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Abstract: In conventional Vector Taylor Series (VTS) based noisy speech recognition methods, Hidden Markov Models (HMMs)
are trained using clean speech, and the parameters of the clean speechHMM are adapted to test noisy speech, or the original clean
speech is estimated from the test noisy speech. However, these approaches have a drawback in that acoustic models trained using
noisy speech cannot be used in recognition. In noisy speech recognition, improved performance is generally expected by employing
noisy acoustic models produced by methods such as Multi-condition Training (MTR) and Multi-Model-based Speech Recognition
framework (MMSR). Motivated by this idea, a method has been developed that can make use of the noisy acoustic models in the
VTS algorithm where additive noise was adapted for the speech feature compensation. In this paper, we modified the previous method
to adapt channel noise as well as additive noise. A mathematical relation was derived in the log-spectrum domain between the test
and training noisy speech considering both channel and additive noise.After approximating the relation using VTS, Minimum Mean
Square Error (MMSE) estimation of the training noisy speech is obtained from the test noisy speech based on the relation. The proposed
method was applied to noisy speech HMMs trained by MTR and MMSR and could reduce the relative word error rate by 7% and 8%,
respectively, in the noisy speech recognition experiments on the Aurora2 database.
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1 Introduction

Despite many technical advances, accurate speech
recognition in noisy environments still remains a difficult
problem. The techniques cannot fully overcome the
performance degradation caused by channel and additive
noise. Broadly categorized, there are two different
approaches used to improve the performance in noisy
speech recognition. In one of the approaches, test noisy
speech or trained acoustic models are compensated to
reduce the mismatch between them [1,2,3,4,5]. In
particular, compensation based on VTS has been known
to perform quite well in noisy conditions [6,7,8,9].

In another approach, noisy speech was directly used
to produce noisy speech HMMs during training [10,11,
12]. MTR [13] and MMSR [14,15] are representatives of
this approach. The environment-dependent HMMs make
it possible to cope with test noisy speech without any
compensation algorithm. In the MTR method, noisy
speech signals under various noise conditions are
collected and used for training the HMM. MMSR was
recently proposed to improve the sharpness of probability

density functions in acoustic models of MTR, and
successful results using MMSR were demonstrated [14,
15,16]. In contrast to MTR, where a single HMM set is
constructed, multiple HMM sets corresponding to various
noise types and signal-to-noise ratio (SNR) values are
produced during training, and a single HMM set which is
closest to test noisy speech among multiple HMM sets is
selected for recognition.

Although the noisy speech HMM performs rather
well by itself, its performance would be improved further
by applying compensation. In a previous study, a novel
mathematical relation between test and training noisy
speech was derived in the log-spectrum domain [16].
After approximating the relation using VTS, the
performance of the noisy speech HMM could be
improved by compensating the feature vectors of the test
noisy speech. The MMSE estimation of training noisy
speech (not clean speech) conditioned on the test noisy
speech was used for recognition, which could further
reduce the mismatch between the test noisy speech and
the acoustic models of the noisy speech HMM. However,
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in the previous study, the channel noise was not
considered in the compensation, which probably had a
negative effect on improving the performance on Set C of
the Aurora 2 database. In this study, the previous
algorithm was modified to compensate the test noisy
speech considering both the channel and additive noise.
The detailed mathematical formulation is derived, and
MTR as well as MMSR are used for producing the noisy
speech HMM.

This paper is organized as follows. A review on MTR
and MMSR is presented in Section 2, and compensation
of the test noisy speech based on the noisy speech HMM
is described in Section 3. The experimental procedure and
results are presented and discussed in Section 4. Finally,
conclusions are given in Section 5.

2 Training of Noisy Speech HMMs

In this study, both MTR and MMSR are used to produce
the noisy speech HMM. Although MMSR is known to
have some advantages over the MTR method [14,15], it is
rather controversial regarding which method is better in
performance for noisy speech recognition. In this regard,
both methods will be used to find the more appropriate
one in the proposed feature-compensation method.

In Figure1, a schematic diagram of MTR and MMSR
for training noisy speech HMMs is shown. In MTR, a
collection of noisy speech signals with various noise
types (Subway, Babble, Car, Exhibition) and SNR values
(0, 5, 10, 15, 20 and dB) is used to construct a single set
of noisy speech HMM. In MMSR, multiple HMM sets
are constructed, and each of them corresponds to a
different noise type (Subway, Babble, Car, Exhibition)
and SNR value (0-30 dB in 2 dB intervals). A single
HMM set which is closest to the test noisy speech is
selected for recognition based on the estimated SNR
value and noise type of the test speech. Since MTR
method combines a number of noise conditions to train a
single HMM set, it tends to reduce the phonetic sharpness
of the acoustic models in their probability density
functions of the HMM. MMSR method can overcome the
weakness of MTR by choosing a specific single HMM set
which is most appropriate to the test noisy speech.
However, the errors in selecting the closest HMM set will
incur misrecognition, causing performance degradation in
the MMSR.

3 Feature Compensation in the Presence of
Channel Noise

Unlike the pervious study [16] where only additive noise
is assumed to exist, we derive, in this paper, a speech
feature compensation method assuming that there is also
channel noise in the test speech. The relation between
training and test noisy speech is first derived in

Fig. 1: A Schematic diagram of training noisy speech HMMs (a)
MTR (b) MMSR

Fig. 2: Block diagram of the proposed feature compensation
method

log-spectrum domain. Since the relation is non-linear, it is
approximated using the VTS to obtain the mean vectors
and covariance matrices of the test noisy speech given the
statistics of training noisy speech obtained during the
training. The statistics of the test noisy speech are used to
obtain MMSE estimation of the training noisy speech,
which is used as a feature vector for recognition after
Discrete Cosine Transformation (DCT). The block
diagram of the whole process is shown in Figure2. A
more detailed explanation of this process is given in the
next subsections.
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3.1 Relation Between Test and Training Noisy
Speech in Log-Spectrum Domain

Assuming that channel noise is present in the test noisy
speech, log-spectrum vectorx of the clean speech and y of
the noisy speech are related as follows:

y = x+h+ log(i +exp(n−x−h)) (1)

wheren andh are the log-spectrum vector of additive and
convolution noise, respectively, andi is a unity vector.
Based on Equation (1), the log-spectrum vectory of the
test noisy speech andyTr of the training noisy speech can
be expressed as follows, assuming that there is no channel
noise in the training noisy speech for the convenience of
analysis:

yTr = x+g0(x,nTr) (2)

y = x+h+g(x,n,h) (3)

g0(x,nTr) = log(i +exp(nTr −x)) (4)

g(x,n,h) = log(i +exp(n−x−h)) (5)

wheren andnTr represent the additive noise contained in
the test and training noisy speech, respectively.nTr is
determined during training, andn is estimated using test
noisy speech in recognition.

By combining Equations (2) and (3), the test noisy
speech y can be expressed in terms of the training noisy
speechyTr as follows:

y = yTr +h+g(x,n,h)−g0(x,nTr) (6)

[g(x,n,h)−g0(x,nTr)]i = log

(

[i +exp(n−x−h)]i
[i +exp(nTr −x)]i

)

= log

(

[exp(x)+exp(n−h)]i
[exp(x)+exp(nTr)]i

)

(7)
Here,[·]i represents the i-th element of a vector.

From Equations (2) and (4),

yTr = x+ log(i +exp(nTr −x)) (8)

Taking the exponential of both sides of Equation (8),

exp(x) = exp(yTr)−exp(nTr) (9)

Substituting (9) into (7),
[g(x,n,h)−g0(x,nTr)]i

= log

(

[exp(yTr)−exp(nTr)+exp(n−h)]i
[exp(yTr)]i

)

= [log(i +exp(n−h−yTr)−exp(nTr −yTr))]i
= [G(yTr,n,h,nTr)]i (10)

If Equation (10) is substituted back into Equation (6), the
relation between log-spectrum vectors of the test and
training noisy speech can be obtained as follows:
y = yTr +G(yTr,n,h,nTr) = yTr +h
+ log(i +exp(n−h−yTr)−exp(nTr −yTr)) (11)

3.2 Estimating Statistics of Test Noisy Speech

From Equation (11), the mean and covariance of the test
noisy speechy can be estimated. Equation (11) is
expanded using a first-order VTS around the initial value
n0 h0 of n ,h and the mean of the training noisy speech
µyTr = E{yTr} to obtain the following equation.nTr is
assumed to be fixed.

y = yTr +h + G(µyTr ,n0,h0,nTr)

+ ▽yTr
G(µyTr ,n0,h0,nTr)(yTr −µyTr)

+ ▽nG(µyTr ,n0,h0,nTr)(n−n0)

+ ▽hG(µyTr ,n0,h0,nTr)(h−h0) (12)

[

▽yTr
G(µyTr ,n0,h0,nTr)

]

ii
=

[exp(nTr)−exp(n0−h0)]i
[exp(µyTr)+exp(n0−h0)−exp(nTr)]i

(13)

[▽nG(µyTr ,n0,h0,nTr)]ii =

[exp(n0−h0)]i
[exp(µyTr)+exp(n0−h0)−exp(nTr)]i

(14)

[▽hG(µyTr ,n0,h0,nTr)]ii =

− [▽nG(µyTr ,n0,h0,nTr)]ii(15)

Here,[·]ii represents the i-th diagonal element of a matrix.
Using Equation (12), the meanµy and covarianceσy of
the test noisy speechy can be expressed from the mean
µyTr and covarianceσyTr of the training noisy speechyTr
as follows:

µy = µyTr +h + G(µyTr ,n0,h0,nTr)

+ ▽nG(µyTr ,n0,h0,nTr)(n−n0)

+ ▽hG(µyTr ,n0,h0,nTr)(h−h0) (16)

σy =
(

I +▽yTr
G(µyTr ,n0,h0,nTr)

)

σyTr

·
(

I +▽yTr
G(µyTr ,n0,h0,nTr)

)T
(17)

3.3 Estimation of Noise Parameter

The training noisy speech vectorσyTr is assumed to be
distributed as a mixture of Gaussians with mean vectors
and covariance matrices obtained through a vector
quantization (VQ) process. The mixture Gaussian
distribution is separately estimated for each noisy type
and the SNR value using the same noisy training data to
produce the multiple HMM sets in MMSR. Assuming
also that the log-spectrum vectory of the test noisy
speech is a mixture of Gaussians, the distribution ofy as a
function of unknown noise vectorn,h can be defined as
follows using Equation (16) and (17),

p(y|n,h) =
M

∑
m=1

pmN(µy,m,σy,m) (18)
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where N(µy,m,σy,m) is the m-th Gaussian distribution
with a mean vectorµy,m and covariance matrixσy,m. pm is
the mixture weight of the m-th component. Note that the
mean vector µy,m and covariance matrixσy,m are
themselves fully parameterized by the noise vectorsn and
h, which are treated just as parameters, not random
variables; only the noisy speech vectors were treated as
random variables.

Given a sequence of log-spectrum vectors for the test
noisy speechY = {y1,y2, · · ·yT}, the log-likelihood for the
sequence is defined as follows using Equation (18):

L(Y|n,h) =
T

∑
t=1

logp(yt |n,h) (19)

An iterative Expectation Maximization (EM) algorithm is
used to re-estimate the noise vectorψ = {n,h} by
maximizing Equation (19). In the EM algorithm, an
auxiliary functionQ(ψ, ψ̄) is written as follows:

Q(ψ, ψ̄) = E{L(Y|ψ̄)|Y,ψ}

=
T

∑
t=1

M

∑
m=1

p(m|yt ,n,h) logp(yt ,m|n̄, h̄) (20)

The symbolψ represents the noise vectorn,h , which is
already known, and̄ψ is the unknown noise vector̄n, h̄,
which should be estimated.Q(ψ, ψ̄) can be expanded as:

Q(ψ, ψ̄) =
T

∑
t=1

M

∑
m=1

p(m|yt ,n,h)[logpm +
D
2

log2π

−
D
2

log|σy,m|−
1
2
(yt − µ̄y,m)

T σ−1
y,m(yt − µ̄y,m)]

µ̄y,m = µyTr ,m + h̄+G(µyTr ,m,n0,h0,nTr)

+▽nG(µyTr ,m,n0,h0,nTr)(n̄−n0)

+▽hG(µyTr ,m,n0,h0,nTr)(h̄−h0) (21)

Next, to re-estimaten,h in Equation (21), the derivative of
the auxiliary function with respect tōn, h̄ must be taken
and set equal to 0.

▽n̄Q(ψ, ψ̄) =
T

∑
t=1

M

∑
m=1

p(m|yt ,n,h) ·

[▽nG(µyTr ,m,n0,h0,nTr)
T σ−1

y,m(yt − µ̄y,m)] = 0

n̄ = [
T

∑
t=1

M

∑
m=1

p(m|yt ,n,h)▽nG(·)T σ−1
y,m▽nG(·)]−1 ·

[
T

∑
t=1

M

∑
m=1

p(m|yt ,n,h)▽nG(·)T σ−1
y,m(yt − (µyTr ,m

+h̄+G(·)−▽nG(·)n0+▽hG(·)(h̄−h0))] (22)

▽h̄Q(ψ, ψ̄) =
T

∑
t=1

M

∑
m=1

p(m|yt ,n,h) ·

[I +▽hG(µyTr ,m,n0,h0,nTr)
T σ−1

y,m(yt − µ̄y,m)] = 0

h̄ = [
T

∑
t=1

M

∑
m=1

p(m|yt ,n,h) ·

(I +▽hG(·))T σ−1
y,m(I +▽hG(·))]−1

[
T

∑
t=1

M

∑
m=1

p(m|yt ,n,h)(I +▽hG(·)T σ−1
y,m(yt − (µyTr,m

+G(·)+▽nG(·)(n̄−n0)−▽hG(·)h0))] (23)

G(·)≡ G(µyTr ,m,n0,h0,nTr) (24)

The noise vector̄n, h̄ derived from Equations (22) and
(23) is substituted inton,h in Equations (16) and (17) to
adapt the mean and covariance of the test noisy speech.
The likelihood function from Equation (19) and the
auxiliary function from Equation (20) are consequently
updated. This process is iterated until the log-likelihood
function from Equation (19) converges. After the
convergence, an MMSE estimation of the training noisy
speech is performed and used for recognition.

3.4 MMSE of Training Noisy Speech

The MMSE of training speechyTr given the test speechy
is expressed as follows:

ŷTr,MMSE = E(yTr |y) =
∫

yTr p(yTr|y)dyTr (25)

From Equation (11),

yTr = y−h−G(yTr,n,h,nTr) (26)

Substituting Equation (26) into (25) and
approximatingG(yTr,n,h,nTr) by a VTS of order zero
aroundµyTr ,m, the following relationship is obtained:

ŷTr,MMSE = y−h−
∫

G(yTr,n,h,nTr)p(yTr|y)dyTr

= y−h−

∫ M

∑
m=1

G(yTr,n,h,nTr)p(yTr,m|y)dyTr

= y−h−
M

∑
m=1

p(m|y)
∫

G(yTr,n,h,nTr)p(yTr|m,y)dyTr

∼= y−h−
M

∑
m=1

p(m|y)G(µTr,m,n,h,nTr) (27)

The DCT of the log-spectrum vectorŷTr,MMSE is taken
to find a 13th-order cepstrum vector. The c0 component in
the cepstrum vector is replaced with log-energy. The delta
and acceleration (delta-delta) coefficients of the cepstrum
vector are also calculated to obtain a 39-dimentional
feature vector which is used for the speech recognition
experiments described in the next section.
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4 Experiments and Results

To verify the effectiveness of the proposed feature
compensation method, experiments were conducted on
the Aurora 2 database. The MTR training data consists of
clean and noisy speech signals contaminated by various
kinds of noise signals (Subway, Babble, Car, Exhibition)
with SNR ranges from 0 to 20 dB in 5 dB intervals. New
noisy speech data was additionally generated for MMSR
training, which consists of noisy speech signals with the 4
noise types (Subway, Babble, Car, Exhibition) and SNR
values from 0 to 30 dB in 2 dB intervals.

Three test sets (Set A, Set B, Set C) are used for
recognition experiments. They are corrupted by a range of
noise types with SNRs of -5, 0, 5, 10, 15, and 20 dB. Set
A is corrupted by additive noise whose types (Subway,
Babble, Car, Exhibition) are known during training, while
Set B is corrupted with unknown types (Restaurant,
Street, Airport, Train Station) of additive noises, and Set
C is corrupted by a combination of convolution and
additive noise (Subway, Street).

For the feature vector, a noise-robust version of
Mel-Frequency Cepstral Coefficients (MFCCs) called
AFE (Advanced Front-End) was used. AFE is known to
significantly reduce the word error rates in noisy speech
recognition [17]. The 12th-order MFCCs with the
0th-order cepstral coefficient set aside are appended with
the log-energy to form a 13th order basic feature vector
along with their delta and acceleration coefficients to
construct a 39th-order feature vector for each frame.

The acoustic models were trained using both the
Complex Back End (CBE) and Simple Back End (SBE)
scripts, which are each separately defined for the Aurora
2 database. For the SBE model, the HMM for each digit
consists of 16 states with 3 Gaussian mixtures in each
state. In addition, a three-state silence model with 6
Gaussian mixtures per state and a one-state pause model
tied with the center state of the silence model are used.
For the CBE, the number of mixtures in each state is
increased to 20 and 36 for the digit and silence models,
respectively. The hidden Markov model toolkit (HTK)
was employed to train and test the HMM used in this
study [18].

Table 1 shows the word error rates (WERs) of the
proposed feature compensation method in comparison
with the conventional methods for the Aurora 2 database.
MTR-MMSE/MMSR-MMSE are methods in our
previous study [16], where only additive noise is adapted
for the speech feature compensation while channel noise
is additionally compensated in the proposed
MTR-MMSE+H/MMSR-MMSE+H. MTR-MMSE and
MMSR-MMSE differ in the type of noisy speech HMM
used for compensation.

Conventional MTR and MMSR method improve the
performance of the baseline system which was trained
using clean speech data. The baseline system scores
12.97% WER on average, whereas MTR and MMSR
achieve WERs of 8.22 % and 8.17%, respectively.

Table 1: WERs (%) of the proposed feature compensation
methods using SBE models compared to conventional methods
for Aurora 2 database

Method Set A Set B Set C Ave.
Baseline 12.25 12.90 14.56 12.97
MTR 7.70 8.23 9.26 8.22
MMSR 6.78 9.56 8.17 8.17
MTR-MMSE 7.54 7.75 9.18 7.95
(additive noise)
MTR-MMSE+H 7.61 7.52 8.45 7.74
(additive+
channel noise)
MMSR-MMSE 6.71 8.98 7.92 7.86
(additive noise )
MMSR-MMSE+H 6.61 8.67 7.60 7.63
(additive+
channel noise)

Although MMSR performs slightly better than MTR,
their difference is minor.

By using the feature compensation, the performance
of MTR and MMSR could be improved further. As shown
in Table 1, MTR-MMSE and MMSR-MMSE achieve
7.95% and 7.86% average WERs by adapting the additive
noise, providing 3.3% and 3.8% relative improvement
over MTR and MMSR, respectively. By additionally
compensating the channel noise, we could further
improve the recognition performance of the
MTR-MMSE/MMSR-MMSE. As shown in the table,
MTR-MMSE+H achieve 7.74% average WER further
reducing the WER of MTR-MMSE. This is mainly due to
the significant performance improvement in Set C.
Similar results have been also found in
MMSR-MMSE+H as shown in Table1

Figure 3 shows the relative improvement (%)
achieved by proposed methods over MTR and MMSR.
The figure shows that the improvement is more prominent
for Set B and Set C than for Set A. This is expected
because the acoustic mismatch between the test noisy
speech and the noisy speech HMM is greater for Set B
and Set C than for Set A. For example, since the acoustic
mismatch is very small for Set A in the MMSR, the
smallest relative improvement of just 1% is achieved by
the MMSR-MMSE.

When only additive noise is adapted, the relative
improvement is more prominent in Set B than Set A and
Set C. Since Set A has similar acoustic characteristic to
the noisy speech HMMs, the noise adaptation could not
have much impact on improving the recognition
performance. Also, the channel mismatch in Set C cannot
be overcome by just compensating the additive noise.

When the channel noise is additionally adapted in the
MTR-MMSE+H, we can observe significant performance
improvement in Set C as expected. While MTR-MMSE
could achieve the relative improvement of about 1% over
MTR for Set C, it increases nearly to 9% in the
MTR-MMSE+H. Similar result was also observed when
applying the channel adaptation to MMSR. Meanwhile,
we could also see some performance improvement in Set
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Fig. 3: Relative Improvement (%) in WERs achieved
by MTR-MMSE/MTR-MMSE+H and MMSR-MMSE/MMSR-
MMSE+H over MTR and MMSE, respectively, when using SBE
models.

Table 2: WERs (%) of the proposed feature compensation
methods using CBE models compared to conventional methods
for Aurora 2 database.

Method Set A Set B Set C Ave.
Baseline 11.58 12.10 13.68 12.20
MTR 6.04 6.82 7.22 6.59
MMSR 6.17 9.0 7.97 7.66
MTR-MMSE 5.9 6.33 7.11 6.31
(additive noise)
MTR-MMSE+H 5.92 6.23 6.37 6.13
(additive+
channel noise)
MMSR-MMSE 5.86 8.17 7.72 7.16
(additive noise )
MMSR-MMSE+H 5.84 8.03 7.51 7.05
(additive+
channel noise)

B when applying the channel compensation, although it is
not as significant as in Set C. The use of channel
parameterh in the compensation algorithm seems to
contribute to reduce the noise type mismatch in some
degree.

The proposed methods were also applied to the noisy
speech HMM trained with the CBE script to verify
whether the proposed method could work well when the
acoustic modeling becomes more complex. In Table2, we
can observe significant performance improvement when
using the CBE script compared with the SBE script and it
is more prominent in MTR than MMSR. The increased
number of mixtures in each state of the HMM may have
greatly contributed to sharpening the acoustic modeling in
MTR. Although MMSR had comparable performance
with MTR in the SBE script, MTR significantly
outperforms MMSR in the CBE script. Figure4 shows
the relative improvement of the Baseline, MTR, and
MMSR in the CBE script over SBE script. MTR has a
large reduction in WER (19.8%) compared with the other
methods (Baseline: 5.9%, MMSR: 6.2%).

As in the SBE script, the performance of MTR and
MMSR with the CBE script could be further improved by

Fig. 4: Relative improvement in WERs (%) of CBE models over
SBE models.

compensating the additive noise. As shown in Table2,
MTR-MMSE achieves 6.31% WER, providing 4.24%
relative improvement over MTR. Similarly,
MMSR-MMSE also show improved performance over
MMSR. Since MTR outperforms MMSR in the CBE
script, the WER of MTR-MMSE (6.31%) is shown to be
much smaller than MMSR-MMSE (7.16%).

We can also obtain additional performance gain by
applying the channel compensation in the CBE script.
MTR-MMSE+H achieve 6.37% WER in Set C which
compares to 7.11% WER by the MTR-MMSE. Similarly,
MMSR-MMSE+H achieve 7.51% WER for Set C
compared with 7.72% WER by the MMSR-MMSE.
These improvements in Set C lead to the overall
performance gain in MTR-MMSE+H (6.13% WER) and
MMSR-MMSE+H (7.05% WER) compared with
MTR-MMSE (6.31% WER) and MMSR-MMSE
(7.16%), respectively.

Figure5 shows the relative improvement achieved by
the feature compensation methods over MTR and MMSR
in the CBE script. The overall performance trend is
similar to the SBE script in Figure3. The performance
improvement is more significant for Set B and Set C than
for Set A. MTR-MMSE and MMSR-MMSE are shown to
be very effective in improving the performance in Set B.
MTR-MMSE+H and MMSR-MMSE+H could achieve
significant performance improvement in Set C by
adapting the channel noise in addition to the additive
noise. Although the performance of MMSR-MMSE and
MMSR-MMSE+H is inferior to that of MTR-MMSE and
MTR-MMSE+H, we can see from the recognition results
that the effect of the feature compensation is manifest
irrespective of the type of the noisy speech HMM.

5 Conclusions

In this study, a VTS-based feature compensation method
has been applied to noisy speech HMMs. In particular, we
propose to adapt the channel noise for the compensation
to improve the performance the previous method which
takes into consideration only additive noise. The channel
and additive noise were adapted to reduce the mismatch
between the test noisy speech and the noisy speech
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Fig. 5: Relative improvements in WERs (%) achieved
by MTR-MMSE/MTR-MMSE+H and MMSR-MMSE/MMSR-
MMSE+H over MTR and MMSE, respectively, when using CBE
models.

HMM. The experimental results confirmed that the
proposed feature compensation method is very effective
in reducing the mismatch occurring in noisy speech
recognition using MTR and MMSR based noisy speech
HMMs. The feature compensation algorithm was applied
to HMMs trained with the CBE script as well as the SBE
script to test the robustness of the proposed method
against varying HMM complexities and improved
performance was found in both of them. The best result
(6.13% average WER) was obtained in the Aurora 2
database when the feature compensation was applied to
the MTR with the CBE script producing 7.0% relative
improvement in average WER over conventional MTR
method. When only additive noise is adapted as in the
previous study, the improvement was mainly observed in
Set B of the Aurora 2 database. However, by using the
channel adaptation algorithm proposed in this paper, we
could also observe significant performance improvement
for Set C in the Aurora 2 database. The approach is
distinguished from conventional VTS-based methods in
the sense that noisy speech HMM instead of the clean
HMM is used for the speech feature compensation and
both additive and channel noise is adapted for
noise-robust speech recognition.
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