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Abstract: In this paper we provide an analytical procedure for explicit calculatiagheoleft and right invariant vector fields and one-
forms onSU(N) manifold. The calculations are based on the coset parametrizat®d(df) group. The results enable us to calculate
the invariant measure or Haar measure on the group. As an illustrativepte, we calculate invariant vector fields and one-forms on
SU(2) group.
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1 Introduction studied the geometric phase over the space of 3-level
quantum systems. On the other hand, based on the Euler
fangle parametrization dBU(3) group and the result of
1{7]’ Panahi et al § have obtained a two-dimensional
Hamiltonian onS? via Fourier transformation over the
three coordinates of th8U(3) Casimir operator defined

n SU(3)/SU(2). Also by using the parametrization of
U(3)/SU(2) given in [6], they have constructed right
invariant vector fields and the Casimir operator on the

Because of the various applications of the group o
unitary transformation in physics, there is a great deal o
attention in investigation of the properties of the unitary
group SU(N). In view of such considerable interest a lot
of work has been devoted to describe and parameteriz
SU(N) manifold. A generalized Euler angle

parametrization foSU(N) andU (N) groups is given by symmetric spaceSU(3)/SU(2) and have obtained the

Tilma and Sudarshan 1]2]. Dita has provided a . ; o= .
parametrization of unitary matrices based on theftwo-dlmensmnal Hamiltonian of a charged particle®n

factorization ofN x N unitary matrices 3,4]. Using this in the presence of an electric fielf]|
parametrization he has provided an explicit In this paper we present an analytical procedure for
parametrization for generaN-dimensional Hermitian calculation of the left and right invariant vector fields and
operators that may be considered either as Hamiltonian opne-forms orSU(N) group. This calculation is based on
density matricesq]. The subgroups and the coset spacesthe coset parametrization SU(N). We also use the
of the SU(3) group are also listed in6] along with a  possibility of factorizing each coset component in terms
discussion of the geometry of the group manifold which of a diagonal phase matrix and an orthogonal ma#ix [
is relevant to the understanding of the geometric phase. 10]. By using this coset parametrization, we have recently
The differential geometry on unitary groups is also an given an explicit expression for the Bures metric over the
important task in theoretical physics. To achieve this it isspace of three-level 1fI] and N-level [12] quantum
important to having a parametrization to constructsystems. This parametrization is convenient for many
differential geometry for any unitary group. Byrd][has  calculations, in the sense that by using the coset
calculated the left and right invariant vector fields and parametrization the calculation can be done in a unique
one-forms onSU(3) group. His calculation is based on manner for ever\N. Furthermore the coset spaces appear
the Euler angle parametrization for t&J(3) group. He in physics in several contexts, and provide an elegant way
has used the invariant one-forms 8b(3) group, and has of deducing a high-dimensional theory to a
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lower-dimensional one. This paper, therefore, can beAlso for N = 3 we get the usual Gell-Mann matrices

regarded as a further development in the explicit
calculation of the differential geometric structure of

SU(N). The results of the paper can have applications in

studying geometric phase over the space Nofevel

guantum systems, and also in the context of constructing

Hamiltonian on some coset spacessaf(N) group.

The paper is organized as follows: In section 2, we
review briefly the Lie algebra dU(N) and introduce the
generalized Gell-Mann matrices as generators of th
algebra. The coset parametrization f@BU(N) is
introduced in section 3. Based on the coset
parametrization, we provide in section 4, a method to
construct the left and right invariant vector fields and
one-forms onSU(N) manifold. In this section we also
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obtain the invariant measure or Haar measure on the

group. As an illustrative example we obtain the
differential geometry or8U(2) in section 5. The paper is
concluded in section 6 with a brief conclusion.

2 Preliminary: Liealgebra of SU(N)

The groupSU(N) of N x N unitary matrices with unit
determinant is generated by th2 — 1 Hermitian,
tracelessN x N matrices, that make the basis for the
corresponding Lie algebrasuN). By choosing the
normalization condition TiTiT;) = 3&; for generators,

we can write thgN — 1) diagonal generators_gll) N-1

a;=1'
i.e. Cartan subalgebra, a4 §, page 187) '
&) 1
L =
( aq )k,l zal(al T 1)
az
X (Z &j0,j — ald(,al+ld,al+l> ; (1)
=1

and the remainin®{(N — 1) non-diagonal generators

(LA™Y (for m= 2, ,N) as follows
3 (BakOmi + S Okc)
(m) for am=1,---.m—1
(Lam )k,l = ) %)
% (Bam-m+1.k8mi — Oam—m+11 Omk)
for am=m,---,2(m—1).

3 Canonical coset parametrization of SU(N)
group

In this section we provide a parametrization BUWJ(N)
group that will be useful in calculating the differential
geometry on the group manifold. The parametrization is
based on the coset decomposition of unitary matrices.

3.1 Coset factorization of SW) group

For every elementU € SU(N), there is a unique
decomposition ob) into a product oN group elements as

[14]

U= QNN oN-IN)  o(@N)o(LN) (3)
In the above factorization we have
QN e TN (4)

where the(N — 1)-dimensional toru§ N1 is the product

of N—1 spheres§! = T1. A typical element foQN) can
be represented as

_Q(1§N> — Exp(inng_]')) e
whereng, for oy =1,---

Exp(inn-1Ly ), (5)
,N — 1 are real parameters and
LD

o, are Cartan generators defined in equatidjp The
explicit form for QN) can be expressed as

QAN | = |EXP< W 2 nk 1+i Ekm)

In the foIIowmg sections, we set the range of indexes asyjith = 0. Also in decompositiond) we have the cosets

1_1 ,N—1 and an = 1,---,2(m— 1) for
m=2,. N The abovesuN) basis is the generalized
Gell- Mann matrices, and therefore, for the caséct 2
we get the Pauli matrices
(o 5) w3 (50) & =3 (00)
- 071 y =1 _2 9 .

01
10

W 0-i
L i 0

) 1
¢ L@ _

2 =3

UmeTN-m
Q(mN) —2....
Um—1) @ TN-m+1’ m

)

N.

()

9

A typical coset representativ@(™N) can be written as

v _ (SUmM/U(m=1)| O
Q( N>—< OT |Nm>’

(8)
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whereO represents then x (N —m) zero matrix,0' is its
transpose anth_m denotes the unit matrix of ord¢N —
m). The Zm— 1)-dimensional coset spa&J(m) /U (m—
1) has the followingm x m matrix representation 1],
page 351)

iny/[BM7TB(M)

sm\/ m)]tg(m) (m)t miTRm

Seem 1B )| cos [BM]TBM
whereB(™ represents afm— 1) x 1 complex matrix and

[BM™M]Tis its adjoint.

3.2 Factorization of cose® (MmN)

Now by parameterizing the complex vect®f™ as (for

m=2---, N)

(A" e L e
where y™ and &™
Q(MN) can be factorized as (fon=2,---,N)

+

_Q(m;N) — X(m;N)R(m;N)X(m;N) ’ (10)

where X(MN) is a diagonalN x N phase matrix with
X™ = 5 exp(i&™) and &™ =0 for i > m, and

RMN) is anN x N orthogonal matrix with the following
nonzero elements

4.1 Left invariant vector fields and one-forms

Now in order to calculate left invariant vector fields, we

first take derivatives of the group elemeutny,, xf,r:n'))

with respect to each set of parametges and X((,”n:), and
write the result of differentiation as

17} 1) 17}

(m)
—U=UAy, ——U=UAY, (13)
MNay P gy a
where the matriceAé,ll) andAg"r;) are defined by
(1N)
AD = |92 (14)
ay
N
A wimnt 92 o Ty 15)
X&)
with
W(mN) _ o (mN) o(Mm=1N)  5(2N)o(LN) (16)

(m)
following nonzero matrix elements

ﬁQ(mN) N T
{ v o }

are real numbers, the component and the anti Hermitian matrl{‘m( )Q<m’N)T} has the

r<m,s<m

=878 (o) (g e, )

Ri(,T;N) =3 +%(m)%§m) (Cosy(m) —1) |:a_Q(m.N)Q(m’N)T:|
for 1<i,j<m-1 ayf(lrr? r<mm
RMN) _ _RIMN) _ () gy o Y sy 17)
m i i _ dér siny
for 1<i<m-1 =¢ ( (6”’”‘ ) V)
(mN) _ m) *
Rmmn:\l = COSV( { Q(mN)Q(m7N)T:| . [ag(mN>Q(m7N)T]
R™ =1 for m+1<i<N, (11) oy mrem vam fmm
where we have defined™ = y™/y™ and {0Q(m-N)Q(m,N)T} ,
ym = /[BWTBM = /3™ 1({™)2 As we will see oVam mm
later the |mp0rtant mgredlent of our approach in ) ot .
computing the vector fields and one-forms is the and also the matn{ af(m) Q(mN) ] defined by
possibility of writing the factorization1(0). am
QMmN ot :
— 2™ = 1&anan 18)
4 Differential geometry on SU(N) 9

In this section we will find differential operators
corresponding to the generatorsSI(N) group. To this

aim, we first define(é,'r:) (am=1,2,---,2(m—1)) as the
2(m— 1) real parameters of the coset compon@if*N)

— IRG R, ¢

The matricesAE,ll) and Ang) can be expanded as a linear
combination of the Lie algebra basils) @nd @) as follows

m=2,---,N) such that (1 _ L)
( ) Aa; = 01 Bl 131 +WZ 0'1 ﬁmf ﬁn{ (19)
m A for am=1,---,m—1, Bm(‘
m
Xam = 12) m mf)
Eé?lml for om=m,---,2(m—1) Adm = am,ﬁl 51 ﬁ; am,ﬁm, : (20)
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The coefficients of the above expansion can be obtaine®y using the fact that left invariant one-forms are dual to
from the orthogonality of the generators of the Lie algebra.the left invariant vector fields, i.e.

We obtain the following results
(11

W = 130,y (22)
(Tm _
alvrgm =0 (22)
(m) 2
2 23
am,B1 2[31([31 + 1) ( )
B1
my (m)
x <]Zl (Aam ) ii A (Aam >ﬁ1+17ﬁ1+1>
(mm) (m) (m)
AmBy ((A"m ) By + (A"”‘ )Bm(,m(> @y
for By =1,---,m—1,
(mm) i (m) _ (m)
QB — ! ((A"m ) By (A""‘ )ﬁn{,nf) =
for By =m,---,2(m—1)

(wC(Ii)»A((]}:)L) = 60{1,0’17 (w(<111->7/\6(1rr:)) = 07
1 m
(Wi Agr) =0, (@i AT = B a1y Bt

we find thatCT (A1) = I and therefore, we hav@ = AT.
Consequently, the left invariant one-forms are obtained by
tacking the transpose of the matéxi.e.

(1)
wBl dna 1
=AT . (32)
wém) dx énn:)
m

4.2 Right invariant vector fields and one-forms

Now in order to calculate right invariant vector fields, we

Therefore by choosing the following order for coordinates first take derivatives of the group e|emdn(r’al7xég>)

(M1 el 2 6P 2 80,69, 691: (26)
N N N N
SV o ENY &
we can define the matriX by
(11) | .(12) | o(13) (LN)
aalaﬁl ay,Bp a01,/33 aﬂl BN
21 122 423 [ 52N
e el el
A= 03151 03;332 03’7[33 ~ | %as.By 27)
a(N.,l) (N.,Z) (N,a) NN
ansB|an,B2| T ansBs ansB

With the help of this matrix the differential operators are
related to the Lie algebra generators as follows

1
9/0Na, Ly
=A (28)
0/0Xsm L

Now by tacking inverse of the matriX, the left invariant
vector fields onSU(N) group can be obtained by the
following equation

1
Aél) d/dr]"l
=A? w | (29)
(mf) m
s 9/9 Xam

Now in order to calculate the left invariant one-forms,

with respect to each set of parametgegs and xé,"n?, and
write the result of differentiation as

7} ~ 7
3 U=ApU, —mY = APy, (33)
ay anm
where the matricegg1 andﬂaﬂ) are defined by
~ - (LN) ~
AL — W ijna Qu.w] W (34)
1
~ - (mN) ~
A = wimn | 22 = Q“"’N)T] W (35)
9 Xam
with
WENZQ(NIN) o (N-TN) o (k+1iN) _yyy (k)T (36)
and
0Q<1’N)Q(17N)T _ _Q(LN)T 6(2(17'\‘) ILE;,l)
dr’Cfl dncrl v
and the anti Hermitian matrix{"f;im')mQ““N)Jr has
Vam
defined in equation1(7). The matncesAa andA ) can

be expanded as a linear combination of the Lie algebra

we first expand them in terms of the basigdand g&((m) ~) L ()
i o A=Y . Bl+rr;2 2, al,BM Ly, 37)
N 2( rﬂ 1
) = al,ﬁld” t; al . (30) Ay — L +WZ A L. (38)
2 a1
N 2 rr( 1
wé:) _ a B dn Bt WZ a B X[3 (31)  The coefficients of the above expansion can be obtained
mFL P from the orthogonality of the generators of the Lie algebra.
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We obtain the following results 4.3 Invariant integration measure
NEE 2 .
B = 2B.BL 1 1) (39) Invariant measure, or Haar measure, on tBE(N)
11-1 manifold can be obtained by tacking the wedge product of
b ~(1) ~(1) the left or right invariant one-forms. The result is, of
X JZI (Aal) -B <Aal>51+1131+1 course, equivalent by tacking the determinant of the
matrix A (or matrix A because of the fact that left and
5(1m) AL AL right invariant measures 0BU(N) are equal), where we
s <(A"l )mﬁm " <A"1 )Bm m) 49 get
for Bm=1,--- ,m-1 N mei
o/~ ~ du[SU(N)] = Det(A) |_| dng |'| |_| dyy, déq,
~(1m) _ (1) . (1) 1 m m*
en- (), (),)
for Bn=m,---,2(m—1)
&y - (2[3 Ty (42) 5 Anexample: The SU(2) group
' 1{P1
B, In this section we consider for more illustration the case
% Z (,&(m)) B (Aa ) of N = 2 explicitly. In this particular case we have three
£\ Pr+L Pyl (2) 2
=1 parametersn;, y;”~ and &, where for the sake of
(m - ~ simplicity we set them ag, y andé respectively. In this
E,”;,;ni = (( g:;)) T (A(C{Tn>) 5 m) (43)  case we see that
for By =1,--- ,m—1

022 _ cosy €¢siny
~ \ —e¥siny cosy

smm) i (x(m) _ ((Alm) ,
Py = I(<Aam)m(-ﬁm( (Aam>l3n«~m(> @ Q2 _ (e'”/2 0 )
for By =, ,2(m—1) 0 e'n/?
By choosing the coordinates order given 26), we get  and therefore
the following representation for matri e :( cosyd/2  l&-n/2) siny)

~(11) | x(12) | £(1,3) ~(1N) T . y
?21,:51 ?21-,2%2 21217:53 3?217'63\‘ —_e i(& rl/z)smy cosye in/2
B ?51/%1 21??2%2 %53 af'gf,@)“ We also find |
A= | Baup | %oy || [Faapy |- N
. . . . . 1 _efl(ffn) 0 ’
é(r\Ll) é(r\i,z) é(r\i,g) é(N',N) AD _ —isinzy isinycosyei(ffm
on-BylanBe | an Bl B 2~ \isinycosye "(¢-1) isiry '
where can be used to write the differential operators in . _
terms of the Lie algebra generators as where can be used to write the matfas
(1) i 0 0
9/0 L ' |
/0a il ” as) A= 0 2ising Jicost |,
3/ y™ m) | —i(1—cosZ)|isin2ycos{ —isin2ysin{
/ Xam Lﬁm' . L
Consequently, the right invariant vector fields on the with the following inverse
SU(N) group can be obtained by the following —i | 0 0
~[(31) 3/9na At = | —icos(tany|—5sin{ —icos{csc
1 1 isi _i isi
A . (47) isin{tany |—5cos{ isin{cscy
A gm() f2/0 xc(,ﬂ) where we ha_ve useﬁ:_gt —n. These twc_> matrices can be
oS . . used to obtain the left invariant vector fields as
Finally, simllar to the case ofleft invariant one-forms by 9
definingAT as the transpose @ the right invariant one- A = —j
forms can be written as on’
~(1) 2) . 17}
@ dn AP = _jcosZtan ———sm(——lcoschcB/
B ay 1 y
- ( ( >> ' ) aan i aé
~(m m
wé"{) dXam /\2<2) = isinZtanyé’,7 EcosZ—Jrlst cch/aE
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and the left invariant one-forms as follows cosets. The advantage of this approach is the possibility
(D) g ia of calculating explicitly the differential geometry on
@ =idn —i(1-cos)de, SU(N) for everyN, in the sense that by knowing, it is

wf) = 2isin{dy+isin2ycos{dé, enough to construct the matrik and then taking the
@ o . . transpose and inverse of this matrix, which are not
w,” = 2icosCdy —isin2ysin{dé. difficult task to handle. As an illustrative example we

For calculation of the right invariant vector fields we calculate explicitly, the differential structure dBU(2)
note that in this particular case we halg'? = (%2 group.
andW(22 =1, and therefore we find

A _ ( pcosy  sin2yel References
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and the right invariant one-forms
G)il) =icosdn +i(1—cos)dé,
&){2) = —isin2ycosédn + 2isinédy+isin2ycosédé,

@? = isin2ysinédn + 2i cosEdy — i sin2ysin& dé.

Finally, the invariant measure of this group are also
obtained as

du[SU(2)] = 2sin2ydndydé.
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6 Conclusion

In this paper we present a method for explicit calculation : ;
of the left and right invariant vector fields and one-forms I0Urnals in physics.
on SU(N) manifold. The calculations are based on the

coset parametrization of the unitary gro8p(N). It is

shown that in the canonical coset parametrization, the

invariant measure on the group manifold is decomposed

as the product of the invariant measure on the constitute
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