
Appl. Math. Inf. Sci.8, No. 6, 2909-2919 (2014) 2909

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.12785/amis/080628

Dynamic Response of a Solid Bar of Cardioidal
Cross-Sections Immersed in an Inviscid Fluid
R. Selvamani1,∗ and P. Ponnusamy2

1 Department of Mathematics, Karunya University, Coimbatore, Tamil Nadu, India
2 Department of Mathematics, Govt. Arts College, Coimbatore, Tamil Nadu,India

Received: 29 Oct. 2013, Revised: 27 Jan. 2014, Accepted: 28 Jan.2014
Published online: 1 Nov. 2014

Abstract: The dynamic response of a homogeneous transversely isotropic solid bar of cardioidal cross-section immersed in a fluid is
studied using the Fourier expansion collocation method (FECM), within the framework of the linearized three-dimensional theory of
elasticity. The equations of motion of solid and fluid are respectively formulated using the constitutive equations of a transversely
isotropic cylinder and the constitutive equations of an inviscid fluid. Three wave potential functions are introduced to uncouple
the equations of motion. The frequency equations of longitudinal and flexural (symmetric and antisymmetric) modes are analyzed
numerically for a cardioidal cross-sectional transversely isotropic solid bar immersed in a fluid. The computed non-dimensional
frequencies are presented in the form of dispersion curves for the material Zinc.

Keywords: Wave propagation; Transversely isotropic bars; Solid-fluid interaction;Cardioidal cross-sections; Elliptical cross-sections;
Ultrasonic transducers.

1 Introduction

Knowledge of various wave propagation characteristics,
as a function of material and geometrical parameters is
necessary for a wide range of applications, from
geophysical prospecting in cased holes, non-destructive
evaluation of oil and gas pipelines, to the insulated fiber
optic cables for data transmission, ultrasonic transducers
and resonators. We have shown that the frequencies
depend strongly on the cross-sections of the bar and
deviate from the circular one. The propagation of waves
in cardioidal bar immersed in fluid has many applications
in various fields of science and technology, namely,
atomic physics, industrial engineering, submarine
structures, pressure vessel, aerospace and metallurgy. The
most general form of harmonic waves in a hollow
cylinder of circular cross section of infinite length has
been analyzed by Gazis[1] . Mirsky[2] investigated
analyzed the wave propagation in transversely isotropic
circular cylinders of infinite length and presented the
frequency equation in Part I and numerical results in Part
II. A method, for solving wave propagation in arbitrary
cross-sectional cylinders and plates and to find out the
phase velocities in different modes of vibrations namely
longitudinal, torsional and flexural, by constructing

frequency equations was devised by Nagaya [3,4,5,6].
He formulated the Fourier expansion collocation method
for this purpose. Following Nagaya, Paul and Venkatesan
[7] studied the wave propagation in an infinite
piezoelectric solid cylinder of arbitrary cross section
using Fourier expansion collocation method.
The longitudinal waves in homogeneous anisotropic
cylindrical bars immersed in a fluid is studied by
Dayal[8]. Rahman and Ahmad[9] presented the
representation of the displacement in terms of scalar
functions for use in transversely isotropic materials, later,
Ahmad and Rahman[10] has discussed the acoustic
scattering by transversely isotropic cylinders. Guided
waves in a transversely isotropic cylinder immersed in a
fluid is analyzed by Ahmad[11]. Following Ahmad,
Nagy[12] have studied the longitudinal guided wave
propagation in a transversely isotropic rod immersed in
fluid, later, Nagy with Nayfeh[13] discussed the
viscosity-induced attenuation of longitudinal guided
waves in fluid-loaded rods. The free modes of
propagation of an infinite fluid loaded thin cylindrical
shell is discussed by Scott[14].
Easwaran and Munjal[15] reported a note on the effect of
wall compliance on lowest-order mode propagation in
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fluid-filled/submerged impedance tubes. Sinha et. al.[16]
have discussed the axisymmetric wave propagation in
circular cylindrical shell immersed in fluid, in two parts.
In Part I, the theoretical analysis of the propagating
modes are discussed and in Part II, the axisymmetric
modes excluding torsional modes are obtained
theoretically and experimentally and are compared.
Berlinear and Solecki[17] have studied the wave
propagation in fluid loaded transversely isotropic
cylinder. In that paper, Part I consists of the analytical
formulation of the frequency equation of the coupled
system consisting of the cylinder with inner and outer
fluid and Part II gives the numerical results.
Venkatesan and Ponnusamy[18,19] have obtained the
frequency equation of the free vibration of a solid
cylinder of arbitrary cross section immersed in a fluid
using Fourier expansion collocation method. The
frequency equations are obtained for longitudinal and
flexural vibrations. Recently, Ponnusamy and
Selvamani[20] have studied the wave propagation in a
magneto-thermo elastic waves in a transversely isotropic
cylindrical panel using the wave propagation approach.
In this paper, the dynamic response of a transversely
isotropic solid bar cardioidal cross section immersed in a
fluid is studied. Using the Fourier expansion collocation
method the boundary conditions on the surface of the
cardioidal cross sectional solid bar are satisfied and the
frequency equations are obtained. The frequency
equations of longitudinal and flexural modes are studied
numerically and the computed non dimensional
frequencies are presented in the form of dispersion
curves.

2 Basic equations and formulation of the
problem

We consider a transversely isotropic cylindrical bar of
cardioidal cross-section immersed in inviscid fluid. The
system is assumed to be linear so that the linearized
three-dimensional stress equations of motion are used for
both the cylinder and the fluid. The system displacements
and stresses are defined by the cylindrical coordinatesr, θ
and z. In cylindrical coordinates, the three-dimensional
stress equations of motion in the absence of body are
given by Berliner and Solecki (1996)

σrr,r + r−1σrθ ,θ +σrz,z + r−1 (σrr −σθθ ) = ρur,tt

σrθ ,r + r−1σθθ ,θ +σθz,z +2r−1σrθ = ρuθ ,tt

σrz,r + r−1σθz,θ +σzz,z + r−1σrz = ρuz,tt

(1)

The stress strain relation for a transversely isotropic
material is given by

σrr = c11err + c12eθθ + c13ezz

σθθ = c12err + c11eθθ + c13ezz

σzz = c13err + c13eθθ + c33ezz

σrθ = 2c66erθ , σθz = 2c44eθz, σrz = 2c44erz

(2)

where σrr, σθθ , σzz, σrθ , σθz, σrz are the stress
components,err, eθθ , ezz, erθ , eθz, erz are the strain
components,c11, c12, c13, c33, c44 andc66 = (c11− c12)/2
are the five independent elastic constants,ρ is the mass
density of the material.
The strainei j are related to the displacements are given by

err = ur,r, eθ ,θ = r−1(ur +uθ ,θ
)

, ezz = uz,z,

2erθ = uθ ,r − r−1(uθ −ur,θ
)

, 2ezr = (ur,z +uz,r) ,

2eθz =
(

uθ ,z + r−1uz,θ
)

(3)

in which ur, uθ anduz are the displacement components
along radial, circumferential and axial directions
respectively. The comma in the subscripts denotes the
partial differentiation with respect to the variables.
Substituting eqn’s. (3) and (2) in the eqn. (1), results in
the following three-dimensional displacement equations
of motion:

c11
(

ur,rr + r−1ur,r − r−2ur
)

− r−2 (c11+ c66)uθ ,θ

+ r−2c66ur,θθ + c44ur,zz +(c44+ c13)uz,rz

+ r−1 (c66+ c12)uθ ,rθ = ρur,tt (4a)

r−1 (c12+ c66)ur,rθ + r−2 (c66+ c11)ur,θ

+ c66
(

uθ ,rr + r−1uθ ,r − r−2uθ
)

+ r−2c11uθ ,θθ

+ c44uθ ,zz + r−1 (c44+ c13)uz,θz = ρuθ ,tt (4b)

c44
(

uz,rr + r−1uz,r + r−2uz,θθ
)

+ r−1 (c44+ c13)
(

ur,z +uθ ,θz
)

+(c44+ c13)ur,rz + c33uz,zz = ρuz,tt (4c)

3 Method of solution to the equation of
motion

The eqn’s. (4) are coupled partial differential equations of
the three displacement components. This system of
equations can be uncoupled by eliminating two of the
three displacement components through two of the three
equations, but this results in a partial differential
equations of fourth order. To uncouple the eqn’s. (4), we
follow Mirsky (1964) and assuming the solution of eqn’s.
(4) as follows:

ur (r,θ ,z, t) =
∞

∑
n=0

εn
[(

φn,r + r−1ψn,θ
)

+
(

φ n,r + r−1ψn,θ
)]

ei(kz+ωt) (5a)

uθ (r,θ ,z, t) =
∞

∑
n=0

εn
[(

r−1φn,θ −ψn,r
)

(

r−1φ n,θ −ψn,r

)]

ei(kz+ωt) (5b)
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uz (r,θ ,z, t) =
i
a

∞

∑
n=0

εn
[

Wn +W n
]

ei(kz+ωt) (5c)

whereεn =
1
2

for n = 0, εn = 1 for n ≥ 1, i =
√
−1, k is

the wave number,ω is the angular frequency,φn (r,θ),
Wn (r,θ), ψn (r,θ), φ n (r,θ), W n (r,θ), ψn (r,θ) are the
displacement potentials anda is the geometrical
parameter of the cylinder.
By introducing the dimensionless quantities such as

ς = ka, Ω 2 =
ρω2a2

c44
, c11 =

c11

c44
, c13 =

c13

c44
, c33 =

c33

c44
,

T = t
√

c44
ρ
a

andx =
r
a

and substituting eqn’s (5) in eqn’s.

(4), we obtain
(

c11∇2+
(

Ω 2− ς2))φn − (1+ c13)Wn = 0

ς (1+ c13)φn +
(

∇2+
(

Ω 2− c33ς2))Wn = 0
(6)

and
(

∇2+
Ω 2− ς2

c66

)

ψn = 0 (7)

where∇2 ≡ ∂ 2

∂x2 + x−1 ∂
∂x

+ x−2 ∂ 2

∂θ 2 .

EliminatingWn from the eqn’s. (6), we obtain
(

A∇4+B∇2+C
)

φn = 0 (8)

where

A = c11,

B =−
[

(1+ c11)Ω 2+ ς2(c2
13+2c13+ c11c33

)]

,

C =
(

Ω 2− ς2)(Ω 2− c33ς2) .

(9)

Solving the eqn.(8), the solutions for the symmetric modes
are obtained as

φn =
2

∑
i=1

[AinJn (αiax)+BinYn (αiax)]cosnθ (10a)

Wn =
2

∑
i=1

di [AinJn (αiax)+BinYn (αiax)]cosnθ (10b)

whereJn andYn are Bessel functions of the first and second
kind of ordern. The solution for the antisymmetric modes
φ n andW n are obtained by replacing cosnθ by sinnθ in
eqn’s. (10).
Here(αia)

2 > 0, (i = 1, 2) are the roots of the algebraic
equation

A(αa)4−B(αa)2+C = 0. (11)

The Bessel functionsJn and Yn is used when the roots
(αia)

2, (i = 1, 2) are real or complex and the modified
Bessel functionIn and Kn is used when the roots are
imaginary.
The constantsdi defined in the eqn. (10b) can be
calculated from the equation

di =
(1+ c13)(αia)

2

(αia)
2+Ω 2− c2

33ς2
, i = 1, 2. (12)

Solving the eqn. (7), the solution to the symmetric mode is
obtained as

ψn = [A3nJn (α3ax)+B3nYn (α3ax)]sinnθ (13)

where (α3a)2 =
Ω 2− ς2

c66
. If (α3a)2 < 0, the Bessel

function Jn and Yn is replaced by the modified Bessel
function In and Kn. The solution for the antisymmetric
modeψn is obtained from eqn.(13) by replacing sinnθ by
cosnθ .

4 Equations of motion of the fluid

In cylindrical polar coordinatesr, θ and z, the acoustic
pressure and radial displacement equations of motion for
an inviscid fluid are of the form [16]

p f =−B f (u f
r,r + r−1(u f

r +u f
θ ,θ )+u f

z,z) (14)

and
c−2

f u f
r,tt = ∆,r (15)

respectively whereB f is the adiabatic bulk modulus,ρ f is

the density,c f =
√

B f

ρ f is the acoustic phase velocity in the

fluid, and(u f
r ,u

f
θ ,u

f
z ) is the displacement vector.

∆ = (u f
r,r + r−1(u f

r +uθ ,θ )+u f
z,z). (16)

Substituting

u f
r = φ f

,r , u f
θ = r−1φ f

,θ andu f
z = φ f

,z (17)

and seeking the solution of (15) in the form

φ f (r,θ ,z, t)=
∞

∑
n=0

εn
[

φ f
n (r)cosnθ + φ̄ f

n (r)sinnθ
]

ei(kz+ωt)

(18)
the oscillating waves propagating in the inner fluid located
in the annulus is given by

φ f
n = B4nH(1)

n (α4ax) (19)

where(α4a)2 = Ω2

ρ f B f − ς2, in which ρ f = ρ
ρ f , B

f
= B f

c44
,

H(1)
n is the Hankel function of the second kind. If(α4a)2 <

0, then the Hankel function of second kind is to be replaced
by Kn, whereKn is the modified Bessel function of the
second kind. By substituting eqn (17) in (14) along with
(19), the acoustic pressure for the fluid can be expressed
as

p f = B4nΩ 2ρH(1)
n (α4ax)cosnθei(ςz+ΩTa) (20)

In the case of antisymmetric, the solutions for fluid are
obtained by replacing cosnθ by sinnθ in the eq. (20).
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5 Boundary conditions and frequency
equations

The objective of this problem is to study the dynamic
response of a cylindrical bar of cardioid cross sectional
cylinder immersed in a fluid. The boundary conditions of
an infinite cylindrical solid bar are obtained as follows:

(

σxx + p f )

i = (σxy)i = (σzx)i =
(

ur −u f
r

)

i = 0 (21)

σxx is the normal stress,σxy and σzx are the shearing

stresses and
()

i
is the value at thei-th segment of the

boundary. The first and last conditions in eqn. (21) are
due to the continuity of the stresses and displacements of
the cylindrical bar and fluid on the curved surfaces. Since
the boundary of the cross section is irregular in shape, it is
difficult to satisfy the boundary conditions along surfaces
of the cylinder directly. Hence, to satisfy the boundary
conditions, the Fourier expansion collocation method due
to Nagaya [3,4,5,6] is applied. Ifγi is the angle between
normal to the segment and the reference axis is assumed
to be constant, then the transformed expressions for the
stresses are

σxx = c66
(

r−1(uθ −ur,θ
)

−uθ ,r
)

sin2(θ − γi)

+
(

c11cos2 (θ − γi)+ c12sin2 (θ − γi)
)

ur,r

+ r−1(c11sin2 (θ − γi)+ c13uz,z

+ c12cos2 (θ − γi)
)(

ur +uθ ,θ
)

(22a)

σxy = c66
((

ur,r − r−1(uθ ,θ +ur
))

sin2(θ − γi)

+
(

r−1(ur,θ −uθ
)

+uθ ,r
)

cos2(θ − γi)
)

(22b)

σzx = c44((ur,z +uz,r)cos(θ − γi)

−
(

uθ ,z + r−1uz,θ
)

sin(θ − γi)
)

(22c)

Substituting equations (5), (10) and (13), in the boundary
condition (21) the boundary conditions are transformed by
applying the Fourier expansion collocation method along
the curved surface of the boundary as follows:
[

(Sxx)i +
(

Sxx
)

i

]

ei(ς z̄+ΩTa) = 0,
[

(Sxy)i +
(

Sxy
)

i

]

ei(ς z̄+ΩTa) = 0,
[

(Szx)i +
(

Szx
)

i

]

ei(ς z̄+ΩTa) = 0,
[

(Sr)i +
(

Sr
)

i

]

ei(ς z̄+ΩTa) = 0

(23)

where

Sxx = 0.5
(

e1
0A10+ e2

0B10+ e3
0A20+ e4

0B20+ e7
0A40

)

+
∞

∑
n=1

(

e1
nA1n + e2

nB1n + e3
nA2n + e4

nB2n

+ e5
nA3n + e6

nB3n + e7
nA4n

)

(24a)

Sxy = 0.5
(

f 1
0 A10+ f 2

0 B10+ f 3
0 A20+ f 4

0 B20
)

+
∞

∑
n=1

(

f 1
n A1n + f 2

n B1n + f 3
n A2n + f 4

n B2n

+ f 5
n A3n + f 6

n B3n

)

(24b)

Szx = 0.5
(

g1
0A10+g2

0B10+g3
0A20+g4

0B20
)

+
∞

∑
n=1

(

g1
nA1n +g2

nB1n +g3
nA2n +g4

nB2n

+g5
nA3n +g6

nB3n

)

(24c)

Sr = 0.5
(

h1
0A10+h2

0B10+h3
0A20+h4

0B20+h7
0A40

)

+
∞

∑
n=1

(

h1
nA1n +h2

nB1n +h3
nA2n +h4

nB2n

+h5
nA3n +h6

nB3n +h7
nA4n

)

(24d)

S̄xx = 0.5
(

ē1
0Ā10+ ē2

0B̄10+ ē3
0Ā20+ ē4

0B̄20+ ē7
0Ā40

)

+
∞

∑
n=1

(

ē1
nĀ1n + ē2

nB̄1n + ē3
nĀ2n + ē4

nB̄2n

+ ē5
nĀ3n + ē6

nB̄3n + ē7
nĀ4n

)

(25a)

S̄xy = 0.5
(

f̄ 1
0 Ā10+ f̄ 2

0 B̄10+ f̄ 3
0 Ā20+ f̄ 4

0 B̄20
)

+
∞

∑
n=1

(

f̄ 1
n Ā1n + f̄ 2

n B̄1n + f̄ 3
n Ā2n + f̄ 4

n B̄2n

+ f̄ 5
n Ā3n + f̄ 6

n B̄3n

)

(25b)

S̄zx = 0.5
(

ḡ1
0Ā10+ ḡ2

0B̄10+ ḡ3
0Ā20+ ḡ4

0B̄20
)

+
∞

∑
n=1

(

ḡ1
nĀ1n + ḡ2

nB̄1n + ḡ3
nĀ2n + ḡ4

nB̄2n

+ ḡ5
nĀ3n + ḡ6

nB̄3n

)

(25c)

S̄r = 0.5
(

h̄1
0Ā10+ h̄2

0B̄10+ h̄3
0Ā20+ h̄4

0B̄20+ h̄7
0Ā40

)

+
∞

∑
n=1

(

h̄1
nĀ1n + h̄2

nB̄1n + h̄3
nĀ2n + h̄4

nB̄2n

+ h̄5
nĀ3n + h̄6

nB̄3n + h̄7
nĀ4n

)

(25d)

The equations fore1
n ∼ h̄8

n are given in Appendix A. The
boundary conditions along both the inner and outer
arbitrary surface cannot be satisfied directly. Therefore,
performing the Fourier series expansion to (21) along the
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boundary, the boundary conditions are expanded in the
form of double Fourier series. In the symmetric mode, the
necessary boundary conditions for the inner surface are
obtained as

∞

∑
m=0

εm

[

E1
m0A10+E2

m0B10+E3
m0A20+E4

m0B20

+E7
m0A50+

∞

∑
n=1

(

E1
mnA1n +E2

mnB1n +E3
mnA2n

+E4
mnB2n +E5

mnA3n +E6
mnB3n

+E7
mnA5n

)]

cosmθ = 0 (26a)

∞

∑
m=1

[

F1
m0A10+F2

m0B10+F3
m0A20+F4

m0B20

+
∞

∑
n=1

(

F1
mnA1n +F2

mnB1n +F3
mnA2n

+F4
mnB2n +F5

mnA3n +F6
mnB3n

)]

sinmθ = 0 (26b)

∞

∑
m=0

εm

[

G1
m0A10+G2

m0B10+G3
m0A20+G4

m0B20

+
∞

∑
n=1

(

G1
mnA1n +G2

mnB1n +G3
mnA2n

+G4
mnB2n +G5

mnA3n +G6
mnB3n

)]

cosmθ = 0 (26c)

∞

∑
m=0

εm

[

H1
m0A10+H2

m0B10+H3
m0A20+H4

m0B20

+H7
m0A50+

∞

∑
n=1

(

H1
mnA1n +H2

mnB1n +H3
mnA2n

+H4
mnB2n +H5

mnA3n +H6
mnB3n

+H7
mnA5n

)]

cosmθ = 0 (26d)

Similarly, for the anti symmetric mode, the boundary
conditions for the inner surface are

∞

∑
m=1

[

E
5
m0A30+E

6
m0B30+

∞

∑
n=1

(

E
1
mnA1n

+E
2
mnB1n +E

3
mnA2n +E

4
mnB2n +E

5
mnA3n

+E
6
mnB3n +E

7
mnA5n

)]

sinmθ = 0 (27a)

∞

∑
m=0

[

F
5
m0A30+F

6
m0B30+

∞

∑
n=1

(

F
1
mnA1n

+F
2
mnB1n +F

3
mnA2n +F

4
mnB2n +F

5
mnA3n

+F
6
mnB3n

)]

cosmθ = 0 (27b)

∞

∑
m=1

[

G
5
m0A30+G

6
m0B30+

∞

∑
n=1

(

G
1
mnA1n

+G
2
mnB1n +G

3
mnA2n +G

4
mnB2n +G

5
mnA3n

+G
6
mnB3n

)]

sinmθ = 0 (27c)

∞

∑
m=1

[

H
5
m0A30+H

6
m0B30+

∞

∑
n=1

(

H
1
mnA1n

+H
2
mnB1n +H

3
mnA2n +H

4
mnB2n +H

5
mnA3n

+H
6
mnB3n +H

7
mnA5n

)]

sinmθ = 0 (27d)

The frequency equations are obtained from the inner and
outer boundary conditions of the equations (26), for the
symmetric mode, and for the antisymmetric mode, the
frequency equations are obtained from the equations (27)
by truncating the series toN + 1 terms, and equating the
determinant of the coefficients of the amplitudesAin, Bin,
Ain and Bin (i = 1, 2, 3, 4) to zero. Thus the frequency
equation for the symmetric mode is obtained as

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

E1
00 E2

00 E3
00 E4

00 E7
00 0 E1

01 ··· E1
0N E6

01 ··· E6
0N E7

01 ··· E7
0N 0 ··· 0

...
...

...
...

...
...

...
... ···

...
...

...
...

...
...

E1
N0 E2

N0 E3
N0 E4

N0 E7
N0 0 E1

N1 ··· E1
NN E6

N1 ··· E6
NN E7

N1 ··· E7
NN 0 ··· 0

F1
10 F2

10 F3
10 F4
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Similarly, the frequency equation for antisymmetric mode
of vibration is given by
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(29)
where

E
i
mn =

2εn

π

I

∑
i=1

θi
∫

θi−1

ei
n (Ri,θ)cosmθ dθ ,

F
i
mn =

2εn

π

I

∑
i=1

θi
∫

θi−1

f i
n (Ri,θ)sinmθ dθ ,

G
i
mn =

2εn

π

I

∑
i=1

θi
∫

θi−1

gi
n (Ri,θ)cosmθ dθ ,

H
i
mn =

2εn

π

I

∑
i=1

θi
∫

θi−1

hi
n (Ri,θ)cosmθ dθ

(30)

E i
mn =

2εn

π

I

∑
i=1

θi
∫

θi−1

ei
n (Ri,θ)cosmθ dθ ,

F i
mn =

2εn

π

I

∑
i=1

θi
∫

θi−1

f i
n (Ri,θ)sinmθ dθ ,

Gi
mn =

2εn

π

I

∑
i=1

θi
∫

θi−1

gi
n (Ri,θ)cosmθ dθ ,

H i
mn =

2εn

π

I

∑
i=1

θi
∫

θi−1

hi
n (Ri,θ)cosmθ dθ

(31)

wherei = 1, 2, 3, 4, 5, 6, 7 and 8,εm =
1
2

for m = 0 and

εm =
1
2

for m ≥ 0, I is the number of segments,Ri is the

coordinater at the inner boundary, andRi is the coordinate
r at the outer boundary. The equations forE

i
mn ∼ H

i
mn can

be obtained by replacing cosnθ by sinnθ and sinnθ by
cosnθ in eqn’s.(28) and (29).

6 Numerical results and discussion

The resulting frequency equations of the symmetric and
antisymmetric cases of the cylinder of general cross
section immersed in a fluid is given in (28) and (29) are
transcendental in nature with respect to the dimensionless
frequency Ω and dimensionless wave numberς . The
analysis is carried out for cardioid cross sections by fixing
the dimensionless wave numberς and the dimensionless
frequencyΩ are obtained. The computation of cylindrical
Bessel functions of complex arguments are performed
using the method provided by Zhang and Jin[21]. The
computation of Fourier coefficients given in (30) is
carried out using the five point Gaussian quadrature. To
obtain the roots of the frequency equation, the secant
method applicable for the complex roots (Antia[22]) is
employed. The material chosen for the numerical
calculation is zinc, its properties are as follows: for the
solid the elastic constants are

c11 = 1.628×1011Nm−2, c12 = 0.362×1011Nm−2,

c13 = 0.508×1011Nm−2, c33 = 0.627×1011Nm−2,

c44 = 0.385×1011Nm−2

and for the densityρ = 7.14× 103 kgm−3, the fluid
density ρ f = 1000kgm−3 and the phase velocity
c = 1500ms−1.
In the present problem, three kinds of basic independent
modes of wave propagation have been considered,
namely, the longitudinal and two flexural (symmetric and
antisymmetric) modes for geometries having more than
one symmetry. For geometries having only one symmetry,
two modes of wave propagations are studied since the two
flexural modes are coupled in this case.
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6.1 Cardioid cross-section

The relation used for the numerical calculations of
cardioid cross sectional solid bar are from equations (22)
and (24) of Nagaya(1983a) as follows

Ri

a
=

1+ s2+2s cosθ1

1+ s

θ = cos−1 cosθ1+ s cos2θ1

(1+ s2+2s cosθ1)
1
2

wherea is the radius of the circumscribing circle and

G(θ1) =
cosθ1+2s cos2θ1

−sinθ1−2s sin2θ1

γi =



















π
2
, for G(θ ∗

i ) = 0
π
2
− tan−1(−G(θ ∗

i )), for G(θ ∗
i )< 0

π
2
+ tan−1(−G(θ ∗

i )), for G(θ ∗
i )> 0

where θ ∗
i = (θi − θi−1)/2, is the mean angle of the

segmentI, andRi is the coordinater at the boundary,γi is
the angle between the normal to the segment and the
reference axis at theith boundary. This parameters
represents a circle whens = 0 and represents a cardioid
when s = 0.5. In the case of cardioid cross section, the
vibration and displacements are symmetrical about only
one axis. Hence, the frequency equation for longitudinal
case may be obtained from (28) by choosing
n, m = 0, 1, 2, 3, . . .. In the case of flexural mode, the
vibration and displacements are antisymmetrical about
the minor axis. Hence, the frequency equations may be
obtained from (29) by choosingn, m = 1, 2, 3, . . ..

6.2 Dispersion curves

The results of longitudinal and flexural (antisymmetric)
modes are plotted in figures. The notations LM and
FSAM represents the longitudinal mode and flexural
antisymmetric modes respectively. The 1, 2 refers to the
first and second modes of vibration respectively.
The Figs.1 and 2, shows that the non-dimensional wave
number |ς | versus dimensionless frequencyΩ of
transversely isotropic free and immersed cardioid cross
sectional cylindrical bar for longitudinal and flexural
(antisymmetric) modes of vibrations with respect to the
parameters = 0.05. It is observed that as the wave
number increases, the non-dimensional frequencyΩ also
increases linearly. BeyondΩ = 0.4, there is a small
oscillation in the vibrational modes in Fig.2 due to the
leakage of waves from solid in to the fluid.

Fig. 1: Non-dimensional wave number|ς | versus dimensionless
frequencyΩ for free solid bar withs = 0.05

Fig. 2: Non-dimensional wave number|ς | versus dimensionless
frequencyΩ for immersed solid bar withs = 0.05

A graph is drawn between the non-dimensional wave
number |ς | versus dimensionless frequencyΩ of
transversely isotropic cardioid cross sectional cylindrical
bar with respect to the parameters = 0.3 in Fig.3 and 4.
The displacement of energy in the first mode and second
mode of vibration of longitudinal and flexural
(antisymmetric) increases linearly as the frequencies
increases. It is also observed that there is a small
dispersion among the modes of vibration in case of the
bar immersed in fluid.
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Fig. 3: Non-dimensional wave number|ς | versus dimensionless
frequencyΩ for free solid bar withs = 0.3

Fig. 4: Non-dimensional wave number|ς | versus dimensionless
frequencyΩ for immersed solid bar withs = 0.3

The dispersion curve is drawn between the
dimensionless wave number|ς | versus non-dimensional
frequency Ω of transversely isotropic cardioid cross
sectional cylindrical bar fors = 0.3 in Fig.5 and 6. It is
observed that the behavior of the wave propagation is
linear in both the cases of vibrational modes except the
small deviation in Fig.6. Therefore, the dynamic response
of the solid bar with the fluid interaction behave irregular
in both the cases of vibrational modes.So, it is clear that
the frequency profile in some of the modes exhibits
oscillating nature due to the fact that the fluid is acted as
extra added mass. The cross over points in the vibrational
modes indicates the energy transfer between the solid and

fluid medium.

Fig. 5: Non-dimensional wave number|ς | versus dimensionless
frequencyΩ for free solid bar withs = 0.5

Fig. 6: Non-dimensional wave number|ς | versus dimensionless
frequencyΩ for immersed solid bar withs = 0.5

7 Conclusions

In this paper, the dynamic response of a transversely
isotropic solid bar of cardioidal cross sections immersed
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in a fluid is analyzed by satisfying the boundary condition
on the irregular boundary using the Fourier expansion
collocation method and the frequency equation for the
longitudinal and flexural anti symmetric modes of
vibrations are obtained. The results are presented as
dispersion curves. It is clear that the energy radiation is
increasing as the waves penetrate deeper in to the medium
(higher wave number). The cross over points in the
vibrational modes indicates the energy transfer between
the solid and fluid medium. The method proposed in this
paper can be used to analyze the vibration of a cylindrical
bar of any cross section with appropriate geometric
relation.

Appendix A

The equations forei
n ∼ gi

n referred in the equations (30)
and (31) are as follows:

ei
n = 2c66

[

{

n(n−1)Jn(αiax)

+(αiax)Jn+1(αiax)
}

cos2(θ − γi)

−
{

(αia)
2
[

c11cos2(θ − γi)+ c12sin2(θ − γi)
]

+ c13ζ di

}

Jn(αiax)

]

cosnθ

+2nc66

{

(n−1)Jn(αiax)

− (αia)Jn+1(αiax)
}

sin2(θ − γi)sinnθ ,

i = 1, 2 (A1)

e3
n = 2nc66

{

(n−1)Jn(α3ax)

− (α3a)Jn+1(α3ax)
}

cos2(θ − γi)cosnθ

+ c66

[

2(α3a)Jn+1 (α3ax)−
{

(α3a)2

−2n(n−1)Jn (α3ax)
}]

sinnθ sin2(θ − γi) (A2)

ei
n = 2c66

[

{

n(n−1)Yn (αiax)+(αiax)
}

cos2(θ − γi)

−
{

(αia)
2
[

c11cos2(θ − γi)+ c12sin2(θ − γi)
]

+ c13ςdi

}

Yn (αiax)

]

cosnθ

+2nc66

{

(n−1)Yn (αiax)

− (αia)Yn+1 (αiax)
}

sin2(θ − γi)sinnθ ,

i = 5, 6. (A3)

e7
n = 2nc66

{

(n−1)Yn (α7ax)

− (α7ax)Yn+1 (α7ax)
}

cos2(θ − γi)cosnθ

+ c66

[

2(α7a)Yn+1 (α7ax)−
{

(α7a)2

−2n(n−1)Yn (α7ax)
}

]

sinnθ sin2(θ − γi) (A4)

e4
n = Ω 2ρ1Jn (δ1ax)cosnθ (A5)

e8
n = Ω 2ρ2H(2)

n (δ2ax)cosnθ (A6)

f i
n =

[

2(αia)Jn+1 (αiax)−
{

(

(αia)
2

−2n(n−1)
)

Jn(αiax)

}]

sin2(θ − γi)cosnθ

+2n{(n−1)Jn(αiax)

+(αia)Jn+1(αiax)}cos(θ − γi)sinnθ ,
i = 1, 2 (A7)

f 3
n = 2n{(n−1)Jn(α3ax)

− (α3a)Jn+1(α3ax)}sin2(θ − γi)cosnθ

+

[

{

(α3a)2−2n(n−1)
}

Jn(α3ax)

−2(α3a)Jn+1(α3ax)

]

cos2(θ − γi)sinnθ (A8)

f i
n =

[

2(αia)Yn+1(αiax)−
{

(

(αiax)2

−2n(n−1)
)

Yn(αiax)

}]

sin2(θ − γi)cosnθ

+2n{(n−1)Yn(αiax)

+(αia)Yn+1(αiax)}cos(θ − γi)sinnθ ,
i = 5, 6. (A9)

f 7
n = 2n{(n−1)Yn(α7ax)

− (α7a)Yn+1(α7ax)}sin2(θ − γi)cosnθ

+

[

{

(α7a)2−2n(n−1)
}

Yn(α7ax)

−2(α7a)Yn+1(α7ax)

]

cos2(θ − γi)sinnθ (A10)
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f 4
n = 0 (A11)

f 8
n = 0 (A12)

gi
n = c44(ς +di)

{

ncos
(

n−1θ + γi
)

Jn(αiax)

− (αia)Jn+1(αiax)cos(θ − γi)cosnθ
}

,

i = 1, 2 (A13)

g3
n = ς

{

ncos
(

n−1θ + γi
)

Jn(α3ax)

− (α3a)Jn+1(α3ax)sin(θ − γi)sinnθ
}

(A14)

gi
n = c44(ς +di)

{

ncos
(

n−1θ + γi
)

Jn(αiax)

− (αia)Jn+1(αiax)cos(θ − γi)cosnθ
}

,

i = 5, 6 (A15)

g7
n = ς

{

ncos
(

n−1θ + γi
)

Jn(α7ax)

− (α7a)Jn+1(α7ax)sin(θ − γi)sinnθ
}

(A16)

g4
n = 0 (A17)

g8
n = 0 (A18)
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