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Abstract: In this work the Korteweg-de Vries equation which contains an arbitrary function in the nonlinear term is considered and
it is referred to as a generalized KdV. This equation has applications in nonlinear solitary wave phenomena in some areas of fluid
mechanics, plasma physics and quantum mechanics. The Lie group analysis approach is employed to obtain the possible forms of the
arbitrary parameter.
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1 Introduction

Nonlinear evolution equations are widely used as
mathematical models to describe nonlinear phenomena in
various fields of science and engineering. It is desirable to
determine the analytical solutions to these equations in
order to understand better the complexity involved. The
Korteweg-de Vries (KdV) equation [4] is one of these
nonlinear evolution equations and it models the
propagation of solitary waves on the shallow water
surfaces. In recent studies [2,3,10,11], different types of
the KdV equation have been investigated to model
various situations and the analytical and numerical
solution procedures have been employed to solve these
types of equations.

In many real life applications the model equations
contain arbitrary functions of the dependent variable or its
derivatives and independent variables. In solving these
equations some special forms of the model parameters
(arbitrary functions) are assumed which may lead to
approximation of solutions. However, the Lie group based
approach known as the method of Lie group classification
is a systematic procedure that enables the specification of
the possible forms of the arbitrary functions which appear
in the equation of interest. Depending upon the equation
being considered either the approach based upon the
equivalence transformations or the direct analysis
approach of the group classification method can be used.
The direct analysis is more preferable when the arbitrary

functions depend upon only one variable, that is, either a
dependent or an independent variable.

In this paper, we consider the generalized Korteweg-de
Vries (gKdV) equation

ut +F(u)ux +uxxx = 0, (1)

where the first term denotes the evolution term, the
second term is the nonlinear term and lastly, the third term
represents dispersion. Some special cases for the function
F(u) have been studied in the literature (see for example
[2,3,5,8,9,10]). These forms reduce Eq. (1) to the much
studied KdV type equations such as the modified KdV
(mKdV) and Gardner equations. The current work deals
with a systematic way of specifying this arbitrary
function, similar work can be found in [2,3,5].

The plan of this work is as follows. In Section3 the
determining equations for Lie point symmetries and the
classifying relation are generated. Moreover, the direct
analysis of the classifying relation is performed in order
to obtain the possible forms of the arbitrary function. In
Section3 the symmetry reduction is performed and where
possible exact solutions are obtained. Section4 presents
the summary of our investigations.
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2 Lie group classification

In Lie group analysis (see [1,6,7] for more details), a
vector field

X = ξ 1(t,x,u)∂t +ξ 2(t,x,u)∂x +η(t,x,u)∂u (2)

is a generator of Lie point symmetries of Eq. (1) if and
only if

X [3] (ut +F(u)ux +uxxx) |(1) = 0, (3)

where
X [3] = X +ζt∂ut +ζx∂ux +ζxxx∂uxxx (4)

is the third-prolongation of the vector fieldX . The
variablesζ ’s are given by the formulae:

ζt = Dt(η)−utDt(ξ 1)−uxDt(ξ 2),

ζx = Dx(η)−utDx(ξ 1)−uxDx(ξ 2), (5)

ζxxx = Dx (ζxx)−uxxtDx(ξ 1)−uxxxDx(ξ 2),

where

Dt = ∂t +ut∂u + · · · and Dx = ∂x +ux∂u + · · ·

are the total derivative operators [6].
The splitting of (3) with respect to the powers of the

derivatives ofu yields the determining equations, which is
a system of linear partial differential equations of
homogeneous type inξ 1, ξ 2 and η . To generate the
determining equations manually is easy but it is a lengthy
and tiring task. As a result, in recent years many computer
software packages have been developed to perform this
task. The next step is to solve the resulting system forξ 1,
ξ 2 and η . Some of these software packages have
functionalities to determine symmetries automatically,
that is, without solving the system interactively. However,
in some cases the erroneous results may be obtained.

The coefficient functions of the generator of Lie point
symmetries (2), namely, ξ 1, ξ 2 and η satisfy the
determining equations

ξ 1
u = 0, ξ 2

u = 0, ηuu = 0, ξ 1
x = 0, (6)

ηxu −ξ 2
xx = 0, 3ξ 2

x −ξ 1
t = 0, (7)

ηxF(u)+ηxxx +ηt = 0, (8)

ηF ′(u)+
(
ξ 1

t −ξ 2
x

)
F(u)+3ηxxu −ξ 2

xxx −ξ 2
t = 0, (9)

where the subscripts represent partial differentiation with
respect to the indicated variables and a ‘prime’ denotes
total derivative with respect tou.

The manipulation of Eqs. (6)–(9) yields the coefficient
functions of Lie point symmetry generator of the form

ξ 1 = c1t + c2, ξ 2 =
1
3

c1x+ c5t + c6, η = c3u+ c4,

(10)
where c1, . . . ,c6 are arbitrary constants. Eventually we
obtain the classifying relation

3(c3u+ c4)F
′(u)+2c1F(u)−3c5 = 0. (11)

Suppose thatF(u) is an arbitrary smooth function of its
argument. Then according to the classifying relation (11)
the coefficient functions (10) become

ξ 1 = c2, ξ 2 = c6, η = 0. (12)

Therefore, we obtain a two-dimensional principal Lie
algebra which is spanned by the symmetry generators

X1 = ∂t , X2 = ∂x. (13)

Our aim is to obtain the possible forms of the
arbitrary parameter,F(u), such that the principal Lie
algebra is extended. Ultimately, the direct analysis of the
classifying equation (11) leads to the possible forms of
F(u) and their corresponding operators which extend the
principal Lie algebra (see Table1).

Table 1: Classification results
No. F Condition Extra operator(s)

on consts.

1. F0 (β +αu)−
1

3α +F1 α ,F0 6= 0 X3 = 3t∂t +(2F1t + x)∂x +6(β +αu)∂u

2. F0e−
u

3β +F1 β ,F0 6= 0 X3 = 3t∂t +(2F1t + x)∂x +6β∂u

3. F0 ln(γ +u) F0 6= 0 X3 = F0t∂x +(γ +u)∂u

4. F0u2+ F̃0u+F1 F0, F̃0 6= 0 X3 = 6F0t∂t +
[
2F0(2F1t + x)− F̃2

0 t
]

∂x − (F̃0+2F0u)∂u

5. F̃0u+F1 F̃0 6= 0 X3 = F̃0t∂x +u∂u, X4 = 3F̃0t∂t + F̃0x∂x −2(F1+ F̃0u)∂u

6. F1 F1 6= 0 X3 = 3t∂t +(2F1t + x)∂x +u∂u, X4 = u∂u, Xφ = φ(t,x)∂u

Note: In Table I: F0, F̃0, F1, α , β and γ are arbitrary
constants. The functionφ(t,x) is a solution of the gKdV equation
corresponding toF = F1.

3 Exact solutions and symmetry reductions

In order to illustrate the procedure for determining exact
solutions and performing similarity reductions, we
consider case 5 in Table1. We seek solutions of the
invariant equation

ut +F1ux + F̃0uux +uxxx = 0, (14)

the symmetries of which are given by

X1 = ∂t ,

X2 = ∂x,

X3 = F̃0t∂x +∂u,

X4 = 3t∂t +(2F1t + x)∂x −2u∂u. (15)

The optimal system of one-dimensional subalgebras
[6,7] is a systematic procedure from which all the
possible invariant solutions are obtained. We follow the
approach given in [6] to construct the optimal system of
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Table 2: Table of commutators

[Xi,X j] X1 X2 X3 X4

X1 0 0 F̃0X2 3F̃0X1

X2 0 0 0 F̃0X2

X3 −F̃0X2 0 0 −2F̃0X3

X4 −3F̃0X1 −F̃0X2 2F̃0X3 0

Note: [Xi,X j] =Xi(X j)−X j(Xi); i, j = 1,2,3,4 is the commutator
operation.

Table 3: Table of adjoint representations

Ad
(
eεXi

)
X j X1 X2 X3 X4

X1 X1 X2 X3− F̃0εX2 X4−3F̃0εX1

X2 X1 X2 X3 X4− F̃0εX2

X3 X1+ F̃0εX2 X2 X3 X4+2F̃0εX3

X4 e3F̃0ε X1 eF̃0ε X2 e−2F̃0ε X3 X4

Note: Ad
(
eεXi

)
X j = X j − ε[Xi,X j]+

1
2!

ε2[Xi, [Xi,X j]]−·· · ; ε ∈

IR is the adjoint representation.

Eq. (14). Firstly, we construct the table of commutators
followed by the table of adjoint representations for the
symmetry Lie algebra (15). These are given by Tables2
and3 respectively.

Since the symmetry Lie algebra is four-dimensional,
we use Table3 to simplify the operator

Γ = a1X1+a2X2+a3X3+a4X4, (16)

whereX1, . . . ,X4 are given by (15) for arbitrary constants
a1, a2, a3 anda4. In simplifying (16) the adjoint operator
Ad

(
eεXi

)
acts onΓ while different cases of the constants

a1, a2, a3 anda4 are considered. After considering all the
cases we obtain the optimal system of one-dimensional
subalgebras, which is given by{X1,X2,δX1 +X3,X3,X4}
whereδ =±1.

Now we construct the invariant solutions with the use
of the optimal system. However, the invariance under
time and space translations leads to trivial solutions and
they are not considered here. The invariant solutions are a
foundation on which exact solutions are derived or
symmetry reductions can be performed. The remaining
cases are presented below.

Case I. The characteristic system for the linear
combinationδX1+X3 is given by

dt
δ

=
dx

F̃0t
=

du
1
. (17)

Solving the above system yields the invariant solution of
the form

u(t,x) =
t
δ
+ f (z) , (18)

wherez is the similarity variable, namely,

z = x−
t2F̃0

2δ
(19)

and the functionf (z) satisfies the first-order equation

(
d f
dz

)2

=C2−
1

3δ

[
6(z−C1)+3δF1 f +δ F̃0 f 2

]
f ,

(20)
whereC1 andC2 are arbitrary constants.

Case II. The characteristic system for the invariants of
X3 leads to the invariant solution

u(t,x) =
x

tF̃0
+ f (t), (21)

where f (t) is an arbitrary function oft. Substitution of
(21) into Eq. (14) yields a first-order ordinary differential
equation (ODE) the solution of which is given by

f (t) =
f0
t
−

F1

F̃0
, (22)

for some arbitraryf0. Thus, we have the exact solution

u(t,x) =
1
t

(
x−F1

F̃0
+ f0

)
. (23)

Case III. The solution invariant underX4 is of the form

u(t,x) =
f (z)

t2/3
−

F1

F0
, (24)

where z = xt−1/3 is an invariant of the characteristic
system forX4. The function f (z) is an arbitrary smooth
function which satisfies the third-order nonlinear ODE

3
d3 f
dz3 +

(
3F̃0

d f
dz

−2

)
f − z

d f
dz

= 0. (25)

The last equation (25) may be solved by means of the
analytical techniques for solving nonlinear ODEs.

4 Conclusion

This work dealt with the Lie group analysis of a
generalized KdV equation. The classifying equation was
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analyzed using the direct method of group classification
for possible forms of the arbitrary function, which include
power law, exponential, quadratic, linear and constant
forms. The three-, four-and infinite-dimensional
symmetry Lie algebra was obtained respectively for these
forms of the arbitrary parameter. The optimal system of
one-dimensional subalgebras of the invariant equation
with the four-dimensional Lie algebra was obtained. As a
result, the exact solutions were constructed, or otherwise
the symmetry reduction was performed, that is, in the
case where exact solutions could not be obtained.
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