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Abstract: In conventional Vector Taylor Series (VTS) based noisy speechgrition methods, Hidden Markov Models (HMMs)
are trained using clean speech, and the parameters of the clean bfddbthre adapted to test noisy speech, or the original clean
speech is estimated from the test noisy speech. However, these @msdamve a drawback in that acoustic models trained using
noisy speech cannot be used in recognition. In noisy speech recogmitiproved performance is generally expected by employing
noisy acoustic models produced by methods such as Multi-condition Tga{MiAR) and Multi-Model-based Speech Recognition
framework (MMSR). Motivated by this idea, a method has been develtps can make use of the noisy acoustic models in the
VTS algorithm where additive noise was adapted for the speech feamgensation. In this paper, we modified the previous method
to adapt channel noise as well as additive noise. A mathematical relatism@rived in the log-spectrum domain between the test
and training noisy speech considering both channel and additive Adtse.approximating the relation using VTS, Minimum Mean
Square Error (MMSE) estimation of the training noisy speech is obtaioedtfie test noisy speech based on the relation. The proposed
method was applied to noisy speech HMMs trained by MTR and MMSR anld ceduce the relative word error rate by 7% and 8%,
respectively, in the noisy speech recognition experiments on the ARrdaizabase.

Keywords: noisy speech recognition, MTR, MMSR, VTS, MMSE.

1 Introduction density functions in acoustic models of MTR, and
successful results using MMSR were demonstrafiet] [
Despite many technical advances, accurate speecis 16]. In contrast to MTR, where a single HMM set is
recognition in noisy environments still remains a difficult constructed, mu|t|p|e HMM sets Corresponding to various
problem. The techniques cannot fully overcome thengjse types and signal-to-noise ratio (SNR) values are
performance degradation caused by channel and additivgroduced during training, and a single HMM set which is
noise. Broadly categorized, there are two differentcjosest to test noisy speech among multiple HMM sets is
approaches used to improve the performance in noisgelected for recognition.
speech recognition. In one of the approaches, test noisy Although the noisy speech HMM performs rather
speech or trained acoustic models are compensated igell by itself, its performance would be improved further
reduce the mismatch between ther,2[3,4,5]. In  py applying compensation. In a previous study, a novel
particular, compensation based on VTS has been knowmathematical relation between test and training noisy
to perform quite well in noisy condition$[7,8,9]. speech was derived in the log-spectrum domaéif]. [

In another approach, noisy speech was directly usecfter approximating the relation using VTS, the
to produce noisy speech HMMs during trainint0]11,  performance of the noisy speech HMM could be
12]. MTR [13] and MMSR [14,19] are representatives of improved by compensating the feature vectors of the test
this approach. The environment-dependent HMMs makenoisy speech. The MMSE estimation of training noisy
it possible to cope with test noisy speech without anyspeech (not clean speech) conditioned on the test noisy
compensation algorithm. In the MTR method, noisy speech was used for recognition, which could further
speech signals under various noise conditions argeduce the mismatch between the test noisy speech and

collected and used for training the HMM. MMSR was the acoustic models of the noisy speech HMM. However,
recently proposed to improve the sharpness of probability
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in the previous study, the channel noise was not

considered in the compensation, which probably had a —
negative effect on improving the performance on Set C of Noim S | T —’
the Aurora 2 database. In this study, the previous Siguals T
algorithm was modified to compensate the test noisy
speech considering both the channel and additive noise.
The detailed mathematical formulation is derived, and
MTR as well as MMSR are used for producing the noisy Tioisy Spooch | =42 [ M Ser1
speech HMM. —

This paper is organized as follows. A review on MTR Teisy Speeeh "’

Test Noisy Speech
@

and MMSR is presented in Section 2, and compensation ———— 1, —
of the test noisy speech based on the noisy speech HMM sz .
is described in Section 3. The experimental procedure and
results are presented and discussed in Section 4. Finally, fT—r0o—11s

. . . . 015y speec! SetN
conclusions are given in Section 5. ot 1Y

Select A Single Viterbi Decoding
HMM Set for Recognition

1

Test Noisy Speech

2 Training of Noisy Speech HMMs

In this study, both MTR and MMSR are used to produce E,:-?-'thg f,lc,\r,}ggatlc diagram of training noisy speech HMMs (a)

the noisy speech HMM. Although MMSR is known to

have some advantages over the MTR metHaf{15], it is

rather controversial regarding which method is better in

performance for noisy speech recognition. In this regard,

both methods will be used to find the more appropriate . .

one in the proposed feature-compensation method. N”'{:’;“:jﬁi:ﬁ";‘;’if““
In Figurel, a schematic diagram of MTR and MMSR (Log-Spectrum Domain)

for training noisy speech HMMs is shown. In MTR, a —
collection of noisy speech signals with various noise

types (Subway, Babble, Car, Exhibition) and SNR values - — . i

(0, 5, 10, 15, 20 and dB) is used to cONStruct a single Set | “Ma i Comiue s |(— Tose Notey Spooch "
of noisy speech HMM. In MMSR, multiple HMM sets Test Noisy Speech from Training data

are constructed, and each of them corresponds to a v Using Tost Noisy Speech
different noise type (Subway, Babble, Car, Exhibition) [ MMSE of Train Noisy Speech [€ 4 Rocomition

and SNR value (0-30 dB in 2 dB intervals). A single M i

HMM set which is closest to the test noisy speech is C"m(‘f:gs_“;::cxND"fﬁ$“h

selected for recognition based on the estimated SNR
value and noise type of the test speech. Since MTR

| Discrete Cosine Transformation

method combines a number of noise conditions to train a )

single HMM set, it tends to reduce the phonetic sharpness ., ensated Test Noisy Speech
of the acoustic models in their probability density for Recagnition
functions of the HMM. MMSR method can overcome the (Cepstrum Domain)

weakness of MTR by choosing a specific single HMM set

which is most appropriate to the test noisy Speech.Fig. 2: Block diagram of the proposed feature Compensation
However, the errors in selecting the closest HMM set will method

incur misrecognition, causing performance degradation in

the MMSR. . S . L
log-spectrum domain. Since the relation is non-lineas it i

approximated using the VTS to obtain the mean vectors
. and covariance matrices of the test noisy speech given the

3 Feature Compensation in the Presence of  gpatistics of training noisy speech obtained during the
Channel Noise training. The statistics of the test noisy speech are used to

obtain MMSE estimation of the training noisy speech,
Unlike the pervious studylfg] where only additive noise which is used as a feature vector for recognition after
is assumed to exist, we derive, in this paper, a speecliscrete Cosine Transformation (DCT). The block
feature compensation method assuming that there is alsdiagram of the whole process is shown in Fig@eA
channel noise in the test speech. The relation betweemore detailed explanation of this process is given in the
training and test noisy speech is first derived in next subsections.
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3.1 Relation Between Test and Training Noisy 3.2 Estimating Satistics of Test Noisy Speech
Soeech in Log-Spectrum Domain _ _

From Equation 11), the mean and covariance of the test
Assuming that channel noise is present in the test noisyoisy speechy can be estimated. Equatiorll) is
speech, log-spectrum vectoof the clean speech and y of expanded using a first-order VTS around the initial value
the noisy speech are related as follows: no ho of n ,h and the mean of the training noisy speech

y = X+ h+log(i + exp(n —x—h)) (1) My, = E{yt} to obtain the following equatiomt, is

assumed to be fixed.
wheren andh are the log-spectrum vector of additive and
convolution noise, respectively, aridis a unity vector. Y = Yr +h + G(yr,,no, ho, nrr)
Based on Equationl}, the log-spectrum vector of the + Vyr, G(Hyq, » No, ho, Ne ) (Y1r — Ly, )

test noisy speech angd; of the training noisy speech can + .G no. he. nte ) (N —n
be expressed as follows, assuming that there is no channel VnG(Hyr; Mo;ho,nre ) 0)

noise in the training noisy speech for the convenience of + VhG(Hyr,»No, Mo, nr) (h — o) (12)
analysis:
Y1r = X+go(x7nTI’) (2) [VyTrG(ﬂminOyh07nTr)]ii =
[exp(nTr) — exp(ng — ho)]; 13)
y:X+h+g(X7n,h) (3) [exquy_rr)_ir_exmno_ho)_ean_l_r)]i
do(x,n7r) = log(i +exp(nTr —x)) (4) [VnG(Hyq, - Mo, ho, N )] =
. [exp(no — ho)]; (14)
g(x,n,h) =log(i +exp(n —x —h)) (5) [€XP(Fyr,) + €XpNo — o) — expinT )]

wheren andnt, represent the additive noise contained in

the test and training noisy speech, respectivaly. is [VhG(Lys, »No, ho,nrr)]s =

determined during training, anuis estimated using test _ G no. he. N1 (15

noisy speech in recognition. . [v'f (Hyr;» Mo, ho, N )i (15) _
By combining Equations2j and @), the test noisy Here,[-]ii represents the i-th diagonal element of a matrix.

speech y can be expressed in terms of the training noisysing Equation 12), the meanu, and covariancegy of

speectyy; as follows: the test noisy speech can be expressed from the mean
and covariancey,, of the training noisy spee
y = yTr + h + g(X7 n7 h) - go(x7 nTr) (6) géT%OIIOWS yrr g y p (y‘rr
[g(x7 n, h) - gO(X, nTr)]i = |Og < [I + ean —X- h)]l ) Uy = UYTr +h+ G(IJYTr ,No, h07 nTr)
i explnrr — X)) + aGlHyryNo, o, frre) (0 o)
1o ([eXFW - expn - h”i) + VnG(yr,No.ho. ) (h—ho) (16
[exp(x) + exp(nr )]
(7) Uy = (I JFVyT,G(IJminO»hOanTr)) JYTr
Here,[-]; represents the i-th element of a vector. T
From Equations2) and @), (14 Ty, GlHyre Mo, ho,nr)) (17)
y1r = X+log(i +exp(nTr — X)) (8)
Taking the exponential of both sides of Equati@h ( 3.3 Estimation of Noise Parameter
exp(x) = explyr) — exp(nTr) ©)  The training noisy speech vecta,, is assumed to be
Substituting 9) into (7), distributed as a mixture of Gaussians with mean vectors
[9(x,n,h) — go(X,N7¢)]; and covariance matrices obtained through a vector
. ' H quantization (VQ) process. The mixture Gaussian
- log([exp(yn) —explnTr) + expin - )]i) distribution is separately estimated for each noisy type
[expyr)l; and the SNR value using the same noisy training data to
= [log(i +exp(n —h—y7r) —exp(nt —yr))]; produce the multiple HMM sets in MMSR. Assuming
= [G(ytr,n,h,n7)]: (10) also that the log-spectrum vectgr of the test noisy
IARSRRS] I

. . . . . speech is a mixture of Gaussians, the distribution a$ a
P;E?%i“%g&%éi S’Il:)b?;mg;?utr’r?c\lfe'gttgrfqoufa:feﬁ)g:}gf an 4unction of unknown noise vectar,h can be defined as
9-sp ollows using EquationX6) and (L7),

training noisy speech can be obtained as follows:

y =yrr +G(yr,n.h,nr) =yrr +h M

+log(i +expn—h—yr) —expnrr —yr))  (11) POYIN,) = 5 PN (ym, Gym) (18)
m=
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where N(tym, 0y m) is the m-th Gaussian distribution

with a mean vectoply m and covariance matrisy m. Pm iS

the mixture weight of the m-th component. Note that the ViQ(Y, §) =

mean vector llym and covariance matrixoy, are
themselves fully parameterized by the noise veatcasd

T M
m|y¢,n,h)-
t;ﬁ;m lyt,n,h)

I+ 7nG(Hyr,,m; No, ho, nTr)Tan%(yt —HUym)] =0

h, which are treated just as parameters, not random
variables; only the noisy speech vectors were treated as

random variables.

Given a sequence of log-spectrum vectors for the test

noisy speeclf = {y1,y>,---yr }, the log-likelihood for the
sequence is defined as follows using Equati):(

T
L(Y|n7h) :tzllog p(yt|n7h) (19)

An iterative Expectation Maximization (EM) algorithm is

used to re-estimate the noise vectgr = {n,h} by
maximizing Equation 19). In the EM algorithm, an
auxiliary functionQ(y, () is written as follows:

Qy, ) = E{L YW)IY W}

Z Z p(mlye,n,h)logp(ye, minch) — (20)

The symboly represents the noise vectorh , which is
already known, andp is the unknown noise vectar,h,

which should be estimate@(y, ¢/) can be expanded as:

T M
D
Q. ) = t;n;l p(mlyt,n, h)[log pm -+ > log 2
D | 1 T T -1 —
10910yl — 5 (v — Hym) " Oy (s — Hym)]
Ey,m = Hyr, m+ h+ G( My, m, No, ho, N7r)
+nG(Hyqr,.m, No, ho, Ny ) (N —No)

+7hG( Ly, ms N0, ho,N7r) (h — ho) (21)

Next, to re-estimata, h in Equation 21), the derivative of
the auxiliary function with respect to,h must be taken
and set equal to O.

T M
VW)= 3 3 Pl n.h)-

[7nG(Hyr,.m; No, ho, 1) " 0 v,m (Yt — Hym)] =0

" AL T 1 1

n=[% > p(mly,n,h)vnG(-)" oymvnG()]
t=1m=1

T M T 1

[> > p(mlye,n,h)wnG(-)" oy m(ye — (Hyr,.m

t=1m=1

+h+G(-) = 7nG()no + 7nG(-) (h — ho))] (22)

= ZMH p(mlyt, n,

(I +va<~)> yn(l +7hG()I
Z Z p(Mlye,n,h) (1 4+ 7hG ()T Oyt — (Hyre.m

+G(+) + VnG(-)(N—no) = VnG(-)ho))] (23)

G() = G(UyTr7m7 No, hOa nTI‘) (24)

The noise vecton, h derived from Equation2@) and
(23) is substituted inta1, h in Equations 16) and (L7) to
adapt the mean and covariance of the test noisy speech.
The likelihood function from Equation1@) and the
auxiliary function from Equation20) are consequently
updated. This process is iterated until the log-likelihood
function from Equation 19) converges. After the
convergence, an MMSE estimation of the training noisy
speech is performed and used for recognition.

3.4 MMSE of Training Noisy Speech

The MMSE of training speechr, given the test speech
is expressed as follows:

Jremmse = Evre y) = [yrepymly)dyre  (25)
From Equation11),

YTr :y_h_G(yTranah7an) (26)

Substituting  Equation 26) into (25 and

approximatingG(yrr,n,h,nt;) by a VTS of order zero
aroundpy,, m, the following relationship is obtained:

Yrrmmse =y —h— /G(YTr’ n,h,nre) pyTrly)dyTr

- M
:y—h—/ > G(yrr,n.h,nre) plyrr, mly)dyrs
Y m=1
M
—y-h- 3 p(m|y)/G(yTr,n,h,nTr)p(yTr\m,y)dyTr
m=1

M
gy_h_ z p(m|Y)G(UTr,m7n7hanTr) (27)
m=1

The DCT of the log-spectrum vect§f, mmse is taken
to find a 13th-order cepstrum vector. The cO component in
the cepstrum vector is replaced with log-energy. The delta
and acceleration (delta-delta) coefficients of the cepstru
vector are also calculated to obtain a 39-dimentional
feature vector which is used for the speech recognition
experiments described in the next section.
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4 Experiments and Results Table 1: WERs (%) of the proposed feature compensation
methods using SBE models compared to conventional methods

To verify the effectiveness of the proposed feature© Aurora 2 database

compensation method, experiments were conducted on | Method SetA | SetB| SetC| Ave.

the Aurora 2 database. The MTR training data consists of | Baseline 12.25] 12.90 | 14.56 | 12.97
clean and noisy speech signals contaminated by various MTR 770] 8.23] 9.26| 8.22
MMSR 6.78| 956 | 8.17| 8.17

kinds of noise signals (Subway, Babble, Car, Exhibition)
with SNR ranges from 0 to 20 dB in 5 dB intervals. New MTR-MMSE 754| 7.75| 918| 7.95
noisy speech data was additionally generated for MMSR | _(additive noise)
training, which consists of noisy speech signals with the 4 MTR-MMSE+H 761) 752| 845 7.74

noise types (Subway, Babble, Car, Exhibition) and SNR (cii(::::\éﬁoise)
values from 0 to 30 dB in 2 dB intervals. VVISR-MMSE 5711 898 7971 786

Three test sets (Set A, Set B, Set C) are used for i .
recognition experiments. They are corrupted by a range of s&itg_eMnMo:;H 661 8671 760 763
noise types with SNRs of -5, 0, 5, 10, 15, and 20 dB. Set ' ' ' '
A is corrupted by additive noise whose types (Subway,
Babble, Car, Exhibition) are known during training, while
Set B is corrupted with unknown types (Restaurant,Although MMSR performs slightly better than MTR,
Street, Airport, Train Station) of additive noises, and Settheir difference is minor.

C is corrupted by a combination of convolution and By using the feature compensation, the performance
additive noise (Subway, Street). of MTR and MMSR could be improved further. As shown

For the feature vector, a noise-robust version ofin Table 1, MTR-MMSE and MMSR-MMSE achieve
Mel-Frequency Cepstral Coefficients (MFCCs) called 7.95% and 7.86% average WERs by adapting the additive
AFE (Advanced Front-End) was used. AFE is known to noise, providing 3.3% and 3.8% relative improvement
significantly reduce the word error rates in noisy speechover MTR and MMSR, respectively. By additionally
recognition [L7). The 12th-order MFCCs with the compensating the channel noise, we could further
Oth-order cepstral coefficient set aside are appended witimprove  the  recognition  performance of the
the log-energy to form a 13th order basic feature vectorMTR-MMSE/MMSR-MMSE. As shown in the table,
along with their delta and acceleration coefficients toMTR-MMSE+H achieve 7.74% average WER further
construct a 39th-order feature vector for each frame. reducing the WER of MTR-MMSE. This is mainly due to

The acoustic models were trained using both thethe significant performance improvement in Set C.
Complex Back End (CBE) and Simple Back End (SBE) Similar ~ results have been also found in
scripts, which are each separately defined for the AurorddMSR-MMSE+H as shown in Tabl&

2 database. For the SBE model, the HMM for each digit ~ Figure 3 shows the relative improvement (%)
consists of 16 states with 3 Gaussian mixtures in eactachieved by proposed methods over MTR and MMSR.
state. In addition, a three-state silence model with 6The figure shows that the improvement is more prominent
Gaussian mixtures per state and a one-state pause moder Set B and Set C than for Set A. This is expected
tied with the center state of the silence model are usedbecause the acoustic mismatch between the test noisy
For the CBE, the number of mixtures in each state isspeech and the noisy speech HMM is greater for Set B
increased to 20 and 36 for the digit and silence modelsand Set C than for Set A. For example, since the acoustic
respectively. The hidden Markov model toolkit (HTK) mismatch is very small for Set A in the MMSR, the
was employed to train and test the HMM used in this smallest relative improvement of just 1% is achieved by
study [18]. the MMSR-MMSE.

Table 1 shows the word error rates (WERs) of the When only additive noise is adapted, the relative
proposed feature compensation method in comparisoimprovement is more prominent in Set B than Set A and
with the conventional methods for the Aurora 2 databaseSet C. Since Set A has similar acoustic characteristic to
MTR-MMSE/MMSR-MMSE are methods in our the noisy speech HMMs, the noise adaptation could not
previous study 16|, where only additive noise is adapted have much impact on improving the recognition
for the speech feature compensation while channel noisperformance. Also, the channel mismatch in Set C cannot
is additionally compensated in the proposed be overcome by just compensating the additive noise.

(additive+
channel noise)

MTR-MMSE+H/MMSR-MMSE+H. MTR-MMSE and When the channel noise is additionally adapted in the
MMSR-MMSE differ in the type of noisy speech HMM MTR-MMSE+H, we can observe significant performance
used for compensation. improvement in Set C as expected. While MTR-MMSE

Conventional MTR and MMSR method improve the could achieve the relative improvement of about 1% over
performance of the baseline system which was trainedMTR for Set C, it increases nearly to 9% in the
using clean speech data. The baseline system scoréddTR-MMSE+H. Similar result was also observed when
12.97% WER on average, whereas MTR and MMSRapplying the channel adaptation to MMSR. Meanwhile,
achieve WERs of 8.22 % and 8.17%, respectively.we could also see some performance improvement in Set
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Relative Improvement over MTR/MMSR (00) Relative Improvement (%) in WERS over SBE
10 models

25

20 T
= MTR-MMSE /\
u MTR-MMSE+H 13
MMSR-MMSE " / \
u MMSR MMSE+H / \
5] 6.2

Set A SetB Set C Ave, Basdine MTR MMSR

O B R W o Mmoo

Fig. 3: Relative Improvement (%) in WERs achieved Fig. 4: Relative improvement in WERs (%) of CBE models over
by MTR-MMSE/MTR-MMSE+H and MMSR-MMSE/MMSR-  SBE models.
MMSE+H over MTR and MMSE, respectively, when using SBE compensating the additive noise. As shown in Table
models. MTR-MMSE achieves 6.31% WER, providing 4.24%
relative improvement over MTR. Similarly,
- MMSR-MMSE also show improved performance over
Table 2: WERs (%) of the proposed feature compensation p\MSR. Since MTR outperforms MMSR in the CBE
methods using CBE models compared to conventional meth°d§cript, the WER of MTR-MMSE (6.31%) is shown to be

for Aurora 2 database. much smaller than MMSR-MMSE (7.16%).
Method SetA | SetB| SetC| Ave. We can also obtain additional performance gain by
Baseline 11.58) 12.10| 13.68 | 12.20 applying the channel compensation in the CBE script.
MTR 604| 682 7.22] 659 MTR-MMSE+H achieve 6.37% WER in Set C which
MMSR 617] 90| 797| 7.66 compares to 7.11% WER by the MTR-MMSE. Similarly,
MTR-MMSE 59| 633 7.11| 631 MMSR-MMSE+H achieve 7.51% WER for Set C
(additive noise) compared with 7.72% WER by the MMSR-MMSE.

MTR-MMSE+H 592| 6.23) 637 6.13 These improvements in Set C lead to the overall

gﬁig\éﬁoise) performance gain in MTR-MMSE+H (6.13% WER) and
VIMSR-MMSE ses 817 775 716 MMSR-MMSE+H (7.05% WER) compared with

MTR-MMSE (6.31% WER) and MMSR-MMSE
(7.16%), respectively.

Figure5 shows the relative improvement achieved by
the feature compensation methods over MTR and MMSR
in the CBE script. The overall performance trend is
B when applying the channel compensation, although it issimilar to the SBE script in Figur8. The performance
not as significant as in Set C. The use of channelimprovement is more significant for Set B and Set C than
parameterh in the compensation algorithm seems to for Set A. MTR-MMSE and MMSR-MMSE are shown to
contribute to reduce the noise type mismatch in somepe very effective in improving the performance in Set B.
degree. MTR-MMSE+H and MMSR-MMSE+H could achieve

The proposed methods were also applied to the noiswignificant performance improvement in Set C by
speech HMM trained with the CBE script to verify adapting the channel noise in addition to the additive
whether the proposed method could work well when thenoise. Although the performance of MMSR-MMSE and
acoustic modeling becomes more complex. In T&blwe ~ MMSR-MMSE+H is inferior to that of MTR-MMSE and
can observe significant performance improvement wherMTR-MMSE+H, we can see from the recognition results
using the CBE script compared with the SBE script and itthat the effect of the feature compensation is manifest
is more prominent in MTR than MMSR. The increased irrespective of the type of the noisy speech HMM.
number of mixtures in each state of the HMM may have
greatly contributed to sharpening the acoustic modeling in
MTR. Although MMSR had comparable performance 5 Conclusions
with  MTR in the SBE script, MTR significantly
outperforms MMSR in the CBE script. Figueshows  In this study, a VTS-based feature compensation method
the relative improvement of the Baseline, MTR, and has been applied to noisy speech HMMs. In particular, we
MMSR in the CBE script over SBE script. MTR has a propose to adapt the channel noise for the compensation
large reduction in WER (19.8%) compared with the otherto improve the performance the previous method which
methods (Baseline: 5.9%, MMSR: 6.2%). takes into consideration only additive noise. The channel

As in the SBE script, the performance of MTR and and additive noise were adapted to reduce the mismatch
MMSR with the CBE script could be further improved by between the test noisy speech and the noisy speech

(additive noise )
MMSR-MMSE+H 5.84 8.03 7.51 7.05
(additive+

channel noise)
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