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Abstract: Portfolio selection (optimization) problem is a very important and widelyaeded problem in the areas of finance and
economy. Literature review shows that many methods and heuristiesapptied to this hard optimization problem, however, there are
only few implementations of swarm intelligence metaheuristics. This papsepts artificial bee colony (ABC) algorithm applied to
the cardinality constrained mean-variance (CCMV) portfolio optimizatiodehdy analyzing ABC metaheuristic, some deficiencies
such as slow convergence to the optimal region, were noticed. In thés pBL algorithm improved by hybridization with the firefly
algorithm (FA) is presented. FA's search procedure was incorpbmate the ABC algorithm to enhance the process of exploitation.
We tested our proposed algorithm on standard test data used in the litedunparison with other state-of-the-art optimization
metaheuristics including genetic algorithms, simulated annealing, tabthssadgarticle swarm optimization (PSO) shows that our
approach is superior considering quality of the portfolio optimization resedfsecially mean Euclidean distance from the standard
efficiency frontier.

Keywords:. Artificial bee colony algorithm (ABC), firefly algorithm (FA), swarm intelligee, nature inspired algorthms, optimization
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1 Introduction 1.1 Numerical optimization problems

Most real-life problems can be reduced to some kind of
optimization, thus optimization is one of the most Numerical optimization problems can be combinatorial
applicable areas of mathematics and computer sciencegdiscrete, where variables can take only integer values) or
The difficulty of an optimization problem depends on the continuous (global optimization), where continuous
type of the objective function that is optimized, problems can be constrained or unconstrained (bound
constraints and decision variables. constrained). Portfolio optimization problem is a very
Multi-objective  optimization is much more important and widely researched problem in the areas of
complicated than single-objective problems. The problenfinance and economy and it belongs to the group of
becomes even harder when some variables can take redlumerical optimization problems, with or without
while other can take only integer values. Such mixedconstants, with real and sometimes mixed variables.
continuous/discrete  problems  usually ~ require  ynconstrained (bound constrained) optimization is

problem-specific search techniques in order to generatgyymulated as D-dimensional minimization or
optimal, or near-optimal solution. maximization problem:
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wherex represents a real vector wifh > 1 components swarm intelligence. Prominent among EA are genetic
and S € RP is hyper-rectangular search space with  algorithms (GA). GA implementations can obtain good

dimensions constrained by lower and upper bounds: results for many kinds of optimization probleng.[
The branch of nature-inspired algorithms which is
Ib; <x <ub;, i€[1,D] (2) called swarm intelligence is focused on collective

I Eq, ) an e owerand upperbouns or e PEPAYr of some simoe ndiduai: S beryor of
problem component respectively. . LU ' ;
of fish was an inspiring source for emerging of swarm

The nonlinear constrained optimization problem in the . . .
.Wtelllgence. Even though swarm system consist of

continuous space can be formulated in the same way as iy, el unsophisticated  individuals, they exhibit
Eq. (1), butin this casa ¢ F ¢ SwhereSis D-dimensional coordingted ber?avior that directs swérm tgwards the
hyper-rectangular space as defined in Ej.andF ¢ S desired goal with no central component that manages the
represents the feasib_le region defined by the setlofear system zgs a whole P 9
or non-linear constraints: Ant colony optimization (ACO) models the social
behavior of ants in finding the shortest paths between
gj(x) <0, for je[1,q 3) their nest an'd the'f.ood source. The corner stone of the
he (%) — ACO is ant's ability to deploy a substance called
(%) pheromone in order to mark discovered path. ACO is one
of the oldest members of swarm intelligence famis}. [
This metaheuristic was successfully applied to
constrained combinatorial f], as well as on continuous optimization

Basic versions of algorithms for . o
numerical optimization problems do not employ methodsProPlems I, [6], [7]. Particle swarm optimization (PSO)
is another older swarm intelligence algorithm that

for dealing with constraints. For this reason, constraint> ; . , . .
handling techniques are usually applied in thos(__,smulates social behavior of fish schooling or bird

algorithms to improve and redirect the search procesdlocking. PSO was ~successfully applied to many
towards the feasible region of the search domain Single-objective  and m“'t"o.bl?c“‘(e optimization
Moreover, equality constraints make optimization evenProblems. Glowworm swarm optimization algorithm was

harder by shrinking the feasible search space whicH€CeNty applied to constrained engineering design
becomes very small compared to the entire search Spacg_roblems Bl. - -
Metaheuristic that mimics the human search process

To tackle such problem, equality constraints are replacedb donh \ : . q
with the inequality constraintd]. PAsed on human memory, reasoning, past experience an
interactions is seeker optimization algorithm (SOA). This

0, for jeg+1,m|

whereq is the number of inequality constraints, amd- q
is the number of equality constraints.

Ih(x)| —v <0 (4) relatively novel method showed good performance in
- solving global numerical optimization problen® pnd is
whereu > 0 is some small violation tolerance. continuously being improved.p).

Cuckoo search (CS) is another new iterative approach
that models search process by employing Levy flights
1.2 Nature-inspired metaheuristics (series of straight short and long flight paths with sudden
90 degrees turn). It was first proposed by Yang and Deb
Deterministic algorithms are not suitable for hard, [11] and proven to be a robust optimization technique
intractable optimization problems since the results canno[12], obtaining satisfying results in real-life optimizat®n
be obtained within an acceptable computational time. Inlike image thresholding1[3] based on entropy objective
such cases, the use of metaheuristics is more appropriatefunction [14].
Metaheuristics are iterative, population based and
stochastic approaches that do not guarantee the optimal
solution, bet they can obtain subsatisfying suboptimall.3 Atrtificial bee colony (ABC) improvement
solution within reasonable computational time. Two main
driving forces of metaheuristics are exploitation andIn this paper we propose Atrtificial Bee Colony (ABC)
exploration. Exploitation conduct search around thealgorithm hybridized with Firefly Algorithm (FA) for
current best solutions, while exploration performs acardinality constrained mean-variance (CCMV) portfolio
random search to find the feasible region. optimization problem. ABC was originally proposed by
In the last few decades, nature became a great sourd€araboga for continuous optimization problem$5]|
of inspiration for the development of intelligent systems while FA is among the latest swarm intelligence
that can provide solutions to hard optimization problems.algorithms proposed by Yang .
Following natural principles nature-inspired Our implementation of the hybridized ABC solution
metaheuristics were devised. is aimed to overcoming weaknesses of the original ABC
Nature-inspired metaheuristics can roughly be dividedfor constrained optimization problems such as CCMV
into two categories: evolutionary algorithms (EA) and portfolio problem. By studying the ABC algorithm, we
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noticed a deficiency during the solution search processmetaheuristic implementations for portfolio optimizatio
Exploitation is not intensive enough and the algorithm problem are discussed.
converges slowly to the optimal region of the search  Many papers show solving portfolio optimization
space. After significant number of cycles, when theproblem wusing non-dominating Sorting Genetic
optimal solution is almost found, this deficiency is even Algorithm (NSGA). First version of NSGA algorithm
more emphasized. was proposed by Deb et all]]. Difference between GA
Additionally, the exploitation-exploration balance is and NSGA is the redefinition of the selection operator.
not well adjusted for this application in the original ABC Second version, NSGA-Il was also proposed by Deb et. al
approach. In early cycles, scouts perform exploration[18]. New version improves the convergence and the
which is necessary for finding feasible search spacespread of the solutions in population.
region, however is not well balanced with exploitation. In Lin et al. [19] considered a MV portfolio model with
the late cycles, with the assumption that the search haminimum transaction lots (MTL), fixed transaction costs
converged to the optimal region, more exploitation power(TC) and linear constraints on capital invested similar to
is needed. the holding weights constraints. NSGA-II based algorithm
By analyzing search process of the firefly algorithm with integer encoding was proposed to tackle this problem.
(FA), we noticed that this metaheuristic employs more The results were satisfying.
intensive exploitation. In the FA, more variables are being  Streichert et al. 20] implemented NSGA with real
utilized when performing search than in the ABC. Also, value and integer encoding for solving MV portfolio
ABC uses modification rateMR) parameter, and the model constrained to cardinality, buy-in thresholds and
solutions in the population are not being modified in MTL constraints. By examining results of preliminary
every cycle. experiments, the authors noticed that the efficient frontie
In order to improve both, the exploitation process, andof the portfolio optimization problem is generally
exploration-exploitation balance, we encapsulated FAcomposed of a restrictive number of the initial available
search equation in the employed bee phase. Ouassets, and outlined the analogy with the one-dimensional
hybridized metaheuristic performs ABC or FA search binary knapsack problem. Taso and LW1] applied
depending on the firefly search triggérST) parameter. modified NSGA-II to the Mean-Var portfolio problem.
By integrating FA search, exploitation is intensified and They considered only budget constraint in problem
better exploitation-exploration balance is established. ~ formulation. They changed random initialization of
In this way, by integrating FA search into the ABC, solutions in original NSGA-Il implementation and
we derived enhanced hybridized metaheuristic forendorsed the method that spots the non-dominated
cardinality constrained mean-variance (CCMV) portfolio solution set given a population of chromosomes. This
optimization problem which is named artificial bee approach performs well in portfolio optimization.
colony with firefly search method (ABC-FS). Hybrid GA approach was devised for portfolio
The rest of the paper is organized as follows. optimization problem formulation whose purpose is to
Literature review is given in Section 2, where we enlist duplicate within a target portfolio the behavior of a stock
implementations of metaheuristics for CCMV portfolio market index chosen as a benchmark. Problem’s objective
problems found in the literature survey. Section 3 presentdunction is chosen for minimizing the tracking error
mathematical formulations of portfolio optimization variance. The algorithm was tested on DAX indexes
problems. Original ABC approach for constrained benchmark using one year of daily closing pric2g| |
optimization is described in Section 4. In Section 5, we In [23] optimization of MV portfolio problem with
give detail description and analysis of our ABC-FS cardinality and holding weights constraints is presented.
approach. Parameter settings and experimental results a@omparative analysis of efficient frontiers of three
shown in Section 6, while conclusion and final remarksalgorithms is given. Performance of GA, tabu search (TS)
are given in Section 7. and simulated annealing (SA) is compared on a small
example problem which comprises four assets of FTSE
index with a cardinality fixed to two. Computer time and
2 Literature Review different percentage errors are used as a comparison
indicators. Testing results showed that for unconstrained
In this subsection brief overview is given of some portfolio optimization GA gives the best approximation
metaheuristic implementations for portfolio optimizatio with an almost zero mean percentage error, while for
problem found in the literature. As a result of literature cardinality constrained problems, none of the heuristcs i
survey, it can be concluded that portfolio selection uniformly superior 23].
problem was not much researched using nature inspired Soleimani et al.24] showed GA with RAR crossover
metaheuristics, and to the extend it was researchedyperator for solving MV portfolio problem where
mostly genetic algorithm (GA) implementations were cardinality constraints, MTL and constraints on sector
used. Also, it was observed that there are only few swarntapitalization are taken account. Besides RAR operator,
intelligence  algorithms  adopted for  portfolio the authors also employed in their approach a selection
optimization. In this section, some of the most importantoperator wherein half of the population is conducted to
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the following generation by choosing the fitter differential evolution (DE) metaheuristic was proposed by
chromosomes, and the other half is composed of offspringhe same authors for solving cardinality constrained MV
chromosomes. GA was compared to the LINGO resultsproblem B1]. In the hybrid ABC algorithm, a new search
on a small assets problem. Results showed that the erracheme and obsolete rules are presented to improve
differences of both approaches are minimal with no moreconvergent speed of the algorithm.

than 3 percent, but GA performed in a much less time  One of the first implementations for portfolio
than LINGO. The second experiment on a data set ofoptimization problem by the firefly algorithms was
2,000 assets showed the efficiency of GA, in bothdeveloped by Tuba et al3g]. Framework for solving this
parameters, computational time and risk error. problem was devised. Metaheuristics was tested on a five

Among other metaheuristics for portfolio problem, assets data set. FA proved to be robust and effective
one approach based on neural networks (NN) should bgechnique for portfolio problem.
distinguished 25]. In this paper, particular NN, the
Hopfield network is used to trace out the efficient frontier
for cardinality constrained portfolio problem. This
approach was compared to several state-of-the-ar8 Modelsfor Portfolio Optimization
metaheuristics for the same problem and showed good
performance. ) o i : o

As mentioned above, there are only few swarmThe basic guideline in making financial investments
inte”igence approaches for portfo”o optimization_ Den d.eC|S|0nS IS d|VerS|f|Cat|On, .Whel’e. In\_/estOI’S |.nVeSt Into
and Li presented ant colony optimization (ACO) for different types of assets. By investing in portfolios, eath
solving he cardinality constraints Markowitz MV than in single assets (or securities), individuals and
portfolio mode| ?6] Numerica' So|uti0ns are obtained InStItutI_OnS are able tO' dampen the I’ISk by d|VerS|f|Cat|0n
for five analyses of weekly price data for the Hang Seng,0f the investments, with no negative effect on expected
DAX, FTSE 100, S&P and Nikkei indexes. The test returns. Thus, the portfolio diversification minimizes
results indicate that the ACO is much more effective thaninvestors’ exposure to the risk83, while maximizing
PSO, especially for low-risk investment portfolios. returns on portfolios34].

Hagigi and Kazemi 27] proposed ant colony In its basic form, portfolio optimization is concerned
optimization (ACO) for solving MV portfolio model. The with selecting the portfolio of securities that minimizes
performance of ACO metaheuristic was compared withthe risk subject to the constraint of guaranteeing a given
the frontconfunction of MATLAB software as an exact level of returns $5]. This problem belongs to the group of
method. The test data set were monthly prices for threemulti-objective optimization problems. Many methods
years from Teheran stock exchange. The results show thavere devised for solving this kind of problem. One
proposed ACO approach is reliable, but not preferred toessential method which can be divided into two sub-types
an exact method. tackles the problem by transforming multi-objective

Cura showed PSO approach to cardinality constrainedortfolio model into a single-objective.

MV portfolio optimization R8]. The test data set is the The first sub-type selects one important objective
weekly prices from March 1992 to September 1997 fromfunction for optimization, while the remaining objective
the following indexes: Hang Seng in Hong Kong, DAX functions are treated as constraints. This method is
100 in Germany, FTSE 100 in UK, S&P 100 in USA and defined by Markowitz and it is called the standard
Nikkei in Japan. The results of this study are comparedmean-variance (MV) modeBf]. It was first formulated
with those of genetic algorithms, simulated annealing andn seminal paper in 1952, where the author rejects the
tabu search approaches, and showed that PSO has potentigipothesis that investors wish to maximize expected
in portfolio optimization. returns because this criterion does not imply that a

Zhu et al. 9] presented PSO algorithm for non-linear diversified portfolio is preferable to a non-diversified one
constrained portfolio optimization with multi-objective [35]. MV model’s basic assumptions are that the investors
functions. The model is tested on various restricted andhre rational with either multivariate normally distribdte
unrestricted risky investment portfolios and a compaeativ asset returns, or, in the case of arbitrary returns, a
study with GA is showed. PSO demonstrated highquadratic utility function 87]. If those assumptions hold,
computational efficiency in constructing optimal risky then the optimal portfolio for the investor lies on the
portfolios and can be compared with other state-of-the-arimean-variance efficient frontier.

algorithms. _ . _ In Markowitz’s MV model, the selection of risky
ABC algorithm for mixed quadratic and integer portfolio is modeled as objective function, while the mean
programming problem of cardinality constrained MV return of an asset is considered to be one of the

portfolio model was presented by Wang et 30} Some  constraints 38). Mathematical formulation is as follows:
modifications of classical ABC algorithm for constrained

optimization problems were adopted. The approach was N N
tested on a standard benchmark data set and proved to be min Uer —og2— Z mw,—Cov(RTiR_j) (5)
a robust portfolio optimizer. Also, a hybridized ABC with TP i;jzl
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Subject to When the value ofA changes, objective function’s
value alters. The reason for this change is that the
— N objective function is composed of the mean return value
Rp:E(Rp):Z‘”RiZR (6) and the variance (risk). The dependencies between
= changes of A and the mean return and variance
N intersections are shown on a continuous curve which is
Zcq =1 (7)  called efficient frontier in the Markowitz theory3§)].
i= Since each point on this curve indicates an optimum,
portfolio optimization problem is considered as
w >0, Vie(12..N) (8)  multi-objective, butA transforms it into single-objective
optimization task.

Sharpe ratio (SR) model uses the information from
mean and variance of an ass&®|[ This simple model is
éisk—adjusted measure of mean return and can be
described with the following expressiodd:

whereN is the number of available asse,is the mean
return on an asséandCovR R;) is covariance of returns
of assetd and j respectively. Weight variabley is used
as a control parameter that defines the proportion of th
capital that is invested in assetand constraint in Eq.7§
ensures that the whole available capital is invested. B thi Ry — R
formulation, the objective is to minimize the portfoliokis SR= StdDevp)’ (12)
o,%, for a given value of portfolio expected retury. P
In the shown MV model, weight variables) are real  where p denotes portfolioR, is the mean return of the
and they are in range between 0 and 1, as they represepbrtfolio p, andR; is a test available rate of return on a
the fraction of available money to invest in an asset. Thisrisk-free assetStdDeyp) is a measure of the risk in
choice is quite straightforward and has the advantage ofortfolio (standard deviation oR,). By adjusting the
being independent of the actual budget. It should be noteghortfolio weights w;, portfolio’s Sharpe ratio can be
that the Markowitz model can be considered as the mosimaximized.
simple formulation of portfolio optimization problem. In the models presented so far, we showed only basic
The second sub-type refers to the construction of onlyproblem formulations that do not consider real-world
one evaluation function that models portfolio factors and limitations and cannot be applied in practice.
optimization problem. It is often called in the literature These real-world factors and limitations include the
single-objective  function model. This method existence of transaction costs, sectors with high
encompasses two distinct models: efficient frontier andcapitalization and taxation, specifications of legal and
Sharpe ratio modePp). economic environment, finite divisibility of the assets to
The main goal in the efficient frontier model is to find select, etc. 40]. Thus, additional constraints can be
the different objective function values by varying desired applied to make portfolio optimization problem more
mean returrR. For this purpose, new paramefee [0, 1], realistic. For example, budget, cardinality, transactuis
which is called risk aversion indicator, is introduc&] and sector capitalization constraints were successfully
In this case, the model is approximated to only oneapplied in solving portfolio optimization problem using
objective function: PSO metaheuristic irBB]. The minimum transaction lots
constraint assures that each asset can only be purchased in
a certain number of units. With the applied transaction
minA A W, CO(RR; (1-A X Rl (9) lots constraint, classical portfolio optimization protole
[iz\;lm iCOURIR] —(1— )[i;&l } becomes a combinatorial optimization problem whose
feasible region is not continuous. Sector capitalization
subject to constraint refers to the fact that the investors tend tosnve
in the assets that belong to the sectors where higher value
N of market capitalization can be obtained. Investing in such
Zoq =1 (10) way, risk is reduced. The importance of this constraint is
i= discussed inZ4].
. If all the above mentioned additional portfolio
w=>0,Vie(l,2..N) (11)  optimization constraints are taken account, new portfolio

Parameted controls the relative importance of the mean OPtimization problem can be establishéd]| This model
return to the risk for the investor. Wheh is 0, mean IS named extended MV model and it is classified as a

return of the portfolio is maximized regardless of the risk. quadratic mixed-integer prog_rammlng_m_odel Wh'c_h can
Oppositely, wher has value of 1, risk of the portfolio is P& solved only by employing heuristics techniques.
being minimized regardless of the mean return. ThusEXténded MV model can be formulated as follows:

when the value o rises, the relative importance of the N N

risk to the investor increases, and significance of the mean ming2 = g2 — Z cqw-Cov(F\?@F\;) (13)
return decreases, and vice-versa. Rp P i; =i . )
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where 1 if the corresponding sector has at least one selected
X Gz asset, and 0 otherwise. In Ed.9Y}, is is a set of assets
= ———1=L1.,N (14)  which can be found in sectcs. Sectors are sorted in
2 j=1%iCjZj descending order by their capitalization value. Sector 1
has the highest capitalization value, while se@bas the
N lowest value.
Z\Zi =M<N,MNeN,Vi=1..N,ze{01} (15) In the literature other constraints can be found. One of
i them is 5-10-40 constraint which is based on36@(1) of
) the German investment lawd]]. This constraint defines
subject to upper limit of each individual asset and for the sum of all
N "heavyweight” in the portfolio. It actually means that the
xczR > BR (16) securities of the same issuer are allowed to the amount of
i; - 5% of the net asset value of the mutual fudd][ They are
allowed to amount to 10%, however, if the total share of
N all assets with a share between 5% and 10% is less than
ZX‘C‘Z‘ =B (A7) 40% of the net asset valud]]
i= . t
In this paper, for testing purposes, we use model
0 < Bjow <XC <Byp <B,i=1,.N (18)  Which employs some of the constraints that can be found
in the extended MV formulation. This study uses
cardinality constrained mean-variance model (CCMV)
which is derived from the standard Markowitz’s and the

> W= 5 W (19)  efficiency frontier models. CCMV formulation is:
Is IS'
N N N
Vysys #0, 5,5 € {1,..8}, s< ¢ min)\[zZXinUi,j]—(l—/\)[ZXilJi] 21)
i=1j=1 i=
where ]
Subject to
1 if5;.z>0
— s 20 N
¥s {o if 3,,z2=0 (20) le' =1 (22)
whereM represents the number of selected assets among I;
possibleN assetsB is the total available budget, while 7 =K (23)
Biow, and By are lower and upper limits of the budget i;

that can be invested in assetespectively.S denotes the

total number of sectors in the market.is the minimum . ) ) -

transaction lot for assetandx; denotes the number of 64 <%<4z,2€{0.1},1=123 N (24)

that is purchased. According to this;c; are integer As mentioned above) is risk aversion parametex, and

values that show the units of assét the portfolio. Xj are weight variables of assdtand j respectively |
Decision variable z is defined for modeling is their covariance, ang; is i-th asset’s returnk is the

cardinality constraintz is equal to 1 if an asset is desired number of assets that will be included in the

present in the portfolio. Otherwise, it is equal to 0. portfolio. Decision variable; controls whether the asset

Eq. (15 represents the cardinality constraint and will be included in portfolio. If its value is 1, assetis

inequality in Eq. (6) is the same as in Eg6). In orderto  included, and if the value is 0, assé$ excluded from the

make the search process easier, budget constrainportfolio. € andd are lower and upper bounds of the asset

Eq. (L7) is converted to inequality. Eq18) shows lower that is included in portfolio and they make sure that the

and upper bounds of budget constraint. asset’s proportion in the portfolio is within the predefined
Sector capitalization constraint improves decisions ofrange.

portfolio’s structure by emphasizing investments in asset  From CCMV formulation it can be seen that this

that belong to the sector with higher capitalization value.problem belongs to the group of mixed quadratic and

The assets that belong to the sector with moreinteger programming problem. It employs both, real and

capitalization should have more share in the finalinteger variables with equity and inequity constraints.

portfolio. This constraint is held only if securities from

the corresponding sectors are select&8].[ Eq. (19)

models sector capitalization constraint. Despite of tiee fa 4 Original ABC Algorithm Implementation

that a certain sector has high capitalization, securitynfro for Constrained Optimization

this sector that has low return and/or high risk must be

excluded from the final portfolio’s structure. To make The artificial bee colony (ABC) algorithm was designed

such exclusion, variablg; is defined and it has a value of for numerical optimization problems and it was inspired
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by the foraging behavior of honey beek5]. Since the new, neighborhood solution is simulated with the

performance of metaheuristic algorithms depend on thdollowing expression:

number and the choice of parameters, the main

advantages of the ABC algorithm are derived from the

fact that the algorithm uses only 3 control parameters: v {Xhi +@* (% j— %), Rj <MR
L) —

colony size, maximum cycle number and limit. x.j. otherwise (27)

In this paradigm, three types of artificial bees performs
search. Each type of bee has its particular role in a search h . th ter of the old solutioi _
process. This algorithm proves to be robust and capable of W €rexj 1S )= parameter ot the old Solution X |

solving high dimensionality problemd], [43], [44]. is ! parameter of a neighbor solutidn ¢ is a random
ABC algorithm utilizes three classes of artificial bees: number between 0 and 1, aktRis modification rateMR

employed bees, onlookers and scouts. Employed beegacontrol parameter of ABC algorithm.

make half of a colony. In the ABC metaheuristic, food If the fitness of the new solution is higher than the
source represents possible problem solution. There is onlfmes.S .Of the old one, employed bee contlnu.es
one employed bee per each food source. Employed be xploitation process with the new food source, otherwise
performs search process by examin.ing solution’s' retains the old one. Employed bees share information

neighborhood. Onlooker chooses food source forablomk f|tnes|s tOf ffoodd sogrcih with bontigl)'ct)k%s,t _and
exploitation based on the information which they gain OnIooKers Select a food sourcevith a probability that 1S
eproport|onal to the solution’s fitness taking into account

for a predetermined number of cycles, scouts replace th agonstraint violations (CV):

food source with a new one which is chosen randomly.

Limit parameter controls this process. Thus, in the ABC fitnes _ . _
0.5+ (=sne2 ) if solutionis feasible

algorithm onlooker and employed bees are responsible for Z.SN fitness”’

the expl_0|tat|on process, while scouts take care of the Pi = 1-=& cv)*OS i f solutionisin feasible

exploration. 2 28)
The main difference between ABC and other swarm . L

intelligence algorithms is based on the fact that thewhereCV Is calculated using:

possible solutions are represented by the food sources, not m

the individuals in the population. ABC algorithm, as an CV = z gj (%) + Z hj (%) (29)

iterative algorithm, starts by associating each employed g;(x)>0 j=aq+1

bee with randomly generated food source (solution). Each

solution x; (i = 1,2,...SN) is a D-dimensional vector, Taking into account all the above mentioned, pseudo-

where SN denotes the size of the population, aBd code for the ABC algorithm for constrained problems is
represent number. Initial population of candidate given below.
solutions is created using following expression:

Initialize the population of solutions using EQ5]
Evaluate the population using EQ8)

Xi.j = Ibj +rand(0, 1) x (ub; —Ibj), (25) cycle— 1
repeat
wherex; j is the j-the parameter of th" solution in the Produce new solutions for the employed bees by
populationrand(0, 1) is a random real number between 0 using Eq. 27), and evaluate them
and 1, andub; andlb; are upper and lower bounds of the Apply selection process between old and new
it parameter respectively. solutions based on the Deb’s methdd]| [46]

Calculate the probability valugs for the
solutionx; using Eq. 29)

For each onlooker bee, produce a new solutipn
using @7) in the neighborhood of the solution which
is selected according to the probability valpe

Apply selection process between new solution
v; and old solutiorx; by employing Deb’s method

Determine the abandoned solutions by udingt

ifobjFun >0 parameter for the scout. If they exist, replace them

(26) with new randomly produced solutions by EB5)
Memorize the best solution achieved so far
cycle=cycle+1
Each employed bee discovers a food source in its until cycle= MCN
neighborhood and evaluates its fitness. Discovery of a

There are many formulations of fithess function, but
in most implementations, for maximization problems,
fitness is simply proportional to the value of objective
function, while for the minimization problems, the
following expression is used:

fitness = ObJF“”’
1+ |objFun|, otherwise
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5 Proposed Hybridized ABC-FS if (,j = 1) then

M etaheuristic for CCMV Portfolio Problem if (x> ) thenxj = J;
if (x.j <ég)thenx ;=g

In order to enhance the performance of the original ABC end if

metaheuristic, we adopted search method procedure from  end for
the FA algorithm. This search strategy improves endwhile
exploitation and convergence speed of the basic ABC

implementation. Also, for solving CCMV portfolio As can be seen from the presented pseudo-code, for
problem, some modifications of original ABC algorithm the constrainy i, i = 1 we sety = 3o, and put
were necessary, especially for constraints handling. Xi.j = X,j/ for all assets that satisfy € Q. The same

approach for satisfying this constraint was used2f].[
To ensure that each asset’s proportion is within predefined
5.1 Initialization phase lower and upper bounds, and é respectively, we used:
if Xij > & then x5 = 4§ and
At the initialization step, the algorithm generates random!f Xi.i < &.j then x; = ;. We emphasis that we did not
usec-value based approach for putting out and in assets in

population ofSN positions (food sources). For random h fol 28 | lqorith bei
initialization, ABC-FS employs the same expression as inth€ portfolio as in 2§]. In our algorithm, assets are being
added and removed from the portfolio randomly.

the original ABC Eg. 25). Moreover, decision variable
z; (i=1,..SNj=1,..N) is also initialized for each

food sourcei. N is the number of potential assets in ) .
portfolio. Thus, the number of dimensions of each 9.2 Fitness calculation and employed bees
potential solution is B. z is binary array, and when an phase

asset is included in portfolio, it's value is 1, otherwisesit

0. Fithness is calculated as in the original ABC
At the initialization stage, decision variables are implementation according to EqR). As in the original
generated randomly using: ABC metaheuristic, the number of employed bees is

equal to the number of food sources. In each algorithm’s
iteration, an employed bee finds new food source and

_ J1ife<05 (30) evaluates its fitness. Process of finding new food source is
4= 0,if >05 defined as:
whereg@ is random real number between 0 and 1. 1

At this stage/imit counter that controls whether the 2 = round( ) —0.06) (31)
solutions should be abandoned is set to O for all candidate
solutions in the populations.

Inspired with the similar approach proposed 28]] {

14e 4itai@i—%]

we used the arrangement algorithm that guarantees the'®"= Xt *(.X"’J Xcj) IRy <MRAZT=1
feasibility of solutions. This algorithm is first applied at X}, otherwise

the initialization stage of our ABC-FS. In this algorithim, _ . _ _ (32)
is the current solution that consists Gfthe distinct set of ~ Wherez j is a decision variable of theth parameter of the
K; assets in thé" solution,z j is the decision variable of old solutionz j is decision variable of" parameter of the
assetj and x; is the weight proportion for assgt  neighbor solutiony; j is j!" parameter of the old solution

Arrangement algorithm pseUdO-COde is shown below. i X, is jth parameter of a neighbor solutidn @, is a
random number between 0 and 1, MR is modification

while(K" < K) rate.MR s a control parameter of the ABC algorithm.
select random assg¢such thatj ¢ Q It should be noticed that the decision variables in the
zj=10=QU[jK=K"+1 employed bee phase are generated differently than in the

end while initialization phase Eq.30)

while(K;" > K) As mentioned in thdntroduction we incorporated
select random assgsuch thatj € Q search procedure form the FA metaheuristic. FA was first
z2;=10=Q-[jLK'=K"-1 proposed for unconstrained optimizatioh6]. FA has

end while been adapted for solving various numerical optimization

while(true) and practical optimization problems.
0= YieQXi i Xi,j = Xi.j/w,n = Our inspiration for enhancement of the search process
=Yjeqmax0,%j — &), @ =73 ;jcomax0,n; —X ;) came from the firefly’s flashing behavior that is used to
if(n =0andp =0) then exit éﬁgorithm improve search for the optimal solution. Thus, in ABC-FS
for j=1 to N implementation, the employed bee phase is modified by
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hybridization with the firefly search. We introduced (x'",z'®") is chosen and the counter is set to 0. In the
another search expression which is applied for eactonlooker phase, we do not use FA search equation.
solution’s parameterlfg]:

X" =X + Bo * e Vi (% — %)+ a x (rand—0.5), (33)
. . . 5.4 Scout phase
wheref3 is attractiveness at=0, y presents the variation
of attractivenessg is randomization parameterand is
random number uniformly distributed between 0 and 1,
andr;  is distance between food sourgemdk.

The distance between food sourcasdk is calculated
using Cartesian distance:

After all employed bees and onlooker bees complete their
search, all food source that have reached lthet are
abandoned and bees that exploited them become scouts.
Scouts perform exploration by replacing the old food
source with a random one. Random solution is generated
using Eg. 25) and Eq. 80).

Pseudo-code of the ABC-FS metaheuristic for CCMV
problem is shown below.

k=X —x| = (34)

whereD is the number of problem variables.

For most cases, it can be takBn= 0 anda € [0,1].

In the ABC-FS,a is dynamic parameter which is adjusted
during the algorithm’s run. The details will be presented in
Section 4y is extremely important in determination of the

speed of the convergence of the search process.

It should be noted that in our algorithm, the
attractiveness is modeled with the fitness function. The
higher the fitness, the higher the attractiveness and
vice-versa.

To control the search process, we introduced
additional parameter, firefly search triggEIST) which is

Initialize the population of solutions
Zj, % j,1=1,273,..SN j=1,2,3,...N by using
Eq. 25 and Eq. 80)

Apply arrangement algorithm

Evaluate the population using®)

cycle=1

repeat
generate decision variable for new solution using

adjusted within the rang@0,1]. If k < FST, then the
ABC search is performed, otherwise, FA search
mechanism is triggered is random number uniformly

Eq. GD

if (k <FST) produce new solutions for the employed
bees with ABC search using EQRZ), otherwise
generate new solution by employing FA search with

distributed between 0 and 1. We note that when the FA
search is performed, the decision variables are calculated
the same way Eqg.3Q). In our implementation, we
empirically determinedFST = 0.5, so with equal
probably ABC or FA search will be performed.

After the employed bee founds new solution, a
selection between old and new solution is performed
based on the Deb’s rules4q]. For this selection,
constraint violations CV are being calculated using
Eq. (29). If the old solution cannot be improved, its
counter (number of trials) is incremented by one. If the
new solution is selected, count is reset to 0.

Eq. 33

Evaluate new solution

Apply selection process between new solution
(X", z2**%) and old solutior(x;, z) by employing
Deb’s method45], [46]

Calculate the probability valugs for the solutionx;
using Eqg. 29) and Eq. 28)

For each onlooker bee, produce a new solution using
Eq. 31) and Eq. 82) in the neighborhood of the
solution which is selected according to the
probability valuep;

Apply selection process between new solution
(x"®™, Z'*") and old solutior(x;,z) by employing
Deb’s method45], [46]

Determine the abandoned solutions by udingt
parameter for the scout. If they exist, replace them
with new randomly produced solutions by E85)(

Memorize the best solution achieved so far

cycle=cycle+1

until cycle= MCN

5.3 Onlooker bee phase

When all employed bees have finished their search, they
share information about food source’s fithess with the
onlooker bees. The onlookers chose food source with
probability p; calculated using Eq.28). ABC-FS uses
fitness proportional roulette wheel selection. Food
sources with highemp; have greater chances for being
selected. After that the onlooker tries to improve selected
solution by using Eq.31) and Eq. 82). sources (solutions) in the populatiad,is the number of

If onlooker could not improve old food sourc®, z ), assets in the set, anMICN is maximum number of
its counter is incremented by one, otherwise, new solutioralgorithm’s iterations.

In the shown pseudo-cod8N is the number of food
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6 Algorithm Settings and Experimental adjustment 47]. Exploration is improved by exploring a

Results larger search space than the initial one. One of the best
practices is to start with a relatively largevalue, which

In this section, we first present and analyze ABC-FsiS gradually decreased through the iterations of the

parameter setup. Later, we show experimental results on &lgorithm. We used the following dynamic settings for the

standard benchmark data set and a comparative analysts

with other state-of-the-art metaheuristics.

~ u(cycle
v(cycle+1) = “dec (39)
6.1 Parameter settings wheret is the current cycle, andecis a value slightly

larger than 1dec~ 1). For handling equality constraints,
For the sake of better comparative analysis, we set alive set initial value foru to 1.0,decto 1.001 and the
algorithm parameters like ir2B]. SN, the number of food  threshold foru to 0.0001 like in #3].
sources (solutions) in the population was calculated For generating heuristics efficient frontier we used
using: differentA values from 0 to 1 wittAA = 0.02 as in 2§,
which gives the number of algorithm’s rugs= 51.
SN=20VN, (35) We also set the number of assets that will be included
) ) . in portfolio K to 10, lower asset’s weigtd to 0.01 and
Whe(e N is the number of_assgts in portfoliddCN upper asset's weigh to 1.
maximum number of cycles (iterations) was set to: Below, we present again short ABC-FS pseudo-code,
100N but this time emphasizing parameter adjustments.

=N (36)
SN A—0

Exploration and exploitation are two fundamental while(A < 1)
elements of all EAs that drive and direct the evolution SN= 20N

process towards optimum and/or convergence. Set portfolio problem parameteis v andd

MCN =

Exploration refers to visiting new regions of the search InitializationPhase()
space, while exploitation explores the search space within ArrangementAlgorithm()
the neighborhood of previously visited points. EvaluatePopulation()

Modification rate MIR) and limit parameters control Set values foMR andlimit
exploitation-exploration trade-off in the ABC approach. Set initial values fow anda
MR parameter is set to 0.8, amithit is set according to MCN = 100N
the following expressior4f3: for (cycle:SiNto MCN)

MCN 100N for (i:l to S'\D
limit = —— = —SN (37) if (k <FST) EmployedBeePhase()
SN 20¢N by ABC search

else
EmployedBeePhase() by FA search
Apply Selection between old and new solution
using Deb rules
end for
for(i=1to SN
OnlookerBeePhase()
Apply Selection between old and new solution
using Deb rules

Since MR and limit control the exploitation-exploration
balance, empirical tests showed that this is proper
parameter adjustment.

We empirically established an equal selection
probability between ABC and FA search procedures, so a
parameteFSTis setto 0.5.

FA search parametear process is set to 0.5, but it is
being gradually decreased from its initial value according
to the Eq. 88).

end for
ScoutBeePhase()
—(1—(1— —4 /g)1/cycl _ ArrangementAlgorithm()
at)=1-{1-(107/9) Mxat=1) (38) MemorizeBestSolution()
In the ABC-FS implementation, besides the adoption of Recalculate values far anda
arrangement algorithm, we used E4). §nd violation limit cycle++
v for handling constraints. It is very important to chose end for
the right value fow. If the chosen value is too small, the A=A +AA

algorithm may not find feasible solutions, and otherwise ~€nd while
the results may be far from the feasible regidf][

The promising approaches for handling equality  In order to make better distinction between parameter
constraints include dynamic, self-adaptive tolerancetypes, we divided parameters into following groups:
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Tablel ABC-FS parameters

Table2 ABC-FS benchmark specific parameters

Par ameter Value Par ameter Value
ABC-FSglobal parameters Hang Seng index with 31 assets
Number of food sourcess\) depends oM Number of food sourcessN) 111
Number of cyclesNICN) depends oSN Number of cyclesNICN) 279
Limit (limit) depends oisNandMCN Limit (limit) 3
Modification rate MIR) 0.8 DAX 100 index with 85 assets
Firefly search trigger{ST) 0.5 Number of food sourcesS{) 185
FA search parameters Number of cyclesNICN) 459
Initial value for randomization 0.5 Limit (limit) 3
parameteo FTSE 100 index with 89 assets
Attractivnes ar=0 3y 0.2 Number of food sourcesS{\) 189
Absorption coefficieny 1.0 Number of cyclesNICN) 479
Portfolio problem parameters Limit (limit) 3
Number of assets\) depends on the problem S& P 100 index with 98 assets
No. of assets in portfolioK) 10 Number of food sourcesS{\) 198
Initial value of risk aversionX) 0 Dumber of cyclesNICN) 494
Different A values €) 51 Limit (limit) 3
Lower asset’s weightg]) 0.01 Nikkei index with 225 assets
Upper asset's weight| 1.0 Number of food sourcesS(N) 300
Constraint-handling parameters Dumber of cyclesNICN) 750
Initial violation tolerance @) 1.0 Limit (limit) 3
Decrementdeq 1.002

ABC-FS globa| parametersy FA Search parametersstandard efficient frontiers of the five real-world
portfolio problem parameters and constraint-handlingP€nchmark sets mentioned above with the heuristic

parameters. Parameters are summarized in the Table  €fficient frontier for the same data set. For comparison of
standard and heuristic efficiency frontier, we use mean

Euclidean distance, variance of return error and mean
return error as in48]. We also give the execution time of
ABC-FS for each benchmark on our computer platform.

For calculation purposes of mean Euclidean distance,

In the experimental section, we present the resultd®t the pair(W,r?) = (i = 1,2,3,...,2000 denotes the
obtained when searching the general efficient frontier that/2fiance and mean return_r(\);] tf;]e point in the standard
provides the solution of the problem formulated in €fficient frontier, and the paitvi,rf) = (i =1,2,3,..., &)
Egs. @124). The test data were obtained from represents the variance and mean return of the point in the

http://people.brunel.ac.uk/ mastjjb/jeb/orlib/poftimtml,  heuristic efficient frontier. Then, the closest standard

These data refer to the weekly stock prices fromeff!0|ency frontier pomtsto Fhe heuristic effl_uency fr_oem
March 1992 to September 1997 for the indexes: the Hon oint, denoted a$vﬁj’ri,j) is calculated using Euclidean
Kong Hang Seng with 31 assets, the German Dax 1o¢}istance by:
with 85 assets, the British FTSE 100 with 89 assets, the
US S&P 100 with 98 assets, and the Japanese Nikkei with
225 assets.

As mentioned in the previous subsecti@l), MCN
and limit parameters depend on the problem sie
(number of assets). Exact values used in tests are given in
the Table2. Since those parameters are integers, formula
result is rounded to the closest integer value.

All tests were performed on Intel CoreTM i7 4770K  According to Eq. 40), mean Euclidean distance is defined
processor @4GHz with 8GB of RAM memory, Windows gs:
7 x64 Ultimate 64 operating system and Visual Studio
2010 .NET 4.0 Framework.

When sets of Pareto optimal portfolios obtained with £ 5 s o
ABC-FS metaheuristic are taken, heuristic efficient (Zja \/(Vﬁj —V)2= (=132
frontier can be traced. In this paper, we compare the & (41)

6.2 Experimental results and comparative
analysis

ij=arg min=1,,2.3....2ooo(\/(vf'— V24 (rf =12, (40)
§=123..¢
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Table 3 Experimental results for five benchmark indexes

Index N Performance indicators GA TS SA PSO ABC-FS
Mean Euclidean distance 0.0040 0.0040 0.0040 0.0049 0.0004
Hang Seng 31 \Variance of return error (%) 1.6441 1.6578 1.6628 2.2421 1.3952
Mean return error (%) 0.6072 0.6107 0.6238 0.7427 0.5289
Execution time 18 9 10 34 12
Mean Euclidean distance 0.0076 0.0082 0.0078 0.0090 0.0009
DAX 100 85 \Variance of return error (%) 7.2180 9.0309 8.5485 6.8588 7.2649
Mean return error (%) 1.2791 1.9078 1.2817 1.5885 1.35229
Execution time 99 42 52 179 62
Mean Euclidean distance 0.0020 0.0021 0.0021 0.0022 0.0003
FTSE 100 89 \Variance of return error (%) 2.8660 4.0123 3.8205 3.0596 26721
Mean return error (%) 0.3277 0.3298 0.3304 0.3640 0.31872
Execution time 106 42 55 190 76
Mean Euclidean distance 0.0041 0.0041 0.0041 0.0052 0.0001
S%P 100 98 \Variance of return error (%) 3.4802 5.7139 5.4247 3.9136 3.7598
Mean return error (%) 1.2258 0.7125 0.8416 1.4040 0.95292
Execution time 126 51 66 214 125
Mean Euclidean distance 0.0093 0.0010 0.0010 0.0019 0.0000
Nikkei 225 Variance of return error (%) 1.2056 1.2431 1.2017 2.4274 1.69823
Mean return error (%) 5.3266 0.4207 04126 0.7997 0.67192
Execution time 742 234 286 919 329

Besides mean Euclidean distance, we employed two othef T SELOO benchmarks, ABC-FS is better than all four

measures, variance of return error and mean return erroalgorithms in all three indicators, mean Euclidean

Variance of return error is defined as: distance, variance of return error and mean return error.
For used benchmarks, ABC-FS was able to approximate

¢ 1 the standard efficient frontier with the smallest mean
(y 100V} —VT|/VT)§ (42)  return and variance of return error, and under the same
=1 risk values, ABC-FS’s obtained portfolio return is higher
Mean return error is calculated as: than in the case of other algorithms.
Second best algorithms shown in TalBeare SA

F 1 which obtains best variance of return and mean return
(S 100, —rf 2 (43)  error in NikkeR25 test, and GA that shows satisfying
=1 ' ¢ results in DAX100 and S%P100 benchmarks. TS

generated best value for mean return error in S%P 100
index, while PSO obtained best variance of return error in
DAX100 test.

From the presented analysis it can be concluded that

We compared ABC-FS with tabu search (TS), genetic
algorithm (GA), simulated annealing (SA) frorgJ], and
PSO from pg] for the same data set. We compared mean

Euclidean distance, variance of return error and mean, . o approach obtained results in CCMV_portfolio

return error. We also give computational time for L
ABC-FS, but those results are incomparable with resultsOpt'mlzamon problem that can be more valuable for the

for other metaheuristics because we used diﬁerengnvestors. ABC-FS’s results are more accurate and the
: ) enerated investment strategy is able to more efficiently

computer platform. InZ8] for testing purposes Pentium diversify the risk of the portfolio

M 2.13 GHz computer with 1 GB RAM was used. In the '

results table, best obtained results of all five heuristies a

printed bold.

The experimental results presented in TaBlprove
that none of the four algorithms which we took for
comparisons has distinct advantages. However, it can bén this paper we present enhancement of the ABC
seen that on average, ABC-FS is better approach thaalgorithm by hybridization with the FA metaheuristic for
other four metaheuristics for tackling CCMV portfolio cardinality constrained MV (CCMV) portfolio
problem. optimization problem. We adopted FA search procedure

ABC-FS obtains better (smaller) mean Euclideanfor the employed bees. Original ABC suffers from slow
distance for all five benchmark sets. HangSengand  convergence and unbalanced trade-off between

7 Conclusions
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exploitation and exploration. By introducing FA search [12] Yang, X.-S. & Deb, S. Engineering optimization by cuckoo
into ABC, we overcame this deficiency. search. International Journal of Mathematical Modeling
According to the test results and comparative analysis ~ and Numerical Optimizatioft, 330-343 (2010).
we conclude that in overall, ABC-FS is better than all [13] Brajevic, I. & Tuba, M. Cuckoo search and firefly algorithm
state-of-the-art algorithms taken for the purpose of  applied to multilevel image thresholding. In Yang, X.-
comparative analysis. Euclidean distance is smaller in all ~ S. (ed.) Cuckoo Search and Firefly Algorithm: Theory
five benchmarks, and irlangSengand FT SELOO tests, and _Appllcatlons vol. 516_01‘ Studies in_Computat_ion_aI
ABC-FS outperformed all four metaheuristics in terms of ~ Intelligence 115-139 (Springer International Publishing,

all three indicators - mean Euclidean distance, mean _2014): , . .
variance of return and mean return error. [14] Tuba, M. Asymptotic behavior of the maximum entropy

Future research may include application of here routing in computerqetworkfntropyls, 361-371 (2013).
proposed ABC-FS algorithm to other portfolio [15] Karaboga, D. An idea based on honey bee swarm for

optimization models and formulations with different numerical optimization. Technical Report - TROG-10

: o A 2005).
constraints. Also, additional modifications of the ABC ( . . . o
algorithm can be investigated for possible further [16] Yang, X.-S. Firefly algorithms for multimodal optimization.

. Stochastic Algorithms: Foundations and Applications,

improvement of results. LNCS5792, 169-178 (2009).
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