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Abstract: The dynamic response of a homogeneous transversely isotropic aolid tardioidal cross-section immersed in a fluid is

studied using the Fourier expansion collocation method (FECM), within gmedwork of the linearized three-dimensional theory of
elasticity. The equations of motion of solid and fluid are respectively ftatad using the constitutive equations of a transversely
isotropic cylinder and the constitutive equations of an inviscid fluid. Thregewpotential functions are introduced to uncouple
the equations of motion. The frequency equations of longitudinal andriexsymmetric and antisymmetric) modes are analyzed
numerically for a cardioidal cross-sectional transversely isotroplid $@r immersed in a fluid. The computed non-dimensional
frequencies are presented in the form of dispersion curves for ttexialinc.

Keywords: Wave propagation; Transversely isotropic bars; Solid-fluid interacGanglioidal cross-sections; Elliptical cross-sections;
Ultrasonic transducers.

1 Introduction frequency equations was devised by Naga9at,p,6].

) ) .. He formulated the Fourier expansion collocation method
Knowledge of various wave propagation characteristics ¢o; this purpose. Following Nagaya, Paul and Venkatesan
as a function of matgrial and geometricall parameters i%7] studied the wave propagation in an infinite
necessary for a wide range of applications, from o gelectric solid cylinder of arbitrary cross section
geophysical prospecting in cased holes, non-destructlvgsing Fourier expansion collocation method.
evaluation of oil and gas pipelines, to the insulated fibertq longitudinal waves in homogeneous anisotropic
optic cables for data transmission, ultrasonic transducercy"ndrica| bars immersed in a fluid is studied by
and resonators. We have shown that the frequencie@aya“s]_ Rahman and Ahmaf] presented the
depend strongly on the cross-sections of the bar andejresentation of the displacement in terms of scalar
deviate from the circular one. The propagation of wavesynctions for use in transversely isotropic materialserat
in caro!|0|dal _bar |mmersgd in fluid has many applications Apmad and Rahmatp] has discussed the acoustic
in various fields of science and technology, namely,gcattering by transversely isotropic cylinders. Guided
atomic  physics, industrial engineering, submarine,ayes in a transversely isotropic cylinder immersed in a
structures, pressure vessel, aerospace and .metallurgy. TRuid is analyzed by Ahmadfl]. Following Ahmad,
most general form of harmonic waves in a hollow Nagy[17] have studied the longitudinal guided wave
cylinder of circular cross section of infinite length has propagation in a transversely isotropic rod immersed in
been analyzed by Gazi[ . Mirsky[2] investigated f,ig later, Nagy with Nayfel[3] discussed the
analyzed the wave propagation in transversely iSOtropiGiscosity-induced attenuation of longitudinal guided
circular cylinders of infinite length and presented the \yaves “in fluid-loaded rods. The free modes of
frequency equation in Part | and numerical results in Partyqnagation of an infinite fluid loaded thin cylindrical
Il. A method, for solving wave propagation in arbitrary gnell is discussed by Scatd].

cross-sectional cylinders and plates and to find out th§-sqwaran and MunjalB] reported a note on the effect of
phase velocities in different modes of vibrations namely,, 4 compliance on lowest-order mode propagation in
longitudinal, torsional and flexural, by constructing
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fluid-filled/submerged impedance tubes. Sinha etl@l.[ where oy, Ogg, Oz, Org, Opz;, Or; are the stress
have discussed the axisymmetric wave propagation ircomponentsg, €gg, €z, €49, €92, €, are the strain
circular cylindrical shell immersed in fluid, in two parts. components¢i1, Ci2, C13, C33, Ca4 @ndCeg = (C11— C12)/2

In Part I, the theoretical analysis of the propagatingare the five independent elastic constaptss the mass
modes are discussed and in Part Il, the axisymmetridensity of the material.

modes excluding torsional modes are obtainedThe straing; are related to the displacements are given by
theoretically and experimentally and are compared. 1
Berlinear and Soleckl7] have studied the wave &7 =Y €06 =T (Ur+Uop). €z=Uzz
propagation in fluid loaded transversely isotropic 2eg = Ug; —r’l(u9—ur79), 26y = (Urz+Ugzr), (3)
cylinder. In that paper, Part | consists of the analytical 26 — (u’ iy )

formulation of the frequency equation of the coupled <92~ \"62 2,0

system consisting of the cylinder with inner and outerin which ur, ug andu, are the displacement components
fluid and Part Il gives the numerical results. along radial, circumferential and axial directions
Venkatesan and Ponnusari§[19] have obtained the respectively. The comma in the subscripts denotes the
frequency equation of the free vibration of a solid partial differentiation with respect to the variables.
cylinder of arbitrary cross section immersed in a fluid Substituting eqn’s.3) and @) in the eqn. 1), results in
using Fourier expansion collocation method. Thethe following three-dimensional displacement equations
frequency equations are obtained for longitudinal andof motion:

flexural  vibrations.  Recently, Ponnusamy and o i .

Selvamani2(0] have studied the wave propagation in a Cll(Ur,rr+f Upr—T Ur) — I “(C11+Cs6) Ug.0

magneto-thermo elastic waves in a transversely isotropic 11 2CoeUr 9o + Caalr 72+ (Caa+ C13) Uzrz
cylindrical panel using the wave propagation approach. ' L '
In this paper, the dynamic response of a transversely 41 " (Ce6+C12) Ugro = PUrt  (48)

isotropic solid bar cardioidal cross section immersed in a
fluid is studied. Using the Fourier expansion collocation -1 (2
method the boundary conditions on the surface of the (Cr2+ Cos) Urro + 1~ (Co6 + C11) Uro
cardioidal cross sectional solid bar are satisfied and the  + csg (Ugrr + 1 TUg, — I 2Ug) -+ 2C11Ug 0
frequency equations are obtained. The frequency 1 _
equations of longitudinal and flexural modes are studied +Caallpzz 1 (Caa+ C13) Uzoz = PUot  (4D)
numerically and the computed non dimensional
frequencies are presented in the form of dispersion C44(UZ’”+r—1ulr+r—2uz,99)
curves. o

+r171(Cas+C13) (U2 + Ug 07)

i ) ) + (C44+ C13) Urrz +C33Uzzz = PUzzt  (4C)
2 Basic equations and formulation of the
problem . .

3 Method of solution to the equation of

We consider a transversely isotropic cylindrical bar of motion
cardioidal cross-section immersed in inviscid fluid. The
system is assumed to be linear so that the linearizedrhe eqn’s. 4) are coupled partial differential equations of
three-dimensional stress equations of motion are used fothe three displacement components. This system of
both the cylinder and the fluid. The system displacementsquations can be uncoupled by eliminating two of the
and stresses are defined by the cylindrical coordimates  three displacement components through two of the three
and z. In cylindrical coordinates, the three-dimensional equations, but this results in a partial differential
stress equations of motion _in the absence of body arequations of fourth order. To uncouple the eqrd), (ve
given by Berliner and Solecki (1996) follow Mirsky (1964) and assuming the solution of egn’s.

Orrr + r710}9,6 + Orzz+ rt (Ovr — Ogp) = PUrtt (4) as follows:
1 1
Oror +1 ~0gp,9 + Ogzz+2r ~Org = PUgtt (1) _
' -1 ' -1 ' Ur (rv eazat) = €n [(‘Pn,r +r ll,Unﬁ)
Orzr +1 "00z0 + Ozz+ I ~“Orz = PUztt n=

The stress strain relation for a transversely isotropic + (@ 11w, ) ] €N (5a)
material is given by ) ,

Orr = C116r + C12€99 + C13€x L
Opp = C12€6r + C11€90 + C13€x @ ug (r,0,zt) = &n [(I’ tho — Lﬂn,r)
n=
Oz = C136r + C13€99 + C336z 1— i
r- — dlierat) (5p
09 = 2C66609, Opz = 2C44€972, Orz = 2C446r7 ( $ne Wn,r)] (5b)

8
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uy(r,0,z,t) = é ben [Wh+ W] dleren (5c)

n=

1 . .
whereg, = > forn=0,g=1forn>1,i=+v-1,kis

the wave numberw is the angular frequencyn (r,6),
Wn (ra9)7 q—’n (r,9), En (ra9)7 Wn (rae)1 WH(rve) are the
displacement potentials and is the geometrical
parameter of the cylinder.

By introducing the dimensionless quantities such as

2.2
was Ci1 _ C13 C
¢ =ka, 02=" LTl = L, Cia = -, Gag = —,
Cs4 Ca4 Ca4 Cas4
C r _ )
T=t # andx = a and substituting eqn’$f in eqn’s.

(4), we o?)tain
(C110?+ (22— 6%)) gh— (14 Cra)Wh =0

C(1+013)%+(D2+(Qz—éssCz))WnZO ©)
and 022
(DZ+ Cos )"U”ZO g
where[12 = 5722 +x 19 +x*2‘9—22.
EliminatingW, from the egn’s. §), we obtain
(AD*+B?+C)gh=0 (8)
where
A=7yy,
B=—[(1+T11) Q%+ ¢?(hs+ 213+ TuaCas) ], (9)

C=(Q%-¢?) (Q%—tac?).
Solving the eqn§), the solutions for the symmetric modes
are obtained as

2
Z,[Am‘]" (ajax) + BinYn (0ax)] cosnf

= (10a)

i
2

Wa = 3 d [Andn (ciX) +Bin¥n (ci@x)] cosn6  (10b)

Solving the eqn.®), the solution to the symmetric mode is
obtained as

QZ_CZ

where (a3a)® = . If (asa)® < 0, the Bessel

6
function J, and Y, is replaced by the modified Bessel
function I, and K,,. The solution for the antisymmetric
mode, is obtained from eqni@) by replacing simé by
cosnf.

4 Equations of motion of the fluid

In cylindrical polar coordinates, 6 andz the acoustic
pressure and radial displacement equations of motion for
an inviscid fluid are of the fornlg]

- f
Y +uge) ) (14)

and

f

C?zur,tt =4, (15)

respectively wher8 is the adiabatic bulk modulug, is
the densityc’ = | /%ff is the acoustic phase velocity in the

fluid, and(urf , u;, ug) is the displacement vector.

f

A= (uf +r7Y(ul +uge) +ul,). (16)
Substituting
foq
ul =@l ug=r Loy andu} = ¢} (17)

and seeking the solution of%) in the form

[ee]

@' (r.0,zt)= Zoen [ () cosnd + g () sinng] e+
n—=

(18)
the oscillating waves propagating in the inner fluid located

whereJ, andY, are Bessel functions of the first and second In the annulus is given by

kind of ordern. The solution for the antisymmetric modes
@, andW,, are obtained by replacing co8 by sinn in
egn’s. (0).
Here (o) > 0, (i = 1, 2) are the roots of the algebraic
equation

A(aa)*—B(aa)’+C=0. (11)
The Bessel functiong, andY, is used when the roots
(o5a)?, (i =1,2) are real or complex and the modified
Bessel functionl, and K,, is used when the roots are
imaginary.
The constantsd; defined in the eqgn.10b can be
calculated from the equation

(1+Cu3) (o)
(a1a)? + Q2 — T2a¢2

d = i=1,2 (12)

(L)

@ = BanHn” (a42%) (19)

2 i - =f f
where (a4a)* = ﬁ?? —¢?, inwhichp' = %, B = %,
Hrﬁ1> is the Hankel function of the second kind(tf;a)? <

0, then the Hankel function of second kind is to be replaced
by K, whereK; is the modified Bessel function of the
second kind. By substituting eqi®) in (14) along with
(19), the acoustic pressure for the fluid can be expressed
as

p' = By Q2pH\Y (asax) cosnge (22T (20)
In the case of antisymmetric, the solutions for fluid are
obtained by replacing co@ by sinné in the eq. 20).
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5 Boundary conditions and frequency Sy = o.5(f01A10+ féB1o+ f§A20+ f§B20)
equations

3 (A + 12Bun -+ 3Aon + fBan
The objective of this problem is to study the dynamic n=1
response of a cylindrical bar of cardioid cross sectional £5 5B 24b
cylinder immersed in a fluid. The boundary conditions of *fafen+ 1o 3”> (24b)
an infinite cylindrical solid bar are obtained as follows:

(O + pf)i = (Oxy); = (02); = (Ur — Urf)i =0 (21) Sx = 0-5(96A10+9%510+98A20+961520)
Ox is the normal stressgyy, and oy are the shearing + i (g}]Aln+gﬁBln+9§A2n+9ﬁBZn
stresses and ) is the value at the-th segment of the n=1
boundary. Thelfirst and last conditions in egR@l)(are +9n'%n+gn|33n> (24c)
due to the continuity of the stresses and displacements of
the cylindrical bar and fluid on the curved surfaces. Since
the boundary of the cross section is irregular in shape, it is
difficult to satisfy the boundary conditions along surfaces
of the cylinder directly. Hence, to satisfy the boundary
conditions, the Fourier expansion collocation method due
to Nagaya 8,4,5,6] is applied. Ify is the angle between
normal to the segment and the reference axis is assumed + h2Agn 4 h8Bgn + h;A4n> (244d)
to be constant, then the transformed expressions for the
stresses are

S =05 (héAlo + h%Blo + thzo + thzo + th40)

+ > (PbAw + hBBun+ h3Aan + hiBzn
n=1

O = Co6 (™ (Ug — Ur.g) — Ug,r) SIN2(6 — y1) S« = 0.5 (85A10+ E5B10 -+ E3A20 + E¢B20 + €)A10)
+ (c11€0€ (8 — y) + C12SIM (6 — V1)) Uy
+17 1 (C11SiM? (8 — ) + C13Uy
+€12€08 (6 — 1)) (Ur +Ug,0) +&Agn + 3Bgn + €7n'&4n) (25a)
(22a)

+ z (élngln + %B_ln + ésnA_Zn + éﬁB_Zn
n=1

Sy = 0.5 (f2A10+ f8B1o+ Fo A0+ fEB:
axy:cee((um—rfl(u9,9+ur))sin2(9—y|) Sy (o 10+ TgBio+ TgA20+ Tg 20)

+ (r~*(ug—ug) +ugr)cos26—y)) (22b) +3 (f_nlA_ln + 12Ban + f3Aon + f1Ban
n=1
BA Bl
sz - C44((Ur7z + uZJ) COS(@ - y|) + fn A3n + fn B3n> (25b)
— (ugz+rtuze)sin(B—y)) (22c)

Substituting equations), (10) and (L3), in the boundary Sx=05( 0A10+goBlo+goA20+goBzo)
condition @1) the boundary conditions are transformed by

applying the Fourier expansion collocation method along + z (gﬁgm + g_ﬁB_ln + g—SH,KZn + gﬁB_zn
the curved surface of the boundary as follows: n=1
[(SO()i 1 (S0) ] €170 = o, + %A+ G3Ban)  (250)
[(Sy)i+ (S);] € ™) =
i
g )17 QTa) _ (23) S FLA 2R - P3A L FAR. L A
[(Sx (Szx),] =0, S = 0.5(hAw0+ h3B1o+ h3Az0 + h§Bao+ hfAso)
[ +(3)]¢€ d(cZ7+QTa) _ T
. +y (hnAln + 2By + N3 Agn + Ban
Where n=1
F5A. L HPR. o hA
Sw = 0.5 (65A10+ €3B10+ €3A20+ €3B20 + E}Au0) + MAan + NyBan + hnA“”) (25d)
+5 (eﬁAanreﬁBanreﬁAZn +€&'Ban The equations foe} ~ hg are given in Appendix A. The
n=1 boundary conditions along both the inner and outer

arbitrary surface cannot be satisfied directly. Therefore,

5 6 7
- Enfian + €nBan + e”A4”) (242) performing the Fourier series expansion 2d)(along the
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boundary, the boundary conditions are expanded in the Z {CﬁﬂﬂgoJrG?mEgoJr z (Glmﬂln
form of double Fourier series. In the symmetric mode, the m=1 n=1

necessary boundary conditions for the inner surface are

obtained as

z Em [E%.OAN + Er%-oBlO + Er‘:’.OAzo + Er‘rlﬂBZO
m=0

+EfoPs0+ Y (EmnAn+ E2uBin -+ Eanflon
n=1
4 5 6
+ En’nBZH + En’nA3n + Errn B3n
+ E;nA5n>} cosmd =0 (26a)

00

> {Fnl\oAlo + F2,B1o+ F.30A2+ FroB2o

m=1

+ 5 (P + FdiBan+ Fnon
n=1

+ FonBan -+ FiAan + FoBan ) | sinmé — 0 (26b)
- 1 2 3 4
Z Em [Gn-oAlO + GfoB10+ GroA20+ GroB2o
m=0
+ Z (G#nAln + Gﬁanln + GﬁnAZn
n=1
+ G Bon + G2pAgn + G, Bgn)} cosmd =0 (26c)

4 G Bun + GoyAon + GorBan + Gy Agn
+Ggmﬁgn)} sinmf =0 (27c)

- 5 « . 16 5 - (ol &
S [FroPso+HioBao+ 3 (FimAu
m=1 n=1
e A ot s o5 R
+HnﬂBln+HmnA2n+Hnﬁan+HmnA3n

+HionBan + Himen ) | sinmé =0 (270)

The frequency equations are obtained from the inner and
outer boundary conditions of the equatio2®)( for the
symmetric mode, and for the antisymmetric mode, the
frequency equations are obtained from the equatigis (
by truncating the series td + 1 terms, and equating the
determinant of the coefficients of the amplitudgs, Bin,

Ain andBi, (i = 1,2, 3,4) to zero. Thus the frequency
equation for the symmetric mode is obtained as

[ee]
1 2 3 4
> &m [HmoAlo‘i‘ HioB10+ HioA20+ HyoB2o
m=0
0
H7A H]-A HZB H3A 1 2 g3 g4 g7 1 1 6 6 g7 7
+ FpoAso + Z mnAln + A Bin + HpnAgn Eoo Eoo Foo Eoo Eoo O Eoi - Eon For - Eon Eor - Eon O 0
n=1 S : Lo :
H2 Bon+H2 Ag,+HE B Elo Efo ERo Blo Blo 0 Edn - Eiw  ERy -~ Efn Bl = By 0 = 0
“+ Pl B2n + Fln/Agn - FlrBan Flo Fio Fio Fib © Fii - Fly  FR -~ Ffjy 0 0 0 - 0
Flo F3, RS, Ry, 0 0 RY - R Fé, RS O - 0 0 - 0
- - - Glo Gho Glo Glo 0 0 Gy Gy Gy~ Gy 0 = 0 0 - 0
Similarly, for the anti symmetric mode, the boundary | ™ ™ ™ ™ ‘
conditions for the inner surface are T S S T S SR Lo :
GnoGRoCGRoGrno 0 0 G~ Ginv Gl Gw 0 -+ O 0 - 0
1) 5 5 0 1 Hio Hgo H Hoo Hlo O Hgy ~ Hiy  HE ~ HEy Hfy ~ Hiy O 0
EK+E§+(EK T S
mo/30 moP30 1n e : : : Do o :
mZ1|: nZl m Hﬁo Hﬁo HEIO Hﬁo H&o 0 Hr%u H&N Hl(\all o HI§IN H&l HVZIN 0 - 0 =0
—2 —3 — —4 — 5 — Edo E Edo Ego O Efo Egy -~ Eon  EGL -~ EGy O 0 Ef - Ely
+EmnBln+EmnA2n+EmnBZn+EmnA3n e o . . .
=6 = =/ x . Efo Efo ERo Elo O Efo Ef ~ B Efi~ Efn O 0 E¥ - Efn
+EmnB3n+EmnA5n):| S|nm9 - 0 (27a) |:1l0 ;:120 |:130 |:140 0 o0 |:111 . FllN |:161 |:16N 0O .- 0 0 - 0
Flo Fio Fo Flo 0 0 Fh= Ry Ry~ Ry 0 = 0 0 = 0
© r—g — —_6 — Q1 — Gbo GBo G0 Glo 0 O Gpy ~~ Ghy Gf -~ Gy 0 ~ 0 0 0
S [FroRso+FagBao+ 3 (FwAan e
=0 =1 Glo Glo Gio Gl 0 0 Gl Ghy Gy Gy 0 =+ 0 0 = 0
=2 5 =3 x =4 5 =5 =% Hio HE H3o Hio O HE MGy - Hiy  H = H§ © 0 HE -~ H
+FmnBin + FrnAon + F o Ban + FrnAan ?O .00 fm ?O ?0 ?1 t.JN ?0 (.’N fm »
o) om0 =0 (@75) [ W 6 0
@© 2014 NSP
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Similarly, the frequency equation for antisymmetric mode Eri‘nn =

of vibration is given by

=5

—5 —6 —1 = = =6
Foo Foo Fo1 - Fon For -+ Fon 0 -

=6 =6
Fro mo Fnr - Fnn Fa - EI%IN
Gio G0 G131 - Gin Gp1 - Gy O

I I :
Gno Gno Gni - Gn Gnz - Gwnw 0

=5

=5 =6 =1 =
Ejo Eio E1n - Ein

=5 =6 =1 = =6
Fno Fno P - Fan Fna - Fyn 00 o
2 & = —6

5 6 4 % :
Gno Gno Gn: - Gv Gnz - Gww 0
5 6 —1 o

Hio Hio Hi1 -~ Hin  Hip -~ Hiy

e | =6
Hno Hno Hig - Han Hng - Han 0

where
6
—i Zgn ! i
Emn:?_ €, (R;,0)cosmbdo,
=6,
6
=i 2£n l |
Frn= ?213 fy (Ri,0)sinmbdeo,
= 1—1
6
= an l i
Gm = ?Zl On(Ri,0)cosmode,
=6,
6,
! 28[1 ! |
Am="75 / hi (R, 8) cosme d
=6,

=6 =i = = =6 7
Eno Eno En1 - Enn Ena -+ Enn Eng o+ Enn

=5 6 o = 6 6
Hio Hio Hii -+ Hin  Hip -+ Hiy Hip -+ Hiy

Hno Hno Haa -+ Han Hna - Hyn Hng - Hin
£

D

Z/‘%(Ri,e)cosmede,

2&n
T

e}

Fi_ 2 Z]H/f (R.,6)sinmodo,

(1)

Gy, = Zl/gn (R, 0)cosmade,

Hi = 28” / hi (R, 8) cosme d@

| 1
wherei =1,2,3,4,5,6,7 and 8,&,, = % form=0 and

1 . _ .
&m= = form> 0, | is the number of segmentg; is the
coordinater at the inner boundary, arig] is the coordinate

r at the outer boundary. The equations &g, ~ H,, can
be obtained by replacing cof by sinnf and simé@ by
cosnB in eqn’s.@8) and @9).

6 Numerical results and discussion

The resulting frequency equations of the symmetric and
antisymmetric cases of the cylinder of general cross
section immersed in a fluid is given i2§) and Q9) are
transcendental in nature with respect to the dimensionless
frequency Q and dimensionless wave number The
analysis is carried out for cardioid cross sections by fixing
the dimensionless wave numbernd the dimensionless
frequencyQ are obtained. The computation of cylindrical
Bessel functions of complex arguments are performed
using the method provided by Zhang and 2aij[ The
computation of Fourier coefficients given 80 is
carried out using the five point Gaussian quadrature. To
obtain the roots of the frequency equation, the secant
method applicable for the complex roots (Angd]) is
employed. The material chosen for the numerical
calculation is zinc, its properties are as follows: for the
solid the elastic constants are

C11 = 1.628x 10""NmM™2, c1p = 0.362x 10" Nm2,
c13=0.508x 10"'"Nm2, cgz3=0.627x 10**Nm2
Cas = 0.385x 10" Nm 2

and for the densityp = 7.14 x 10¥kgm 3, the fluid
density pf = 1000kgm—2 and the phase velocity
c=1500ms™L.

In the present problem, three kinds of basic independent
modes of wave propagation have been considered,
namely, the longitudinal and two flexural (symmetric and
antisymmetric) modes for geometries having more than
one symmetry. For geometries having only one symmetry,
two modes of wave propagations are studied since the two
flexural modes are coupled in this case.
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16

6.1 Cardioid cross-section

16
14 LM1 .
The relation used for the numerical calculations of 12 7T K A
cardioid cross sectional solid bar are from equati@} ( P | B P
and @4) of Nagaya(1983a) as follows R | FASM2 LT
g 03 L
g o
R; o 1+52+23C0591 < 06 PR
a 1+s 04 - P
_, CO0sB;+scosP; P
6 =cost - 02| 2
(1+s?+ 2scosH)? .
[ 0.2 04 06 0.8 1

wherea is the radius of the circumscribing circle and

Dimensionless wave number |¢ |

G(61) = cosf; + 2scos B,
Y= TsinG, — 2ssin 20, . ) . ) .
Fig. 1: Non-dimensional wave numbég| versus dimensionless
, for G(6*) =0 frequencyQ for free solid bar withs = 0.05
yi={ = —tan"}(—-G(6")), forG(6*) <0

+tan"1(—G(8")), forG(6")>0

NI IS

where 6 = (6 — 6_1)/2, is the mean angle of the
segment, andR; is the coordinate at the boundaryy is

the angle between the normal to the segment and thi
reference axis at thé!" boundary. This parametes
represents a circle whes= 0 and represents a cardioid || = Lw2
whens = 0.5. In the case of cardioid cross section, the [ g
vibration and displacements are symmetrical about only Tl
one axis. Hence, the frequency equation for longitudinal
case may be obtained from28) by choosing
nm=20,123,.... In the case of flexural mode, the ;
vibration and displacements are antisymmetrical about Pt -
the minor axis. Hence, the frequency equations may be - . ST
obtained from 29) by choosingh, m=1,2, 3,.... / 2=

»—~
in
\

-
-
P

Frequency 0}
Ay
!
a

-
LY
!

s
-
-

s} 0.2 0.4 06 08 1
Wave number]g |

6.2 Dispersion curves

The results of longitudinal and flexural (antisymmetric) Fig. 2: Non-dimensional wave numbéqg| versus dimensionless
modes are plotted in figures. The notations LM andfrequencyQ for immersed solid bar wits = 0.05

FSAM represents the longitudinal mode and flexural

antisymmetric modes respectively. The 1, 2 refers to the

first and second modes of vibration respectively.

The Figs.1 and 2, shows that the non-dimensional wave A graph is drawn between the non-dimensional wave
number |¢| versus dimensionless frequenc® of  number |[¢| versus dimensionless frequenc® of
transversely isotropic free and immersed cardioid crosgransversely isotropic cardioid cross sectional cylioalri
sectional cylindrical bar for longitudinal and flexural bar with respect to the parametes 0.3 in Fig.3 and 4.
(antisymmetric) modes of vibrations with respect to the The displacement of energy in the first mode and second
parameters = 0.05. It is observed that as the wave mode of vibration of longitudinal and flexural
number increases, the non-dimensional freque@iso  (antisymmetric) increases linearly as the frequencies
increases linearly. Beyon® = 0.4, there is a small increases. It is also observed that there is a small
oscillation in the vibrational modes in Fig.2 due to the dispersion among the modes of vibration in case of the
leakage of waves from solid in to the fluid. bar immersed in fluid.
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fluid medium.
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Fig. 3: Non-dimensional wave numbég| versus dimensionless

frequencyQ for free solid bar withs = 0.3 0 02 o4 08 o8 '
‘Wave numberjg |

Fig. 5: Non-dimensional wave numbég| versus dimensionless

frequencyQ for free solid bar withs = 0.5
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Fig. 4: Non-dimensional wave numbég| versus dimensionless
frequencyQ for immersed solid bar wits = 0.3 o L
o 0.2 04 0.6 08 1

Wave number|¢ |

The dispersion curve is drawn between the
dimensionless wave numbég| versus non-dimensional
freql_Jency Q. of . Iransversely ISOt.rOpl.C cardioid Cross Fig. 6: Non-dimensional wave numbég| versus dimensionless
sectional cylindrical bar qu: 0.3 in Fig.5 and 6. Itl|s _frequency® for immersed solid bar wits = 0.5
observed that the behavior of the wave propagation is
linear in both the cases of vibrational modes except the
small deviation in Fig.6. Therefore, the dynamic response
of the solid bar with the fluid interaction behave irregular
in both the cases of vibrational modes.So, it is clear that )
the frequency profile in some of the modes exhibits 7 Conclusions
oscillating nature due to the fact that the fluid is acted as
extra added mass. The cross over points in the vibrationdin this paper, the dynamic response of a transversely
modes indicates the energy transfer between the solid andotropic solid bar of cardioidal cross sections immersed
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in a fluid is analyzed by satisfying the boundary condition &/ = 2nC56{(n —1)Yy (a7ax)

on the irregular boundary using the Fourier expansion

collocation method and the frequency equation for the —(a7ax)Yn+1(a7ax)}cosze—y.)cosne
longitudinal and flexural anti symmetric modes of
vibrations are obtained. The results are presented as
dispersion curves. It is clear that the energy radiation is
increasing as the waves penetrate deeper in to the medium

(higher wave number). The cross over points in the —2n(n— 1)Ya (a78X) }1 SinnBsin26—y) (Ad)

+Ce6

2(a7a)Yni1 (azax) — {(0173)2

vibrational modes indicates the energy transfer between
the solid and fluid medium. The method proposed in this
paper can be used to analyze the vibration of a cylindrical

bar of any cross section with appropriate geometric &) = Q°p;Jn (81ax) cosnb (A5)
relation. & QzﬁzHr@ (5ax) cosnd (A6)
Appendix A
;’23 gg)u:rt(iaogi ffoollle'gwws:gin referred in the equatonsy fa= lz(aia)JnnLl(ai ax) — { ((ai a)®

e, = 2Ce6 {n(n— 1)Jn(aiax) —2n(n— 1))Jn(aiax)} sin2(0 — y;) cosn@

+2n{(n—1)J(aijax)
+ (aia)dns1(aiax)} cog 6 — y) sinng,
—{(aia)z[éllco§(9—w)+élzsin2(9—w) i=1,2 (A7)

+ (@@)dnsa(@ax) f cos 20— y)

+C13(d; }Jn(ai ax) | cosnb

f3 = 2n{(n— 1)J(0zax)
— (asza)Jna(azax) } sinA 6 — ) cosn

+2nces{ (n— 1)dn(aax)

— (aja)Jns 1(at ax)} sin2(6 — y;) sinnd, + {(Ofsa)2 —2n(n— 1)}Jn(asax)

i=1,2 (Al)
- 2(a3a).]n+1(agax)] cosq6 —y)sinnd (A8)

&% = 2nCes{ (n— 1) (a3
_ (aga)Jn+1(asax)} COSZQ - M) cosnf fri1 _ [Z(Gia)Yn+1(ai ax) _ { ((aiax)z

+Ce6 {Z(cxga) Jny1 (Qzax) — {(orga)2

—2n(n—1)Jy (azax) H sinn@sin28—y) (A2) —2n(n— l))Yn(aiaX) H sin2(6 — ;) cosn@
+2n{(n—1)Yn(aiax)
ein = 2Ces [{n(n_ 1)Y, (ajax) + (ajax) } cos26 —y) + (ai@)Ynr1(ajax) } cog 6 — y) sinnd,
i =56 (A9)
— { (a;a)? [Cllco§(9 — Vi) +CT128ir? (0 — y,)}
f/ = 2n{(n—1)Yn(a7ax)
+T13C0h }Yn (ajax) | cosnd — (a7a)Yns1(a78%)} SIN2(0 — y) cosnd

{(a7a)2 —2n(n—1) }Yn(a7ax)

+2nCes{ (n— 1)¥a (aiax) +
— (@) Yn41 (0jax) }sin 26 —y)sinnd,

=56 (A3) - 2(a7a)Yn+1(a7ax)] cos26 —y)sinnd  (A10)
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4= (A11)
f8=0 (A12)
g, = Caa(C+ di){ncos(n 16 + y) Jn(ajax)
— (aia)dnia(aiax) cos(6 — y COSHQ}
1,2 (A13)
o= c{ncos(n — 16+ ¥)Jn(asax)
— (a3@)Jns1(a3aX) SIN(O — ) sinne} (A14)
Oh = Caa(G+ di){nCOS(n 16 + v) dn(aiax)
— (aia)Jn+1(aiax) cog 6 — y) cosn }
=56 (A15)
o = c{ncos(n —16+ y)In(a7ax)
— (a7a)dns1(a7ax)sin(@ — ) sinne} (Al16)
gn= (AL7)
On= (A18)
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