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Abstract: In this paper we provide an analytical procedure for explicit calculation of the left and right invariant vector fields and one-
forms onSU(N) manifold. The calculations are based on the coset parametrization ofSU(N) group. The results enable us to calculate
the invariant measure or Haar measure on the group. As an illustrative example, we calculate invariant vector fields and one-forms on
SU(2) group.
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1 Introduction

Because of the various applications of the group of
unitary transformation in physics, there is a great deal of
attention in investigation of the properties of the unitary
groupSU(N). In view of such considerable interest a lot
of work has been devoted to describe and parameterize
SU(N) manifold. A generalized Euler angle
parametrization forSU(N) andU(N) groups is given by
Tilma and Sudarshan [1,2]. Diţ ǎ has provided a
parametrization of unitary matrices based on the
factorization ofN×N unitary matrices [3,4]. Using this
parametrization he has provided an explicit
parametrization for generalN-dimensional Hermitian
operators that may be considered either as Hamiltonian or
density matrices [5]. The subgroups and the coset spaces
of the SU(3) group are also listed in [6] along with a
discussion of the geometry of the group manifold which
is relevant to the understanding of the geometric phase.

The differential geometry on unitary groups is also an
important task in theoretical physics. To achieve this it is
important to having a parametrization to construct
differential geometry for any unitary group. Byrd [7] has
calculated the left and right invariant vector fields and
one-forms onSU(3) group. His calculation is based on
the Euler angle parametrization for theSU(3) group. He
has used the invariant one-forms onSU(3) group, and has

studied the geometric phase over the space of 3-level
quantum systems. On the other hand, based on the Euler
angle parametrization ofSU(3) group and the result of
[7], Panahi et al [8] have obtained a two-dimensional
Hamiltonian onS2 via Fourier transformation over the
three coordinates of theSU(3) Casimir operator defined
on SU(3)/SU(2). Also by using the parametrization of
SU(3)/SU(2) given in [6], they have constructed right
invariant vector fields and the Casimir operator on the
symmetric spaceSU(3)/SU(2) and have obtained the
two-dimensional Hamiltonian of a charged particle onS2

in the presence of an electric field [9].

In this paper we present an analytical procedure for
calculation of the left and right invariant vector fields and
one-forms onSU(N) group. This calculation is based on
the coset parametrization ofSU(N). We also use the
possibility of factorizing each coset component in terms
of a diagonal phase matrix and an orthogonal matrix [4,
10]. By using this coset parametrization, we have recently
given an explicit expression for the Bures metric over the
space of three-level [11] and N-level [12] quantum
systems. This parametrization is convenient for many
calculations, in the sense that by using the coset
parametrization the calculation can be done in a unique
manner for everyN. Furthermore the coset spaces appear
in physics in several contexts, and provide an elegant way
of deducing a high-dimensional theory to a
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lower-dimensional one. This paper, therefore, can be
regarded as a further development in the explicit
calculation of the differential geometric structure of
SU(N). The results of the paper can have applications in
studying geometric phase over the space ofN-level
quantum systems, and also in the context of constructing
Hamiltonian on some coset spaces ofSU(N) group.

The paper is organized as follows: In section 2, we
review briefly the Lie algebra ofSU(N) and introduce the
generalized Gell-Mann matrices as generators of the
algebra. The coset parametrization forSU(N) is
introduced in section 3. Based on the coset
parametrization, we provide in section 4, a method to
construct the left and right invariant vector fields and
one-forms onSU(N) manifold. In this section we also
obtain the invariant measure or Haar measure on the
group. As an illustrative example we obtain the
differential geometry onSU(2) in section 5. The paper is
concluded in section 6 with a brief conclusion.

2 Preliminary: Lie algebra of SU(N)

The groupSU(N) of N × N unitary matrices with unit
determinant is generated by theN2 − 1 Hermitian,
tracelessN × N matrices, that make the basis for the
corresponding Lie algebrasu(N). By choosing the
normalization condition Tr(TiTj) =

1
2δi j for generators,

we can write the(N−1) diagonal generators{L(1)
α1 }N−1

α1=1,
i.e. Cartan subalgebra, as ([13], page 187)

(L(1)
α1 )k,l =

1√
2α1(α1+1)

×
(

α1

∑
j=1

δk, jδl , j −α1δk,α1+1δl ,α1+1

)
, (1)

and the remainingN(N−1) non-diagonal generators

{L(m)
αm }2(m−1)

αm=1 (for m= 2, · · · ,N) as follows

(L(m)
αm )k,l =





1
2

(
δαm,kδm,l +δαm,l δm,k

)
,

for αm = 1, · · · ,m−1

−i
2

(
δαm−m+1,kδm,l −δαm−m+1,l δm,k

)

for αm = m, · · · ,2(m−1).

(2)

In the following sections, we set the range of indexes as
α1 = 1, · · · ,N − 1 and αm = 1, · · · ,2(m − 1) for
m= 2, · · · ,N. The abovesu(N) basis is the generalized
Gell-Mann matrices, and therefore, for the case ofN = 2
we get the Pauli matrices

L(1)
1 =

(
1 0
0 −1

)
, L(2)

1 =
1
2

(
0 1
1 0

)
, L(2)

2 =
1
2

(
0 −i
i 0

)
.

Also for N = 3 we get the usual Gell-Mann matrices

L(1)
1 = 1

2




1 0 0
0 −1 0
0 0 0


 , L(1)

2 = 1
2
√

3




1 0 0
0 1 0
0 0−2


 ,

L(2)
1 = 1

2




0 1 0
1 0 0
0 0 0


 , L(2)

2 = 1
2




0 −i 0
i 0 0
0 0 0


 ,

L(3)
1 = 1

2




0 0 1
0 0 0
1 0 0


 , L(3)

2 = 1
2




0 0 0
0 0 1
0 1 0


 ,

L(3)
3 = 1

2




0 0−i
0 0 0
i 0 0


 , L(3)

4 = 1
2




0 0 0
0 0−i
0 i 0


 .

3 Canonical coset parametrization of SU(N)
group

In this section we provide a parametrization forSU(N)
group that will be useful in calculating the differential
geometry on the group manifold. The parametrization is
based on the coset decomposition of unitary matrices.

3.1 Coset factorization of SU(N) group

For every elementU ∈ SU(N), there is a unique
decomposition ofU into a product ofN group elements as
[14]

U = Ω (N;N)Ω (N−1;N) · · ·Ω (2;N)Ω (1;N). (3)

In the above factorization we have

Ω (1;N) ∈ TN−1 (4)

where the(N−1)-dimensional torusTN−1 is the product
of N−1 spheresS1 = T1. A typical element forΩ (1;N) can
be represented as

Ω (1;N) = Exp(iη1L(1)
1 ) · · ·Exp(iηN−1L(1)

N−1), (5)

whereηα1 for α1 = 1, · · · ,N− 1 are real parameters and

L(1)
α1 are Cartan generators defined in equation (1). The

explicit form for Ω (1;N) can be expressed as

(Ω (1;N))k,l = δk,l Exp

(
−i

√
k−1
2k

ηk−1+ i
N−1

∑
j=k

η j√
2 j( j +1)

)
, (6)

with η0 = 0. Also in decomposition (3) we have the cosets

Ω (m;N) ∈ U(m)⊗TN−m

U(m−1)⊗TN−m+1 , m= 2, · · · ,N. (7)

A typical coset representativeΩ (m;N) can be written as

Ω (m;N) =

(
SU(m)/U(m−1) O

OT IN−m

)
, (8)
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whereO represents them× (N−m) zero matrix,OT is its
transpose andIN−m denotes the unit matrix of order(N−
m). The 2(m−1)-dimensional coset spaceSU(m)/U(m−
1) has the followingm×m matrix representation ([14],
page 351)



cos
√

B(m)[B(m)]† B(m) sin
√

[B(m)]†B(m)√
[B(m)]†B(m)

− sin
√

[B(m)]†B(m)√
[B(m)]†B(m)

[B(m)]† cos
√
[B(m)]†B(m)


 (9)

whereB(m) represents an(m−1)×1 complex matrix and
[B(m)]† is its adjoint.

3.2 Factorization of cosetΩ (m;N)

Now by parameterizing the complex vectorB(m) as (for
m= 2, · · · ,N)

B(m) = (γ(m)
1 eiξ (m)

1 ,γ(m)
2 eiξ (m)

2 , · · · ,γ(m)
m−1eiξ (m)

m−1)T ,

where γ(m)
i and ξ (m)

i are real numbers, the component
Ω (m;N) can be factorized as (form= 2, · · · ,N)

Ω (m;N) = X(m;N)R(m;N)X(m;N)†, (10)

where X(m;N) is a diagonalN × N phase matrix with

X(m;N)
k,l = δk,l exp(iξ (m)

k ) and ξ (m)
i = 0 for i ≥ m, and

R(m;N) is anN×N orthogonal matrix with the following
nonzero elements

R(m;N)
i, j = δi, j + γ̂(m)

i γ̂(m)
j (cosγ(m)−1)

for 1≤ i, j ≤ m−1

R(m;N)
i,m = −R(m;N)

m,i = γ̂(m)
i sinγ(m)

for 1≤ i ≤ m−1

R(m;N)
m,m = cosγ(m)

R(m;N)
i,i = 1 for m+1≤ i ≤ N, (11)

where we have defined γ̂(m)
i = γ(m)

i /γ(m) and

γ(m) =
√
[B(m)]†B(m) =

√
∑m−1

i=1 (γ(m)
i )2. As we will see

later the important ingredient of our approach in
computing the vector fields and one-forms is the
possibility of writing the factorization (10).

4 Differential geometry on SU(N)

In this section we will find differential operators
corresponding to the generators ofSU(N) group. To this

aim, we first defineχ(m)
αm (αm = 1,2, · · · ,2(m−1)) as the

2(m− 1) real parameters of the coset componentΩ (m;N)

(m= 2, · · · ,N) such that

χ(m)
αm =





γ(m)
αm for αm = 1, · · · ,m−1,

ξ (m)
αm−m+1 for αm = m, · · · ,2(m−1).

(12)

4.1 Left invariant vector fields and one-forms

Now in order to calculate left invariant vector fields, we
first take derivatives of the group elementU(ηα1,χ

(m)
αm )

with respect to each set of parametersηα1 andχ(m)
αm , and

write the result of differentiation as
∂

∂ηα1

U =UA(1)
α1 ,

∂
∂ χ(m)

αm

U =UA(m)
αm , (13)

where the matricesA(1)
α1 andA(m)

αm are defined by

A(1)
α1 =

[
Ω (1,N)† ∂Ω (1,N)

∂ηα1

]
= iL(1)

α1 (14)

A(m)
αm = W(m,N)†

[
∂Ω (m,N)

∂ χ(m)
αm

Ω (m,N)†
]

W(m,N) (15)

with

W(m;N) = Ω (m;N)Ω (m−1;N) · · ·Ω (2;N)Ω (1;N) (16)

and the anti Hermitian matrix

[
∂Ω (m,N)

∂γ(m)
αm

Ω (m,N)†
]

has the

following nonzero matrix elements
[

∂Ω (m,N)

∂γ(m)
αm

Ω (m,N)†
]

r<m,s<m

= ei(ξ (m)
r −ξ (m)

s )
(

cosγ−1
γ

)(
γ̂(m)
r δs,αm − γ̂(m)

s δr,αm

)

[
∂Ω (m,N)

∂γ(m)
αm

Ω (m,N)†
]

r<m,m

= eiξ (m)
r

(
γ̂(m)
r γ̂(m)

αm

(
δr,αm − γ̂(m)

r γ̂(m)
αm

)
sinγ

γ

)

[
∂Ω (m,N)

∂γ(m)
αm

Ω (m,N)†
]

m,r<m
=−

[
∂Ω (m,N)

∂γ(m)
αm

Ω (m,N)†
]∗

r<m,m

[
∂Ω (m,N)

∂γ(m)
αm

Ω (m,N)†
]

m,m
= 0,

(17)

and also the matrix

[
∂Ω (m;N)

∂ξ (m)
αm

Ω (m;N)†
]

defined by

[
∂Ω (m;N)

∂ξ (m)
αm

Ω (m;N)†
]

r,s

= iδr,αmδs,αm (18)

− iR(m;N)
r,αm R(m;N)

s,αm ei(ξ (m)
r −ξ (m)

s ).

The matricesA(1)
α1 and A(m)

αm can be expanded as a linear
combination of the Lie algebra basis (1) and (2) as follows

A(1)
α1 =

N−1

∑
β1=1

a(1,1)α1,β1
L(1)

β1
+

N

∑
m′=2

2(m′−1)

∑
βm′=1

a(1,m
′)

α1,βm′ L
(m′)
βm′ , (19)

A(m)
αm =

N−1

∑
β1=1

a(m,1)
αm,β1

L(1)
β1

+
N

∑
m′=2

2(m′−1)

∑
βm′=1

a(m,m′)
αm,βm′ L

(m′)
βm′ . (20)
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The coefficients of the above expansion can be obtained
from the orthogonality of the generators of the Lie algebra.
We obtain the following results

a(1,1)α1,β1
= iδα1,β1

(21)

a(1,m)
α1,βm

= 0 (22)

a(m,1)
αm,β1

=
2√

2β1(β1+1)
(23)

×
(

β1

∑
j=1

(
A(m)

αm

)
j j
−β1

(
A(m)

αm

)
β1+1,β1+1

)

a(m,m′)
αm,βm′ =

((
A(m)

αm

)
m′,βm′

+
(

A(m)
αm

)
βm′ ,m′

)
(24)

for βm′ = 1, · · · ,m−1,

a(m,m′)
αm,βm′ = −i

((
A(m)

αm

)
m′,βm′

−
(

A(m)
αm

)
βm′ ,m′

)
(25)

for βm′ = m′, · · · ,2(m−1)

Therefore by choosing the following order for coordinates

{η1, · · · ,ηN−1};{γ(2)1 ,ξ (2)
1 };{γ(3)1 ,γ(3)2 ,ξ (3)

1 ,ξ (3)
2 }; (26)

· · · ;{γ(N)
1 , · · · ,γ(N)

N−1,ξ
(N)
1 , · · · ,ξ (N)

N−1}.
we can define the matrixA by

A=




a(1,1)α1,β1
a(1,2)α1,β2

a(1,3)α1,β3
· · · a(1,N)

α1,βN

a(2,1)α2,β1
a(2,2)α2,β2

a(2,3)α2,β3
· · · a(2,N)

α2,βN

a(3,1)α3,β1
a(3,2)α3,β2

a(3,3)α3,β3
· · · a(3,N)

α3,βN
...

...
...

. . .
...

a(N,1)
αN,β1

a(N,2)
αN,β2

a(N,3)
αN,β3

· · · a(N,N)
αN,βN




. (27)

With the help of this matrix the differential operators are
related to the Lie algebra generators as follows



∂/∂ηα1

∂/∂ χ(m)
αm


= A




L(1)
β1

L(m′)
βm′


 . (28)

Now by tacking inverse of the matrixA, the left invariant
vector fields onSU(N) group can be obtained by the
following equation



Λ (1)
β1

Λ (m′)
βm′


= A−1




∂/∂ηα1

∂/∂ χ(m)
αm


 . (29)

Now in order to calculate the left invariant one-forms,
we first expand them in terms of the basis dηβ1

and dχ(m)
βm

ω(1)
α1 =

N−1

∑
β1=1

c(1,1)α1,β1
dηβ1

+
N

∑
m′=2

2(m′−1)

∑
βm′=1

c(1,m
′)

α1,βm′ dχ(m′)
βm′ , (30)

ω(m)
αm =

N−1

∑
β1=1

c(m,1)
αm,β1

dηβ1
+

N

∑
m′=2

2(m′−1)

∑
βm′=1

c(m,m′)
αm,βm′ dχ(m′)

βm′ . (31)

By using the fact that left invariant one-forms are dual to
the left invariant vector fields, i.e.

(ω(1)
α1 ,Λ

(1)
α ′

1
) = δα1,α ′

1
, (ω(1)

α1 ,Λ
(m)
αm ) = 0,

(ω(m)
ααm

,Λ (1)
α ′

1
) = 0, (ω(m)

αm ,Λ (m′)
α ′

m′ ) = δαm,α ′
m′ δm,m′ ,

we find thatCT(A−1) = I and therefore, we haveC = AT .
Consequently, the left invariant one-forms are obtained by
tacking the transpose of the matrixA, i.e.



ω(1)
β1

ω(m′)
βm′


= AT




dηα1

dχ(m)
αm


 . (32)

4.2 Right invariant vector fields and one-forms

Now in order to calculate right invariant vector fields, we

first take derivatives of the group elementU(ηα1,χ
(m)
αm )

with respect to each set of parametersηα1 andχ(m)
αm , and

write the result of differentiation as

∂
∂ηα1

U = Ã(1)
α1 U,

∂
∂ χ(m)

αm

U = Ã(m)
αm U, (33)

where the matrices̃A(1)
α1 andÃ(m)

αm are defined by

Ã(1)
α1 = W̃(1,N)

[
∂Ω (1,N)

∂ηα1

Ω (1,N)†
]

W̃(1,N)† (34)

Ã(m)
αm = W̃(m,N)

[
∂Ω (m,N)

∂ χ(m)
αm

Ω (m,N)†
]

W̃(m,N)†, (35)

with

W̃(k;N)=Ω (N;N)Ω (N−1;N)· · ·Ω (k+1;N)=UW(k;N)†, (36)

and
[

∂Ω (1,N)

∂ηα1

Ω (1,N)†
]
=

[
Ω (1,N)† ∂Ω (1,N)

∂ηα1

]
= iL(1)

α1 ,

and the anti Hermitian matrix

[
∂Ω (m,N)

∂γ(m)
αm

Ω (m,N)†
]

has

defined in equation (17). The matrices̃A(1)
α1 and Ã(m)

αm can
be expanded as a linear combination of the Lie algebra

Ã(1)
α1 =

N−1

∑
β1=1

ã(1,1)α1,β1
L(1)

β1
+

N

∑
m′=2

2(m′−1)

∑
βm′=1

ã(1,m
′)

α1,βm′ L
(m′)
βm′ , (37)

Ã(m)
αm =

N−1

∑
β1=1

ã(m,1)
αm,β1

L(1)
β1
+

N

∑
m′=2

2(m′−1)

∑
βm′=1

ã(m,m′)
αm,βm′ L

(m′)
βm′ . (38)

The coefficients of the above expansion can be obtained
from the orthogonality of the generators of the Lie algebra.
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We obtain the following results

ã(1,1)α1,β1
=

2√
2β1(β1+1)

(39)

×
(

β1

∑
j=1

(
Ã(1)

α1

)
j j
−β1

(
Ã(1)

α1

)
β1+1,β1+1

)

ã(1,m)
α1,βm

=

((
Ã(1)

α1

)
m,βm

+
(

Ã(1)
α1

)
βm,m

)
(40)

for βm = 1, · · · ,m−1

ã(1,m)
α1,βm

= −i

((
Ã(1)

α1

)
m,βm

−
(

Ã(1)
α1

)
βm,m

)
(41)

for βm = m, · · · ,2(m−1)

ã(m,1)
αm,β1

=
2√

2β1(β1+1)
(42)

×
(

β1

∑
j=1

(
Ã(m)

αm

)
j j
−β1

(
Ã(m)

αm

)
β1+1,β1+1

)

ã(m,m′)
αm,βm′ =

((
Ã(m)

αm

)
m′,βm′

+
(

Ã(m)
αm

)
βm′ ,m′

)
(43)

for βm′ = 1, · · · ,m−1

ã(m,m′)
αm,βm′ = −i

((
Ã(m)

αm

)
m′,βm′

−
(

Ã(m)
αm

)
βm′ ,m′

)
(44)

for βm′ = m′, · · · ,2(m−1)
By choosing the coordinates order given in (26), we get
the following representation for matrix̃A

Ã=




ã(1,1)α1,β1
ã(1,2)α1,β2

ã(1,3)α1,β3
· · · ã(1,N)

α1,βN

ã(2,1)α2,β1
ã(2,2)α2,β2

ã(2,3)α2,β3
· · · ã(2,N)

α2,βN

ã(3,1)α3,β1
ã(3,2)α3,β2

ã(3,3)α3,β3
· · · ã(3,N)

α3,βN
...

...
...

. ..
...

ã(N,1)
αN,β1

ã(N,2)
αN,β2

ã(N,3)
αN,β3

· · · ã(N,N)
αN,βN




, (45)

where can be used to write the differential operators in
terms of the Lie algebra generators as



∂/∂ηα1

∂/∂ χ(m)
αm


= Ã




L(1)
β1

L(m′)
βm′


 . (46)

Consequently, the right invariant vector fields on the
SU(N) group can be obtained by the following



Λ̃ (1)
β1

Λ̃ (m′)
βm′


= Ã−1




∂/∂ηα1

∂/∂ χ(m)
αm


 . (47)

Finally, similar to the case of left invariant one-forms by
definingÃT as the transpose of̃A, the right invariant one-
forms can be written as


ω̃(1)
β1

ω̃(m′)
βm′


= ÃT




dηα1

dχ(m)
αm


 . (48)

4.3 Invariant integration measure

Invariant measure, or Haar measure, on theSU(N)
manifold can be obtained by tacking the wedge product of
the left or right invariant one-forms. The result is, of
course, equivalent by tacking the determinant of the
matrix A (or matrix Ã because of the fact that left and
right invariant measures onSU(N) are equal), where we
get

dµ [SU(N)] = Det(A)
N−1

∏
α1=1

dηα1

N

∏
m=2

m−1

∏
αm=1

dγαmdξαm.

5 An example: The SU(2) group

In this section we consider for more illustration the case
of N = 2 explicitly. In this particular case we have three

parametersη1, γ(2)1 and ξ (2)
1 , where for the sake of

simplicity we set them asη , γ andξ respectively. In this
case we see that

Ω (2;2) =

(
cosγ eiξ sinγ

−e−iξ sinγ cosγ

)
,

Ω (1;2) =

(
eiη/2 0

0 e−iη/2

)
,

and therefore

W(2,2) =

(
cosγeiη/2 ei(ξ−η/2) sinγ

−e−i(ξ−η/2) sinγ cosγe−iη/2

)
,

We also find

A(2)
1 =

(
0 ei(ξ−η)

−e−i(ξ−η) 0

)
,

A(2)
2 =

(
−i sin2 γ i sinγ cosγei(ξ−η)

i sinγ cosγe−i(ξ−η) i sin2 γ

)
.

where can be used to write the matrixA as

A=




i 0 0
0 2i sinζ 2i cosζ

−i(1−cos2γ) i sin2γ cosζ −i sin2γ sinζ


 ,

with the following inverse

A−1 =




−i 0 0
−i cosζ tanγ − i

2 sinζ −i cosζ csc2γ
i sinζ tanγ − i

2 cosζ i sinζ csc2γ


 ,

where we have usedζ = ξ −η . These two matrices can be
used to obtain the left invariant vector fields as

Λ (1)
1 = −i

∂
∂η

,

Λ (2)
1 = −i cosζ tanγ

∂
∂η

− i
2

sinζ
∂
∂γ

− i cosζ csc2γ
∂

∂ξ

Λ (2)
2 = i sinζ tanγ

∂
∂η

− i
2

cosζ
∂
∂γ

+ i sinζ csc2γ
∂

∂ξ
,
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and the left invariant one-forms as follows

ω(1)
1 = idη − i(1−cos2γ)dξ ,

ω(2)
1 = 2i sinζdγ + i sin2γ cosζdξ ,

ω(2)
2 = 2i cosζdγ − i sin2γ sinζdξ .

For calculation of the right invariant vector fields we
note that in this particular case we havẽW(1;2) = Ω (2;2)

andW̃(2;2) = I, and therefore we find

Ã(1)
1 =

(
i
2 cos2γ −i

2 sin2γeiξ

−i
2 sin2γe−iξ −i

2 cos2γ

)
,

Ã(2)
1 =

(
0 eiξ

−e−iξ 0

)
,

Ã(2)
2 =

(
i sin2 γ i sinγ cosγeiξ

−i sinγ cosγe−iξ −i sin2 γ

)
.

We then obtain the matrix̃A and its inversẽA−1 as

Ã=




i cos2γ −i sin2γ cosξ i sin2γ sinξ
0 2i sinξ 2i cosξ

i(1−cos2γ) i sin2γ cosξ −i sin2γ sinξ


 ,

and

Ã−1 =




−i 0 −i
i cosξ tanγ − i

2 sinξ −i cosξ cot2γ
−i sinξ tanγ − i

2 cosξ i sinξ cot2γ


 ,

where can be used to obtain the right invariant vector fields

Λ̃ (1)
1 = −i

∂
∂η

− i
∂

∂ξ
,

Λ̃ (2)
1 = i cosξ tanγ

∂
∂η

− i
2

sinξ
∂
∂γ

− i cosξ cot2γ
∂

∂ξ
,

Λ̃ (2)
2 = −i sinξ tanγ

∂
∂η

− i
2

cosξ
∂
∂γ

+ i sinξ cot2γ
∂

∂ξ
,

and the right invariant one-forms

ω̃(1)
1 = i cos2γdη + i(1−cos2γ)dξ ,

ω̃(2)
1 = −i sin2γ cosξdη +2i sinξdγ + i sin2γ cosξdξ ,

ω̃(2)
2 = i sin2γ sinξdη +2i cosξdγ − i sin2γ sinξdξ .

Finally, the invariant measure of this group are also
obtained as

dµ [SU(2)] = 2sin2γdηdγdξ .

6 Conclusion

In this paper we present a method for explicit calculation
of the left and right invariant vector fields and one-forms
on SU(N) manifold. The calculations are based on the
coset parametrization of the unitary groupSU(N). It is
shown that in the canonical coset parametrization, the
invariant measure on the group manifold is decomposed
as the product of the invariant measure on the constitute

cosets. The advantage of this approach is the possibility
of calculating explicitly the differential geometry on
SU(N) for everyN, in the sense that by knowingN, it is
enough to construct the matrixA and then taking the
transpose and inverse of this matrix, which are not
difficult task to handle. As an illustrative example we
calculate explicitly, the differential structure onSU(2)
group.
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