)] ∈ R(nc+nd)

Define the intermediate variablesx(k), w(k), as follows,

x(k) :=
B(z)
A(z)

u(k) (2)
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or

x(k) = [1−A(z)]x(k)+B(z)u(k)

= (−a1z−1−a2z−2−·· ·−anaz−na)x(k)

+(b1z−1+b2z−2+ · · ·+bnbz−nb)u(k)

=−a1x(k−1)−a2x(k−2)−·· ·−anax(k−na)

+b1u(k−1)+b2u(k−2)+ · · ·+bnbu(k−nb)

= ϕT
s (k)θs

w(k) :=
D(z)
C(z)

v(k) (3)

or

w(k) = [1−C(z)]w(k)+D(z)v(k)

= (−c1z−1− c2z−2−·· ·− cncz−nc)w(k)

+(1+d1z−1+d2z−2+ · · ·+dnd z−nd )v(k)

=−c1w(k−1)− c2w(k−2)−·· ·− cncw(k−nc)

+v(k)+d1v(k−1)+d2v(k−2)+ · · ·+dnd v(k−nd)

= ϕT
n (k)θn + v(k)

Using (2) and (3), (1) can be expressed as

z(k) = x(k)+w(k)

= ϕT
s (k)θs +ϕT

n (k)θn + v(k)

= ϕT (k)θ + v(k) (4)

3 Two-stage recursive least squares algorithm

The basic idea of the algorithm is to transform the system
into two subsystems, the parameter vector and the
information vector were also transformed into two
sub-parameter vectors and two sub-information vectors.
Then the auxiliary model identification idea is used to
identify the parameters of each subsystem. Define two
intermediate variables,

z1(k) := z(k)−ϕT
n (k)θn (5)

z2(k) := z(k)−ϕT
s (k)θs (6)

The system in (4) can be transformed into the two
virtual identification subsystems, as follows,

z1(k) = ϕT
s (k)θs + v(k)

z2(k) = ϕT
n (k)θn + v(k)

These two subsystems contain the parameter vectors
θs and θn, separately. Define two criterion functions,as
follows,

J1(θs) :=
k

∑
j=1

[z1(k)−ϕT
s (k)θs]

2

J2(θn) :=
k

∑
j=1

[z2(k)−ϕT
n (k)θn]

2

Make the partial derivatives ofJ1(θs) andJ2(θn) for θs
andθn be zero, separately,

∂J1(θs)

∂θs
=−2ϕs( j)

k

∑
j=1

[z1( j)−ϕT
s ( j)θs] = 0

∂J2(θn)

∂θn
=−2ϕn( j)

k

∑
j=1

[z2( j)−ϕT
n ( j)θn] = 0

Make θ̂(k):=
[

θ̂s(k)

θ̂n(k)

]

∈Rn be the estimate ofθ :=

[

θs
θn

]

∈

Rn at timek. Then minimizing the criterion functions, so
we can get the recursive least squares (RLS) algorithm,

θ̂s(k) = θ̂s(k−1)+Ks(k)[z1(k)−ϕT
s (k)θ̂s(k−1)] (7)

Ks(k) = Ps(k−1)ϕs(k)[1+ϕT
s (k)Ps(k−1)ϕs(k)]

−1 (8)

Ps(k) = [I −Ks(k)ϕT
s (k)]Ps(k−1),Ps(0) = P0I (9)

θ̂n(k) = θ̂n(k−1)+Kn(k)[z2(k)−ϕT
n (k)θ̂n(k−1)] (10)

Kn(k) = Pn(k−1)ϕn(k)[1+ϕT
n (k)Pn(k−1)ϕn(k)]

−1 (11)

Pn(k) = [I −Kn(k)ϕT
n (k)]Pn(k−1),Pn(0) = P0I (12)

Substituting (5) and (6) into (7) and (10), separately,
then

θ̂s(k) = θ̂s(k−1)+Ks(k)[z(k)−ϕT
n (k)θn

−ϕT
s (k)θ̂s(k−1)] (13)

θ̂n(k) = θ̂n(k−1)+Kn(k)[z(k)−ϕT
s (k)θs

−ϕT
n (k)θ̂n(k−1)] (14)

Using the estimateŝθn(k−1) andθ̂s(k−1) to replace
the unknown parameter vectors at the right-hand sides of
(13) and (14), separately, then we can get

θ̂s(k) = θ̂s(k−1)+Ks(k)[z(k)−ϕT
n (k)θ̂n(k−1)

−ϕT
s (k)θ̂s(k−1)] (15)

θ̂n(k) = θ̂n(k−1)+Kn(k)[z(k)−ϕT
s (k)θ̂s(k−1)

−ϕT
n (k)θ̂n(k−1)] (16)

Using the estimatesϕs(k) and ϕn(k) to replace the
unknown information vectors at the right-hand sides of
(8), (11), (15) and (16). Finally, we can get

ϕ̂s(k) := [−x̂(k−1),−x̂(k−2), · · · ,−x̂(k−na),

û(k−1), û(k−2), · · · , û(k−nb)] ∈ Rna+nb (17)

ϕ̂n(k) := [−ŵ(k−1),−ŵ(k−2), · · · ,−ŵ(k−nc),

v̂(k−1), v̂(k−2), · · · , v̂(k−nd)] ∈ Rnc+nd (18)

Define,

ϕ̂(k) :=

[

ϕ̂s(k)
ϕ̂n(k)

]

∈ Rn
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Replacingϕs(k), ϕn(k), θs(k), θn(k) in (2), (3) and (4)
with ϕ̂s(k), ϕ̂n(k), θ̂s(k), θ̂n(k), giving,

x̂(k) = ϕ̂T
s (k)θ̂s,

ŵ(k) = z(k)− ϕ̂T
s (k)θ̂s,

v̂(k) = z(k)− ϕ̂T (k)θ̂ (19)

We can obtain the two-stage recursive least squares
identification algorithm (TS-RLS) for estimating the
parameter vectorsθn andθs of the OE models, as follows,

θ̂s(k) = θ̂s(k−1)+Ks(k)[z(k)− ϕ̂T
n (k)θ̂n(k−1)

−ϕ̂T
s (k)θ̂s(k−1)] (20)

Ks(k) = Ps(k−1)ϕ̂s(k)[1+ ϕ̂T
s (k)Ps(k−1)ϕ̂s(k)]

−1 (21)

Ps(k) = [I −Ks(k)ϕ̂T
s (k)]Ps(k−1),Ps(0) = P0I (22)

ϕ̂s(k) = [−x̂(k−1),−x̂(k−2), · · · ,−x̂(k−na),

u(k−1),u(k−2), · · · ,u(k−nb)] (23)

θ̂n(k) = θ̂n(k−1)+Kn(k)[z(k)− ϕ̂T
s (k)θ̂s(k)

−ϕ̂T
n (k)θ̂n(k)] (24)

Kn(k) = Pn(k−1)ϕ̂n(k)[1+ ϕ̂T
n (k)Pn(k−1)ϕ̂n(k)]

−1 (25)

Pn(k) = [I −Kn(k)ϕ̂T
n (k)]Pn(k−1),Pn(0) = P0I (26)

ϕ̂n(k) = [−ŵ(k−1),−ŵ(k−2), · · · ,−ŵ(k−nc),

v̂(k−1), v̂(k−2), · · · , v̂(k−nd)] (27)

x̂(k) = ϕ̂(s)
T (k)θ̂s, ŵ(k) = z(k)− ϕ̂T

s (k)θ̂s,

v̂(k) = z(k)− ϕ̂T (k)θ̂ (28)

Ks(k) andKn(k) are two gain vectors, andPs(k) andPn(k)
are two covariance matrices.

The steps of computingθ̂s(k), θ̂n(k) in the RLS
algorithm in (20)−(28) are listed in the following:

Fig. 2 The flowchart of computing the OEARMA parameter
estimationθ̂s(k), θ̂n(k)

4 The recursive extended least squares
algorithm-RELS

To compare with the proposed algorithm, the auxiliary
model based recursive least square algorithm is
introduced in this section. Recursive Extended Least
Squares algorithm is an identification method, which is
used to deal with colored noise of the CARMA model by
increasing the dimension of the parameter vector and
dope-vector. That is to say, noise regression item is added
in the information vector, while noise model parameters
are mixed in the parameter vector.

θ := [a1,a2, · · · ,ana ,b1,b2, · · · ,bnb ,c1,c2, · · · ,cnc ,

d1,d2, · · · ,dnd ] ∈ Rna+nb+nc+nd

ϕ(k) := [−z(k−1),−z(k−2), · · · ,−z(k−na),u(k−1),

u(k−2), · · · ,u(k−nb),−w(k−1),−w(k−2), · · · ,

−w(k−nc),v(k−1),v(k−2), · · · ,v(k−nd)]

J(θ) :=
k

∑
j=1

[z(k)−ϕT (k)θ ]2

θ̂(k) = θ̂(k−1)+P(k)ϕ̂(k)[z(k)− ϕ̂T (k)θ̂(k−1)]

P(k) = P(k−1)−
P(k−1)ϕ̂(k)ϕ̂T (k)P(k−1)

1+ ϕ̂T (k)P(k−1)ϕ̂(k)
,P(0) = p0I

v̂(k) = z(k)− ϕ̂T (k)θ̂(k−1)

ϕ̂(k) = [−z(k−1),−z(k−2), · · · ,−z(k−na),u(k−1),

u(k−2), · · · ,u(k−nb),−ŵ(k−1),−ŵ(k−2), · · · ,

−ŵ(k−nc), v̂(k−1), v̂(k−2), · · · , v̂(k−nd)]

θ̂ = [â1, â2, · · · , âna , b̂1, b̂2, · · · , b̂nb , ĉ1, ĉ2, · · · , ĉnc ,

d̂1, d̂2, · · · , d̂nd ]

5 Example

Consider the following OEARMA system,

Z(k) =
B(k)
A(k)

u(k)+
D(k)
C(k)

v(k)

w(k) =
D(k)
C(k)

v(k)

A(z) = 1+a1z−1+a2z−2 = 1+1.60z−1+0.8z−2

B(z) = b1z−1+b2z−2 = 0.412z−1+0.309z−2

C(z) = 1+ c1z−1 = 1+0.8z−1

D(z) = 1+d1z−1 = 1−0.64z−1

θ T = [1.60,0.8,0.412,0.309,0.8,−0.64]

In simulation, the system input{u(k)} is an
uncorrelated random signal sequence with zero mean and
unit variance, and{v(k)} as a white noise sequence with
zero mean and its variance isσ2. Using the RLS
algorithm to estimate the parameters of this system, the
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parameter estimate and estimation errorsδ := ‖θ̂−θ‖
‖θ‖

versus k are are presented in Tables 1 and 2. The
parameter estimation errors of the RLS algorithm with
different variances are presented in Fig. 3. The parameter
estimation errors for the two algorithms are presented in
Fig. 4. From these Tables and Figs, we can find that:

• With the gradual increasing of noise variance
decreases, the precision of the parameter estimates
gradually improved, referring to Fig.3 to control;

• With the increase of the length of data, the parameter
estimation error is smaller and smaller, and in Fig.4, the
RLS algorithm can visually see superior RELS algorithm;

• The reference to Table 3 that the amount of
calculation of the RLS algorithm respect RELS algorithm
to be greatly simplified, whereinn = na +nb +nc +nd .

Table 1 RLS algorithm parameter estimates and residuals
k a1 a2 b1 b2 c1 d1 δ (%)

100 1.20260 0.50691 0.44384 0.10396 0.79078 -0.61422 25.24060
200 1.38256 0.62701 0.43945 0.20664 0.80789 -0.73193 14.65398
500 1.50781 0.73472 0.41297 0.25746 0.82262 -0.63651 5.94194
1000 1.56554 0.77144 0.42204 0.29850 0.79953 -0.61600 2.48625
2000 1.56720 0.77511 0.40969 0.30610 0.79876 -0.63711 1.95130
3000 1.57315 0.77594 0.41251 0.30417 0.79270 -0.67137 2.28639
4000 1.61920 0.81367 0.40720 0.32474 0.79790 -0.66544 1.80940
5000 1.60369 0.79932 0.40738 0.31820 0.79974 -0.66888 1.45374
6000 1.61022 0.80409 0.40868 0.32003 0.80252 -0.65743 1.11775
7000 1.60706 0.80172 0.41220 0.31841 0.80221 -0.66047 1.11907
True values 1.60000 0.80000 0.41200 0.30900 0.80000 -0.64000 0.00000

Fig. 3 The RLS parameter estimation errorsδ versus
k(σ2 = 0.402 andσ2 = 1.002)

Table 2 RLS algorithm parameter estimates and residuals
k a1 a2 b1 b2 c1 d1 δ (%)

100 1.64648 0.77137 0.42953 0.30980 0.54707 -0.60255 12.33223
200 1.63711 0.78087 0.41288 0.32958 0.68643 -0.68990 6.23565
500 1.59082 0.74141 0.40771 0.28768 0.77035 -0.65435 3.35251
1000 1.58187 0.73913 0.42097 0.30178 0.76132 -0.65371 3.60007
2000 1.56228 0.72573 0.40866 0.30378 0.78236 -0.68412 4.52285
3000 1.55633 0.72314 0.41106 0.29813 0.78266 -0.72008 5.69570
4000 1.54884 0.72009 0.40550 0.29869 0.80517 -0.70123 5.35111
5000 1.54388 0.71793 0.40621 0.29756 0.81598 -0.70100 5.57394
6000 1.54133 0.71753 0.40815 0.29671 0.82358 -0.68668 5.39588
7000 1.53665 0.71462 0.41102 0.29458 0.82989 -0.68782 5.70455
True values 1.60000 0.80000 0.41200 0.30900 0.80000 -0.64000 0.00000

Table 3 Comparison of the computational efficiency of
the RLS and RELS algorithms

Computational efficiency\ Algorithms RLS RELS

Number o f multiplication 2(na +nb)
2+2(nc +nd )

2+4n 2n2+4n
Number o f additions 2(na +nb)

2+2(nc +nd )
2+2n 2n2+2n

T he total number o f calculation 4(na +nb)
2+4(nc +nd )

2+6n 4n2+6n

Fig. 4 The parameter estimation errors versust for the two
algorithms(σ2 = 0.402)

6 Conclusion

A class of generalized output error model of two-stage
recursive least squares parameter estimation algorithm
has been derived in the paper. with the help of the
auxiliary model identification idea and decomposition
techniques ,the system is converted to the two-step
process in the proposed algorithm. Use the measurable
information of the system to build a auxiliary model, of
which inputs can replace the unmeasurable variates. By
choosing the parameters of the auxiliary model, the inputs
of the auxiliary model can approach to these
unmeasurable variates, thus obtaining the concordant
estimation of the system variates. The derivation of the
algorithm is simple, less computation, high accuracy.
Theoretical analysis and simulation results verify these
conclusions.
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