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Abstract: Portfolio selection (optimization) problem is a very important and widely researched problem in the areas of finance and
economy. Literature review shows that many methods and heuristics were applied to this hard optimization problem, however, there are
only few implementations of swarm intelligence metaheuristics. This paper presents artificial bee colony (ABC) algorithm applied to
the cardinality constrained mean-variance (CCMV) portfolio optimization model. By analyzing ABC metaheuristic, some deficiencies
such as slow convergence to the optimal region, were noticed. In this paper ABC algorithm improved by hybridization with the firefly
algorithm (FA) is presented. FA’s search procedure was incorporated into the ABC algorithm to enhance the process of exploitation.
We tested our proposed algorithm on standard test data used in the literature. Comparison with other state-of-the-art optimization
metaheuristics including genetic algorithms, simulated annealing, tabu search and particle swarm optimization (PSO) shows that our
approach is superior considering quality of the portfolio optimization results, especially mean Euclidean distance from the standard
efficiency frontier.
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1 Introduction

Most real-life problems can be reduced to some kind of
optimization, thus optimization is one of the most
applicable areas of mathematics and computer science.
The difficulty of an optimization problem depends on the
type of the objective function that is optimized,
constraints and decision variables.

Multi-objective optimization is much more
complicated than single-objective problems. The problem
becomes even harder when some variables can take real,
while other can take only integer values. Such mixed
continuous/discrete problems usually require
problem-specific search techniques in order to generate
optimal, or near-optimal solution.

This research was supported by Ministry of Education,
Science and Technological Development of Republic of Serbia,
Grant III-44006.

1.1 Numerical optimization problems

Numerical optimization problems can be combinatorial
(discrete, where variables can take only integer values) or
continuous (global optimization), where continuous
problems can be constrained or unconstrained (bound
constrained). Portfolio optimization problem is a very
important and widely researched problem in the areas of
finance and economy and it belongs to the group of
numerical optimization problems, with or without
constants, with real and sometimes mixed variables.

Unconstrained (bound constrained) optimization is
formulated as D-dimensional minimization or
maximization problem:

min(or max) f (x), x= (x1,x2,x3, ...,xD) ∈ S, (1)

∗ Corresponding author e-mail:tuba@ieee.org

c© 2014 NSP
Natural Sciences Publishing Cor.

http://dx.doi.org/10.12785/amis/080619


2832 M. Tuba, N. Bacanin: ABC Algorithm Hybridized with FA for Portfolio...

wherex represents a real vector withD ≥ 1 components
and S ∈ RD is hyper-rectangular search space withD
dimensions constrained by lower and upper bounds:

lbi ≤ xi ≤ ubi , i ∈ [1,D] (2)

In Eq. (2) lbi andubi are lower and upper bounds of theith

problem component respectively.
The nonlinear constrained optimization problem in the

continuous space can be formulated in the same way as in
Eq. (1), but in this casex∈F ⊆SwhereSisD-dimensional
hyper-rectangular space as defined in Eq. (2) andF ⊆ S
represents the feasible region defined by the set ofm linear
or non-linear constraints:

g j(x)≤ 0, f or j ∈ [1,q] (3)

h j(x) = 0, f or j ∈ [q+1,m]

whereq is the number of inequality constraints, andm−q
is the number of equality constraints.

Basic versions of algorithms for constrained
numerical optimization problems do not employ methods
for dealing with constraints. For this reason, constraint
handling techniques are usually applied in those
algorithms to improve and redirect the search process
towards the feasible region of the search domain.
Moreover, equality constraints make optimization even
harder by shrinking the feasible search space which
becomes very small compared to the entire search space.
To tackle such problem, equality constraints are replaced
with the inequality constraints [1].

|h(x)|−υ ≤ 0, (4)

whereυ > 0 is some small violation tolerance.

1.2 Nature-inspired metaheuristics

Deterministic algorithms are not suitable for hard,
intractable optimization problems since the results cannot
be obtained within an acceptable computational time. In
such cases, the use of metaheuristics is more appropriate.

Metaheuristics are iterative, population based and
stochastic approaches that do not guarantee the optimal
solution, bet they can obtain subsatisfying suboptimal
solution within reasonable computational time. Two main
driving forces of metaheuristics are exploitation and
exploration. Exploitation conduct search around the
current best solutions, while exploration performs a
random search to find the feasible region.

In the last few decades, nature became a great source
of inspiration for the development of intelligent systems
that can provide solutions to hard optimization problems.
Following natural principles nature-inspired
metaheuristics were devised.

Nature-inspired metaheuristics can roughly be divided
into two categories: evolutionary algorithms (EA) and

swarm intelligence. Prominent among EA are genetic
algorithms (GA). GA implementations can obtain good
results for many kinds of optimization problems [2].

The branch of nature-inspired algorithms which is
called swarm intelligence is focused on collective
behavior of some simple individuals. Social behavior of
swarms of ants, bees, worms, flocks of birds and schools
of fish was an inspiring source for emerging of swarm
intelligence. Even though swarm system consist of
relatively unsophisticated individuals, they exhibit
coordinated behavior that directs swarm towards the
desired goal with no central component that manages the
system as a whole.

Ant colony optimization (ACO) models the social
behavior of ants in finding the shortest paths between
their nest and the food source. The corner stone of the
ACO is ant’s ability to deploy a substance called
pheromone in order to mark discovered path. ACO is one
of the oldest members of swarm intelligence family [3].
This metaheuristic was successfully applied to
combinatorial [4], as well as on continuous optimization
problems [5], [6], [7]. Particle swarm optimization (PSO)
is another older swarm intelligence algorithm that
simulates social behavior of fish schooling or bird
flocking. PSO was successfully applied to many
single-objective and multi-objective optimization
problems. Glowworm swarm optimization algorithm was
recently applied to constrained engineering design
problems [8].

Metaheuristic that mimics the human search process
based on human memory, reasoning, past experience and
interactions is seeker optimization algorithm (SOA). This
relatively novel method showed good performance in
solving global numerical optimization problems [9] and is
continuously being improved [10].

Cuckoo search (CS) is another new iterative approach
that models search process by employing Levy flights
(series of straight short and long flight paths with sudden
90 degrees turn). It was first proposed by Yang and Deb
[11] and proven to be a robust optimization technique
[12], obtaining satisfying results in real-life optimizations
like image thresholding [13] based on entropy objective
function [14].

1.3 Artificial bee colony (ABC) improvement

In this paper we propose Artificial Bee Colony (ABC)
algorithm hybridized with Firefly Algorithm (FA) for
cardinality constrained mean-variance (CCMV) portfolio
optimization problem. ABC was originally proposed by
Karaboga for continuous optimization problems [15],
while FA is among the latest swarm intelligence
algorithms proposed by Yang [16].

Our implementation of the hybridized ABC solution
is aimed to overcoming weaknesses of the original ABC
for constrained optimization problems such as CCMV
portfolio problem. By studying the ABC algorithm, we

c© 2014 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.8, No. 6, 2831-2844 (2014) /www.naturalspublishing.com/Journals.asp 2833

noticed a deficiency during the solution search process.
Exploitation is not intensive enough and the algorithm
converges slowly to the optimal region of the search
space. After significant number of cycles, when the
optimal solution is almost found, this deficiency is even
more emphasized.

Additionally, the exploitation-exploration balance is
not well adjusted for this application in the original ABC
approach. In early cycles, scouts perform exploration
which is necessary for finding feasible search space
region, however is not well balanced with exploitation. In
the late cycles, with the assumption that the search has
converged to the optimal region, more exploitation power
is needed.

By analyzing search process of the firefly algorithm
(FA), we noticed that this metaheuristic employs more
intensive exploitation. In the FA, more variables are being
utilized when performing search than in the ABC. Also,
ABC uses modification rate (MR) parameter, and the
solutions in the population are not being modified in
every cycle.

In order to improve both, the exploitation process, and
exploration-exploitation balance, we encapsulated FA
search equation in the employed bee phase. Our
hybridized metaheuristic performs ABC or FA search
depending on the firefly search trigger (FST) parameter.
By integrating FA search, exploitation is intensified and
better exploitation-exploration balance is established.

In this way, by integrating FA search into the ABC,
we derived enhanced hybridized metaheuristic for
cardinality constrained mean-variance (CCMV) portfolio
optimization problem which is named artificial bee
colony with firefly search method (ABC-FS).

The rest of the paper is organized as follows.
Literature review is given in Section 2, where we enlist
implementations of metaheuristics for CCMV portfolio
problems found in the literature survey. Section 3 presents
mathematical formulations of portfolio optimization
problems. Original ABC approach for constrained
optimization is described in Section 4. In Section 5, we
give detail description and analysis of our ABC-FS
approach. Parameter settings and experimental results are
shown in Section 6, while conclusion and final remarks
are given in Section 7.

2 Literature Review

In this subsection brief overview is given of some
metaheuristic implementations for portfolio optimization
problem found in the literature. As a result of literature
survey, it can be concluded that portfolio selection
problem was not much researched using nature inspired
metaheuristics, and to the extend it was researched,
mostly genetic algorithm (GA) implementations were
used. Also, it was observed that there are only few swarm
intelligence algorithms adopted for portfolio
optimization. In this section, some of the most important

metaheuristic implementations for portfolio optimization
problem are discussed.

Many papers show solving portfolio optimization
problem using non-dominating Sorting Genetic
Algorithm (NSGA). First version of NSGA algorithm
was proposed by Deb et al. [17]. Difference between GA
and NSGA is the redefinition of the selection operator.
Second version, NSGA-II was also proposed by Deb et. al
[18]. New version improves the convergence and the
spread of the solutions in population.

Lin et al. [19] considered a MV portfolio model with
minimum transaction lots (MTL), fixed transaction costs
(TC) and linear constraints on capital invested similar to
the holding weights constraints. NSGA-II based algorithm
with integer encoding was proposed to tackle this problem.
The results were satisfying.

Streichert et al. [20] implemented NSGA with real
value and integer encoding for solving MV portfolio
model constrained to cardinality, buy-in thresholds and
MTL constraints. By examining results of preliminary
experiments, the authors noticed that the efficient frontier
of the portfolio optimization problem is generally
composed of a restrictive number of the initial available
assets, and outlined the analogy with the one-dimensional
binary knapsack problem. Taso and Lui [21] applied
modified NSGA-II to the Mean-Var portfolio problem.
They considered only budget constraint in problem
formulation. They changed random initialization of
solutions in original NSGA-II implementation and
endorsed the method that spots the non-dominated
solution set given a population of chromosomes. This
approach performs well in portfolio optimization.

Hybrid GA approach was devised for portfolio
optimization problem formulation whose purpose is to
duplicate within a target portfolio the behavior of a stock
market index chosen as a benchmark. Problem’s objective
function is chosen for minimizing the tracking error
variance. The algorithm was tested on DAX indexes
benchmark using one year of daily closing prices [22].

In [23] optimization of MV portfolio problem with
cardinality and holding weights constraints is presented.
Comparative analysis of efficient frontiers of three
algorithms is given. Performance of GA, tabu search (TS)
and simulated annealing (SA) is compared on a small
example problem which comprises four assets of FTSE
index with a cardinality fixed to two. Computer time and
different percentage errors are used as a comparison
indicators. Testing results showed that for unconstrained
portfolio optimization GA gives the best approximation
with an almost zero mean percentage error, while for
cardinality constrained problems, none of the heuristics is
uniformly superior [23].

Soleimani et al. [24] showed GA with RAR crossover
operator for solving MV portfolio problem where
cardinality constraints, MTL and constraints on sector
capitalization are taken account. Besides RAR operator,
the authors also employed in their approach a selection
operator wherein half of the population is conducted to
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the following generation by choosing the fitter
chromosomes, and the other half is composed of offspring
chromosomes. GA was compared to the LINGO results
on a small assets problem. Results showed that the error
differences of both approaches are minimal with no more
than 3 percent, but GA performed in a much less time
than LINGO. The second experiment on a data set of
2,000 assets showed the efficiency of GA, in both
parameters, computational time and risk error.

Among other metaheuristics for portfolio problem,
one approach based on neural networks (NN) should be
distinguished [25]. In this paper, particular NN, the
Hopfield network is used to trace out the efficient frontier
for cardinality constrained portfolio problem. This
approach was compared to several state-of-the-art
metaheuristics for the same problem and showed good
performance.

As mentioned above, there are only few swarm
intelligence approaches for portfolio optimization. Deng
and Li presented ant colony optimization (ACO) for
solving he cardinality constraints Markowitz MV
portfolio model [26]. Numerical solutions are obtained
for five analyses of weekly price data for the Hang Seng,
DAX, FTSE 100, S&P and Nikkei indexes. The test
results indicate that the ACO is much more effective than
PSO, especially for low-risk investment portfolios.

Haqiqi and Kazemi [27] proposed ant colony
optimization (ACO) for solving MV portfolio model. The
performance of ACO metaheuristic was compared with
the f rontcon function of MATLAB software as an exact
method. The test data set were monthly prices for three
years from Teheran stock exchange. The results show that
proposed ACO approach is reliable, but not preferred to
an exact method.

Cura showed PSO approach to cardinality constrained
MV portfolio optimization [28]. The test data set is the
weekly prices from March 1992 to September 1997 from
the following indexes: Hang Seng in Hong Kong, DAX
100 in Germany, FTSE 100 in UK, S&P 100 in USA and
Nikkei in Japan. The results of this study are compared
with those of genetic algorithms, simulated annealing and
tabu search approaches, and showed that PSO has potential
in portfolio optimization.

Zhu et al. [29] presented PSO algorithm for non-linear
constrained portfolio optimization with multi-objective
functions. The model is tested on various restricted and
unrestricted risky investment portfolios and a comparative
study with GA is showed. PSO demonstrated high
computational efficiency in constructing optimal risky
portfolios and can be compared with other state-of-the-art
algorithms.

ABC algorithm for mixed quadratic and integer
programming problem of cardinality constrained MV
portfolio model was presented by Wang et al [30]. Some
modifications of classical ABC algorithm for constrained
optimization problems were adopted. The approach was
tested on a standard benchmark data set and proved to be
a robust portfolio optimizer. Also, a hybridized ABC with

differential evolution (DE) metaheuristic was proposed by
the same authors for solving cardinality constrained MV
problem [31]. In the hybrid ABC algorithm, a new search
scheme and obsolete rules are presented to improve
convergent speed of the algorithm.

One of the first implementations for portfolio
optimization problem by the firefly algorithms was
developed by Tuba et al. [32]. Framework for solving this
problem was devised. Metaheuristics was tested on a five
assets data set. FA proved to be robust and effective
technique for portfolio problem.

3 Models for Portfolio Optimization

The basic guideline in making financial investments
decisions is diversification, where investors invest into
different types of assets. By investing in portfolios, rather
than in single assets (or securities), individuals and
institutions are able to dampen the risk by diversification
of the investments, with no negative effect on expected
returns. Thus, the portfolio diversification minimizes
investors’ exposure to the risks [33], while maximizing
returns on portfolios [34].

In its basic form, portfolio optimization is concerned
with selecting the portfolio of securities that minimizes
the risk subject to the constraint of guaranteeing a given
level of returns [35]. This problem belongs to the group of
multi-objective optimization problems. Many methods
were devised for solving this kind of problem. One
essential method which can be divided into two sub-types
tackles the problem by transforming multi-objective
portfolio model into a single-objective.

The first sub-type selects one important objective
function for optimization, while the remaining objective
functions are treated as constraints. This method is
defined by Markowitz and it is called the standard
mean-variance (MV) model [36]. It was first formulated
in seminal paper in 1952, where the author rejects the
hypothesis that investors wish to maximize expected
returns because this criterion does not imply that a
diversified portfolio is preferable to a non-diversified one
[35]. MV model’s basic assumptions are that the investors
are rational with either multivariate normally distributed
asset returns, or, in the case of arbitrary returns, a
quadratic utility function [37]. If those assumptions hold,
then the optimal portfolio for the investor lies on the
mean-variance efficient frontier.

In Markowitz’s MV model, the selection of risky
portfolio is modeled as objective function, while the mean
return of an asset is considered to be one of the
constraints [38]. Mathematical formulation is as follows:

minσ2
Rp

= σ2
p =

N

∑
i=1

N

∑
j=1

ωiω jCov(R̄iR̄j) (5)
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Subject to

R̄p = E(Rp) =
N

∑
i=1

ωiR̄i ≥ R (6)

N

∑
i=1

ωi = 1 (7)

ωi ≥ 0, ∀i ∈ (1,2, ...N) (8)

whereN is the number of available assets,R̄i is the mean
return on an asseti andCov(R̄iR̄j) is covariance of returns
of assetsi and j respectively. Weight variableωi is used
as a control parameter that defines the proportion of the
capital that is invested in asseti, and constraint in Eq. (7)
ensures that the whole available capital is invested. In this
formulation, the objective is to minimize the portfolio risk
σ2

p, for a given value of portfolio expected return̄Rp.
In the shown MV model, weight variables (ω) are real

and they are in range between 0 and 1, as they represent
the fraction of available money to invest in an asset. This
choice is quite straightforward and has the advantage of
being independent of the actual budget. It should be noted
that the Markowitz model can be considered as the most
simple formulation of portfolio optimization problem.

The second sub-type refers to the construction of only
one evaluation function that models portfolio
optimization problem. It is often called in the literature
single-objective function model. This method
encompasses two distinct models: efficient frontier and
Sharpe ratio model [29].

The main goal in the efficient frontier model is to find
the different objective function values by varying desired
mean returnR. For this purpose, new parameterλ ∈ [0,1],
which is called risk aversion indicator, is introduced [29].
In this case, the model is approximated to only one
objective function:

minλ [
N

∑
i=1

N

∑
j=1

ωiω jCov(R̄iR̄j ]− (1−λ )[
N

∑
i=1

ωiR̄i ] (9)

subject to

N

∑
i=1

ωi = 1 (10)

ωi ≥ 0, ∀i ∈ (1,2, ...N) (11)

Parameterλ controls the relative importance of the mean
return to the risk for the investor. Whenλ is 0, mean
return of the portfolio is maximized regardless of the risk.
Oppositely, whenλ has value of 1, risk of the portfolio is
being minimized regardless of the mean return. Thus,
when the value ofλ rises, the relative importance of the
risk to the investor increases, and significance of the mean
return decreases, and vice-versa.

When the value ofλ changes, objective function’s
value alters. The reason for this change is that the
objective function is composed of the mean return value
and the variance (risk). The dependencies between
changes of λ and the mean return and variance
intersections are shown on a continuous curve which is
called efficient frontier in the Markowitz theory [36].
Since each point on this curve indicates an optimum,
portfolio optimization problem is considered as
multi-objective, butλ transforms it into single-objective
optimization task.

Sharpe ratio (SR) model uses the information from
mean and variance of an asset [39]. This simple model is
risk-adjusted measure of mean return and can be
described with the following expression [39]:

SR=
Rp−Rf

StdDev(p)
, (12)

where p denotes portfolio,Rp is the mean return of the
portfolio p, andRf is a test available rate of return on a
risk-free asset.StdDev(p) is a measure of the risk in
portfolio (standard deviation ofRp). By adjusting the
portfolio weights wi , portfolio’s Sharpe ratio can be
maximized.

In the models presented so far, we showed only basic
problem formulations that do not consider real-world
factors and limitations and cannot be applied in practice.
These real-world factors and limitations include the
existence of transaction costs, sectors with high
capitalization and taxation, specifications of legal and
economic environment, finite divisibility of the assets to
select, etc. [40]. Thus, additional constraints can be
applied to make portfolio optimization problem more
realistic. For example, budget, cardinality, transactionlots
and sector capitalization constraints were successfully
applied in solving portfolio optimization problem using
PSO metaheuristic in [38]. The minimum transaction lots
constraint assures that each asset can only be purchased in
a certain number of units. With the applied transaction
lots constraint, classical portfolio optimization problem
becomes a combinatorial optimization problem whose
feasible region is not continuous. Sector capitalization
constraint refers to the fact that the investors tend to invest
in the assets that belong to the sectors where higher value
of market capitalization can be obtained. Investing in such
way, risk is reduced. The importance of this constraint is
discussed in [24].

If all the above mentioned additional portfolio
optimization constraints are taken account, new portfolio
optimization problem can be established [38]. This model
is named extended MV model and it is classified as a
quadratic mixed-integer programming model which can
be solved only by employing heuristics techniques.
Extended MV model can be formulated as follows:

minσ2
Rp

= σ2
p =

N

∑
i=1

N

∑
j=1

ωiω jCov(R̄iR̄j) (13)
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where

ωi =
xicizi

∑N
j=1x jc jzj

, i = 1, ...,N (14)

N

∑
i=1

zi = M ≤ N, M,N ∈ N, ∀i = 1, ...N, zi ∈ {0,1} (15)

subject to

N

∑
i=1

xiciziR̄i ≥ BR (16)

N

∑
i=1

xicizi ≤ B (17)

0≤ Blowi ≤ xici ≤ Bupi ≤ B, i = 1, ...N (18)

∑
is

Wis ≥ ∑
is′

Wis′ (19)

∀ysys′ 6= 0, s,s′ ∈ {1, ...S} , s< s′

where

ys =

{

1 if ∑is zi > 0
0 if ∑is zi = 0

(20)

whereM represents the number of selected assets among
possibleN assets.B is the total available budget, while
Blowi and Bupi are lower and upper limits of the budget
that can be invested in asseti respectively.S denotes the
total number of sectors in the market.ci is the minimum
transaction lot for asseti, andxi denotes the number ofci ’
that is purchased. According to this,xici are integer
values that show the units of asseti in the portfolio.

Decision variable zi is defined for modeling
cardinality constraint.zi is equal to 1 if an asseti is
present in the portfolio. Otherwise, it is equal to 0.
Eq. (15) represents the cardinality constraint and
inequality in Eq. (16) is the same as in Eq. (6). In order to
make the search process easier, budget constraint,
Eq. (17) is converted to inequality. Eq. (18) shows lower
and upper bounds of budget constraint.

Sector capitalization constraint improves decisions of
portfolio’s structure by emphasizing investments in assets
that belong to the sector with higher capitalization value.
The assets that belong to the sector with more
capitalization should have more share in the final
portfolio. This constraint is held only if securities from
the corresponding sectors are selected [38]. Eq. (19)
models sector capitalization constraint. Despite of the fact
that a certain sector has high capitalization, security from
this sector that has low return and/or high risk must be
excluded from the final portfolio’s structure. To make
such exclusion, variableys is defined and it has a value of

1 if the corresponding sector has at least one selected
asset, and 0 otherwise. In Eq. (19), is is a set of assets
which can be found in sectors. Sectors are sorted in
descending order by their capitalization value. Sector 1
has the highest capitalization value, while sectorShas the
lowest value.

In the literature other constraints can be found. One of
them is 5-10-40 constraint which is based on the§60(1) of
the German investment law [41]. This constraint defines
upper limit of each individual asset and for the sum of all
”heavyweight” in the portfolio. It actually means that the
securities of the same issuer are allowed to the amount of
5% of the net asset value of the mutual fund [41]. They are
allowed to amount to 10%, however, if the total share of
all assets with a share between 5% and 10% is less than
40% of the net asset value [41].

In this paper, for testing purposes, we use model
which employs some of the constraints that can be found
in the extended MV formulation. This study uses
cardinality constrained mean-variance model (CCMV)
which is derived from the standard Markowitz’s and the
efficiency frontier models. CCMV formulation is:

minλ [
N

∑
i=1

N

∑
j=1

xix jσi, j ]− (1−λ )[
N

∑
i=1

xi µi ] (21)

Subject to

N

∑
i=1

xi = 1 (22)

N

∑
i=1

zi = K (23)

εizi ≤ xi ≤ δizi , z∈ {0,1}, i = 1,2,3, ...N (24)

As mentioned above,λ is risk aversion parameter,xi and
x j are weight variables of assetsi and j respectively,δi, j
is their covariance, andµi is i-th asset’s return.K is the
desired number of assets that will be included in the
portfolio. Decision variablezi controls whether the asseti
will be included in portfolio. If its value is 1, asseti is
included, and if the value is 0, asseti is excluded from the
portfolio. ε andδ are lower and upper bounds of the asset
that is included in portfolio and they make sure that the
asset’s proportion in the portfolio is within the predefined
range.

From CCMV formulation it can be seen that this
problem belongs to the group of mixed quadratic and
integer programming problem. It employs both, real and
integer variables with equity and inequity constraints.

4 Original ABC Algorithm Implementation
for Constrained Optimization

The artificial bee colony (ABC) algorithm was designed
for numerical optimization problems and it was inspired
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by the foraging behavior of honey bees [15]. Since the
performance of metaheuristic algorithms depend on the
number and the choice of parameters, the main
advantages of the ABC algorithm are derived from the
fact that the algorithm uses only 3 control parameters:
colony size, maximum cycle number and limit.

In this paradigm, three types of artificial bees performs
search. Each type of bee has its particular role in a search
process. This algorithm proves to be robust and capable of
solving high dimensionality problems [42], [43], [44].

ABC algorithm utilizes three classes of artificial bees:
employed bees, onlookers and scouts. Employed bees
make half of a colony. In the ABC metaheuristic, food
source represents possible problem solution. There is only
one employed bee per each food source. Employed bee
performs search process by examining solution’s
neighborhood. Onlooker chooses food source for
exploitation based on the information which they gain
from employed bees. If a food source does not improve
for a predetermined number of cycles, scouts replace that
food source with a new one which is chosen randomly.
Limit parameter controls this process. Thus, in the ABC
algorithm onlooker and employed bees are responsible for
the exploitation process, while scouts take care of the
exploration.

The main difference between ABC and other swarm
intelligence algorithms is based on the fact that the
possible solutions are represented by the food sources, not
the individuals in the population. ABC algorithm, as an
iterative algorithm, starts by associating each employed
bee with randomly generated food source (solution). Each
solution xi (i = 1,2, ...SN) is a D-dimensional vector,
where SN denotes the size of the population, andD
represent number. Initial population of candidate
solutions is created using following expression:

xi, j = lb j + rand(0,1)∗ (ubj − lb j), (25)

wherexi, j is the j-the parameter of thith solution in the
population,rand(0,1) is a random real number between 0
and 1, andubj andlb j are upper and lower bounds of the
j th parameter respectively.

There are many formulations of fitness function, but
in most implementations, for maximization problems,
fitness is simply proportional to the value of objective
function, while for the minimization problems, the
following expression is used:

f itnessi =

{

1
ob jFuni

, i f ob jFuni > 0

1+ |ob jFuni |, otherwise
(26)

Each employed bee discovers a food source in its
neighborhood and evaluates its fitness. Discovery of a

new, neighborhood solution is simulated with the
following expression:

vi, j =

{

xi, j +φ ∗ (xi, j −xk, j),Rj < MR
xi, j ,otherwise

(27)

wherexi, j is j th parameter of the old solutioni, xk, j

is j th parameter of a neighbor solutionk, φ is a random
number between 0 and 1, andMR is modification rate.MR
is a control parameter of ABC algorithm.

If the fitness of the new solution is higher than the
fitness of the old one, employed bee continues
exploitation process with the new food source, otherwise
it retains the old one. Employed bees share information
about fitness of food source with onlookers, and
onlookers select a food sourcei with a probability that is
proportional to the solution’s fitness taking into account
constraint violations (CV):

pi =







0.5+( f itnessi
∑SN

i=1 f itnessi
), i f solution is f easible

(1− CV
∑SN

i=1CV
)∗0.5, i f solution is in f easible

(28)
whereCV is calculated using:

CVi = ∑
g j (xi)>0

g j(xi)+
m

∑
j=q+1

h j(xi) (29)

Taking into account all the above mentioned, pseudo-
code for the ABC algorithm for constrained problems is
given below.

Initialize the population of solutions using Eq. (25)
Evaluate the population using Eq. (26)
cycle= 1
repeat

Produce new solutions for the employed bees by
using Eq. (27), and evaluate them

Apply selection process between old and new
solutions based on the Deb’s method [45], [46]

Calculate the probability valuespi for the
solutionxi using Eq. (29)

For each onlooker bee, produce a new solutionvi j
using (27) in the neighborhood of the solution which
is selected according to the probability valuepi

Apply selection process between new solution
vi and old solutionxi by employing Deb’s method

Determine the abandoned solutions by usinglimit
parameter for the scout. If they exist, replace them
with new randomly produced solutions by Eq. (25)

Memorize the best solution achieved so far
cycle= cycle+1

until cycle= MCN
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5 Proposed Hybridized ABC-FS
Metaheuristic for CCMV Portfolio Problem

In order to enhance the performance of the original ABC
metaheuristic, we adopted search method procedure from
the FA algorithm. This search strategy improves
exploitation and convergence speed of the basic ABC
implementation. Also, for solving CCMV portfolio
problem, some modifications of original ABC algorithm
were necessary, especially for constraints handling.

5.1 Initialization phase

At the initialization step, the algorithm generates random
population ofSNpositions (food sources)xi . For random
initialization, ABC-FS employs the same expression as in
the original ABC Eq. (25). Moreover, decision variable
zi, j (i = 1, ...SN, j = 1, ...N) is also initialized for each
food sourcei. N is the number of potential assets in
portfolio. Thus, the number of dimensions of each
potential solution is 2N. zi is binary array, and when an
asset is included in portfolio, it’s value is 1, otherwise itis
0.

At the initialization stage, decision variables are
generated randomly using:

zi, j =

{

1, i f φ < 0.5
0, i f φ ≥ 0.5

(30)

whereφ is random real number between 0 and 1.
At this stage,limit counter that controls whether the

solutions should be abandoned is set to 0 for all candidate
solutions in the populations.

Inspired with the similar approach proposed in [28],
we used the arrangement algorithm that guarantees the
feasibility of solutions. This algorithm is first applied at
the initialization stage of our ABC-FS. In this algorithm,i
is the current solution that consists of:Q the distinct set of
K∗

i assets in theith solution,zi, j is the decision variable of
asset j and xi, j is the weight proportion for assetj.
Arrangement algorithm pseudo-code is shown below.

while(K∗
i < K)

select random assetj such thatj /∈ Q
zi, j = 1,Q= Q∪ [ j],K∗

i = K∗
i +1

end while
while(K∗

i > K)
select random assetj such thatj ∈ Q
zi, j = 1,Q= Q− [ j],K∗

i = K∗
i −1

end while
while(true)

θ = ∑ j∈Qxi, j ,xi, j = xi, j/ψ,η =

= ∑ j∈Qmax(0,xi, j −δi),φ = ∑ j∈Qmax(0,η j −xi, j)
if(η = 0andφ = 0) then exit algorithm
for j = 1 to N

if (zi, j = 1) then
if (xi, j > δ j ) then xi, j = δ j
if (xi, j < ε j ) then xi, j = ε j

end if
end for

end while

As can be seen from the presented pseudo-code, for
the constraint∑N

i=1xi = 1 we setψ = ∑ j∈Qxi, j and put
xi, j = xi, j/ψ for all assets that satisfyj ∈ Q. The same
approach for satisfying this constraint was used in [28].
To ensure that each asset’s proportion is within predefined
lower and upper bounds,ε and δ respectively, we used:
i f xi, j > δi, j then xi, j = δi, j and
i f xi, j < εi, j then xi, j = εi, j . We emphasis that we did not
usec-value based approach for putting out and in assets in
the portfolio as in [28]. In our algorithm, assets are being
added and removed from the portfolio randomly.

5.2 Fitness calculation and employed bees
phase

Fitness is calculated as in the original ABC
implementation according to Eq. (26). As in the original
ABC metaheuristic, the number of employed bees is
equal to the number of food sources. In each algorithm’s
iteration, an employed bee finds new food source and
evaluates its fitness. Process of finding new food source is
defined as:

znew
i, j = round(

1

1+e−zi, j+φi, j (zi, j−zk, j
)−0.06) (31)

xnew
i, j =

{

xi, j +φi, j ∗ (xi, j −xk, j), i f R j < MR∧ znew
i, j = 1

xi, j ,otherwise
(32)

wherezi, j is a decision variable of thej-th parameter of the
old solution,zk, j is decision variable ofj th parameter of the
neighbor solution.xi, j is j th parameter of the old solution
i, xk, j is j th parameter of a neighbor solutionk, φi, j is a
random number between 0 and 1, andMR is modification
rate.MR is a control parameter of the ABC algorithm.

It should be noticed that the decision variables in the
employed bee phase are generated differently than in the
initialization phase Eq. (30)

As mentioned in theIntroduction, we incorporated
search procedure form the FA metaheuristic. FA was first
proposed for unconstrained optimization [16]. FA has
been adapted for solving various numerical optimization
and practical optimization problems.

Our inspiration for enhancement of the search process
came from the firefly’s flashing behavior that is used to
improve search for the optimal solution. Thus, in ABC-FS
implementation, the employed bee phase is modified by
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hybridization with the firefly search. We introduced
another search expression which is applied for each
solution’s parameter [16]:

xnew
i = xi +β0∗e−γ∗r2

i,k(xk−xi)+α ∗ (rand−0.5), (33)

whereβ0 is attractiveness atr=0, γ presents the variation
of attractiveness,α is randomization parameter,rand is
random number uniformly distributed between 0 and 1,
andr i,k is distance between food sourcesi andk.

The distance between food sourcesi andk is calculated
using Cartesian distance:

r i,k = ||xi −xk||=

√

√

√

√

D

∑
j=1

(xi, j −xk, j)2, (34)

whereD is the number of problem variables.
For most cases, it can be takenβ0 = 0 andα ∈ [0,1].

In the ABC-FS,α is dynamic parameter which is adjusted
during the algorithm’s run. The details will be presented in
Section 4.γ is extremely important in determination of the
speed of the convergence of the search process.

It should be noted that in our algorithm, the
attractiveness is modeled with the fitness function. The
higher the fitness, the higher the attractiveness and
vice-versa.

To control the search process, we introduced
additional parameter, firefly search trigger (FST) which is
adjusted within the range[0,1]. If κ ≤ FST, then the
ABC search is performed, otherwise, FA search
mechanism is triggered.κ is random number uniformly
distributed between 0 and 1. We note that when the FA
search is performed, the decision variables are calculated
the same way Eq. (31). In our implementation, we
empirically determinedFST = 0.5, so with equal
probably ABC or FA search will be performed.

After the employed bee founds new solution, a
selection between old and new solution is performed
based on the Deb’s rules [46]. For this selection,
constraint violations CV are being calculated using
Eq. (29). If the old solution cannot be improved, its
counter (number of trials) is incremented by one. If the
new solution is selected, count is reset to 0.

5.3 Onlooker bee phase

When all employed bees have finished their search, they
share information about food source’s fitness with the
onlooker bees. The onlookers chose food source with
probability pi calculated using Eq. (28). ABC-FS uses
fitness proportional roulette wheel selection. Food
sources with higherpi have greater chances for being
selected. After that the onlooker tries to improve selected
solution by using Eq. (31) and Eq. (32).

If onlooker could not improve old food source(xi ,zi),
its counter is incremented by one, otherwise, new solution

(xnew
i ,znew

i ) is chosen and the counter is set to 0. In the
onlooker phase, we do not use FA search equation.

5.4 Scout phase

After all employed bees and onlooker bees complete their
search, all food source that have reached thelimit are
abandoned and bees that exploited them become scouts.
Scouts perform exploration by replacing the old food
source with a random one. Random solution is generated
using Eq. (25) and Eq. (30).

Pseudo-code of the ABC-FS metaheuristic for CCMV
problem is shown below.

Initialize the population of solutions
zi, j , xi, j , i = 1,2,3, ...SN, j = 1,2,3, ...N by using
Eq. (25) and Eq. (30)

Apply arrangement algorithm
Evaluate the population using (26)
cycle= 1
repeat

generate decision variable for new solution using
Eq. (31)

if (κ ≤ FST) produce new solutions for the employed
bees with ABC search using Eq. (32), otherwise
generate new solution by employing FA search with
Eq. (33)

Evaluate new solution
Apply selection process between new solution
(xnew

i ,znew
i ) and old solution(xi ,zi) by employing

Deb’s method [45], [46]
Calculate the probability valuespi for the solutionxi

using Eq. (29) and Eq. (28)
For each onlooker bee, produce a new solution using

Eq. (31) and Eq. (32) in the neighborhood of the
solution which is selected according to the
probability valuepi

Apply selection process between new solution
(xnew

i ,znew
i ) and old solution(xi ,zi) by employing

Deb’s method [45], [46]
Determine the abandoned solutions by usinglimit

parameter for the scout. If they exist, replace them
with new randomly produced solutions by Eq. (25)

Memorize the best solution achieved so far
cycle= cycle+1

until cycle= MCN

In the shown pseudo-code,SN is the number of food
sources (solutions) in the population,N is the number of
assets in the set, andMCN is maximum number of
algorithm’s iterations.
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6 Algorithm Settings and Experimental
Results

In this section, we first present and analyze ABC-FS
parameter setup. Later, we show experimental results on a
standard benchmark data set and a comparative analysis
with other state-of-the-art metaheuristics.

6.1 Parameter settings

For the sake of better comparative analysis, we set all
algorithm parameters like in [28]. SN, the number of food
sources (solutions) in the population was calculated
using:

SN= 20
√

N, (35)

where N is the number of assets in portfolio.MCN
maximum number of cycles (iterations) was set to:

MCN=
1000N

SN
(36)

Exploration and exploitation are two fundamental
elements of all EAs that drive and direct the evolution
process towards optimum and/or convergence.
Exploration refers to visiting new regions of the search
space, while exploitation explores the search space within
the neighborhood of previously visited points.

Modification rate (MR) and limit parameters control
exploitation-exploration trade-off in the ABC approach.
MR parameter is set to 0.8, andlimit is set according to
the following expression [43]:

limit =
MCN
SN

=
1000N

SN

20
√

N
(37)

SinceMR and limit control the exploitation-exploration
balance, empirical tests showed that this is proper
parameter adjustment.

We empirically established an equal selection
probability between ABC and FA search procedures, so a
parameterFST is set to 0.5.

FA search parameterα process is set to 0.5, but it is
being gradually decreased from its initial value according
to the Eq. (38).

α(t) = (1− (1− ((10−4/9)1/cycle)))∗α(t −1) (38)

In the ABC-FS implementation, besides the adoption of
arrangement algorithm, we used Eq. (4) and violation limit
υ for handling constraints. It is very important to chose
the right value forυ . If the chosen value is too small, the
algorithm may not find feasible solutions, and otherwise
the results may be far from the feasible region [43].

The promising approaches for handling equality
constraints include dynamic, self-adaptive tolerance

adjustment [47]. Exploration is improved by exploring a
larger search space than the initial one. One of the best
practices is to start with a relatively largeυ value, which
is gradually decreased through the iterations of the
algorithm. We used the following dynamic settings for the
υ :

υ(cycle+1) =
υ(cycle)

dec
(39)

wheret is the current cycle, anddec is a value slightly
larger than 1 (dec∼ 1). For handling equality constraints,
we set initial value forυ to 1.0, dec to 1.001 and the
threshold forυ to 0.0001 like in [43].

For generating heuristics efficient frontier we used
differentλ values from 0 to 1 with∆λ = 0.02 as in [28],
which gives the number of algorithm’s runsξ = 51.

We also set the number of assets that will be included
in portfolio K to 10, lower asset’s weightε to 0.01 and
upper asset’s weightδ to 1.

Below, we present again short ABC-FS pseudo-code,
but this time emphasizing parameter adjustments.

λ = 0
while(λ ≤ 1)

SN= 20
√

N
Set portfolio problem parametersK, υ andδ
InitializationPhase()
ArrangementAlgorithm()
EvaluatePopulation()
Set values forMR andlimit
Set initial values forυ andα
MCN= 1000N

SN
for(cycle=1 to MCN)

for(i=1 to SN)
if (κ ≤ FST) EmployedBeePhase()

by ABC search
else
EmployedBeePhase() by FA search
Apply Selection between old and new solution

using Deb rules
end for
for(i=1 to SN)

OnlookerBeePhase()
Apply Selection between old and new solution

using Deb rules
end for
ScoutBeePhase()
ArrangementAlgorithm()
MemorizeBestSolution()
Recalculate values forυ andα
cycle++

end for
λ=λ + ∆λ

end while

In order to make better distinction between parameter
types, we divided parameters into following groups:

c© 2014 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.8, No. 6, 2831-2844 (2014) /www.naturalspublishing.com/Journals.asp 2841

Table 1 ABC-FS parameters

Parameter Value
ABC-FS global parameters

Number of food sources (SN) depends onN
Number of cycles (MCN) depends onSN
Limit ( limit ) depends onSNandMCN
Modification rate (MR) 0.8
Firefly search trigger (FST) 0.5

FA search parameters
Initial value for randomization
parameterα

0.5

Attractivnes atr=0 β0 0.2
Absorption coefficientγ 1.0

Portfolio problem parameters
Number of assets (N) depends on the problem
No. of assets in portfolio (K) 10
Initial value of risk aversion (λ ) 0
Different λ values (ξ ) 51
Lower asset’s weight (ε) 0.01
Upper asset’s weight (δ ) 1.0

Constraint-handling parameters
Initial violation tolerance (υ) 1.0
Decrement (dec) 1.002

ABC-FS global parameters, FA search parameters,
portfolio problem parameters and constraint-handling
parameters. Parameters are summarized in the Table1.

6.2 Experimental results and comparative
analysis

In the experimental section, we present the results
obtained when searching the general efficient frontier that
provides the solution of the problem formulated in
Eqs. (21-24). The test data were obtained from
http://people.brunel.ac.uk/ mastjjb/jeb/orlib/portinfo.html.

These data refer to the weekly stock prices from
March 1992 to September 1997 for the indexes: the Hong
Kong Hang Seng with 31 assets, the German Dax 100
with 85 assets, the British FTSE 100 with 89 assets, the
US S&P 100 with 98 assets, and the Japanese Nikkei with
225 assets.

As mentioned in the previous subsection,SN, MCN
and limit parameters depend on the problem sizeN
(number of assets). Exact values used in tests are given in
the Table2. Since those parameters are integers, formula
result is rounded to the closest integer value.

All tests were performed on Intel CoreTM i7 4770K
processor @4GHz with 8GB of RAM memory, Windows
7 x64 Ultimate 64 operating system and Visual Studio
2010 .NET 4.0 Framework.

When sets of Pareto optimal portfolios obtained with
ABC-FS metaheuristic are taken, heuristic efficient
frontier can be traced. In this paper, we compare the

Table 2 ABC-FS benchmark specific parameters

Parameter Value
Hang Seng index with 31 assets

Number of food sources (SN) 111
Number of cycles (MCN) 279
Limit ( limit ) 3

DAX 100 index with 85 assets
Number of food sources (SN) 185
Number of cycles (MCN) 459
Limit ( limit ) 3

FTSE 100 index with 89 assets
Number of food sources (SN) 189
Number of cycles (MCN) 479
Limit ( limit ) 3

S&P 100 index with 98 assets
Number of food sources (SN) 198
Dumber of cycles (MCN) 494
Limit ( limit ) 3

Nikkei index with 225 assets
Number of food sources (SN) 300
Dumber of cycles (MCN) 750
Limit ( limit ) 3

standard efficient frontiers of the five real-world
benchmark sets mentioned above with the heuristic
efficient frontier for the same data set. For comparison of
standard and heuristic efficiency frontier, we use mean
Euclidean distance, variance of return error and mean
return error as in [28]. We also give the execution time of
ABC-FS for each benchmark on our computer platform.

For calculation purposes of mean Euclidean distance,
let the pair (vs

i , r
s
i ) = (i = 1,2,3, ...,2000) denotes the

variance and mean return of the point in the standard
efficient frontier, and the pair(vh

j , r
h
j ) = (i = 1,2,3, ...,ξ )

represents the variance and mean return of the point in the
heuristic efficient frontier. Then, the closest standard
efficiency frontier point to the heuristic efficiency frontier
point, denoted as(vs

i, j , r
s
i, j) is calculated using Euclidean

distance by:

i j = argmini=1,2,3,...2000(
√

(vs
i −vh

j )
2+(rs

i − rh
j )

2, (40)

j = 1,2,3, ...ξ

According to Eq. (40), mean Euclidean distance is defined
as:

(∑ξ
j=1

√

(vs
i, j −vh

j )
2− (rs

i, j − rh
j )

2)

ξ
(41)
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Table 3 Experimental results for five benchmark indexes

Index N Performance indicators GA TS SA PSO ABC-FS

Hang Seng

Mean Euclidean distance 0.0040 0.0040 0.0040 0.0049 0.0004
31 Variance of return error (%) 1.6441 1.6578 1.6628 2.2421 1.3952

Mean return error (%) 0.6072 0.6107 0.6238 0.7427 0.5289
Execution time 18 9 10 34 12

DAX 100

Mean Euclidean distance 0.0076 0.0082 0.0078 0.0090 0.0009
85 Variance of return error (%) 7.2180 9.0309 8.5485 6.8588 7.2649

Mean return error (%) 1.2791 1.9078 1.2817 1.5885 1.35229
Execution time 99 42 52 179 62

FTSE 100

Mean Euclidean distance 0.0020 0.0021 0.0021 0.0022 0.0003
89 Variance of return error (%) 2.8660 4.0123 3.8205 3.0596 2.6721

Mean return error (%) 0.3277 0.3298 0.3304 0.3640 0.31872
Execution time 106 42 55 190 76

S%P 100

Mean Euclidean distance 0.0041 0.0041 0.0041 0.0052 0.0001
98 Variance of return error (%) 3.4802 5.7139 5.4247 3.9136 3.7598

Mean return error (%) 1.2258 0.7125 0.8416 1.4040 0.95292
Execution time 126 51 66 214 125

Nikkei

Mean Euclidean distance 0.0093 0.0010 0.0010 0.0019 0.0000
225 Variance of return error (%) 1.2056 1.2431 1.2017 2.4274 1.69823

Mean return error (%) 5.3266 0.4207 0.4126 0.7997 0.67192
Execution time 742 234 286 919 329

Besides mean Euclidean distance, we employed two other
measures, variance of return error and mean return error.
Variance of return error is defined as:

(
ξ

∑
j=1

100|vs
i, j −vh

j |/vh
j )

1
ξ

(42)

Mean return error is calculated as:

(
ξ

∑
j=1

100|rs
i, j − rh

j |/rh
j )

1
ξ

(43)

We compared ABC-FS with tabu search (TS), genetic
algorithm (GA), simulated annealing (SA) from [23], and
PSO from [28] for the same data set. We compared mean
Euclidean distance, variance of return error and mean
return error. We also give computational time for
ABC-FS, but those results are incomparable with results
for other metaheuristics because we used different
computer platform. In [28] for testing purposes Pentium
M 2.13 GHz computer with 1 GB RAM was used. In the
results table, best obtained results of all five heuristics are
printed bold.

The experimental results presented in Table3 prove
that none of the four algorithms which we took for
comparisons has distinct advantages. However, it can be
seen that on average, ABC-FS is better approach than
other four metaheuristics for tackling CCMV portfolio
problem.

ABC-FS obtains better (smaller) mean Euclidean
distance for all five benchmark sets. InHangSengand

FTSE100 benchmarks, ABC-FS is better than all four
algorithms in all three indicators, mean Euclidean
distance, variance of return error and mean return error.
For used benchmarks, ABC-FS was able to approximate
the standard efficient frontier with the smallest mean
return and variance of return error, and under the same
risk values, ABC-FS’s obtained portfolio return is higher
than in the case of other algorithms.

Second best algorithms shown in Table3 are SA
which obtains best variance of return and mean return
error in Nikkei225 test, and GA that shows satisfying
results in DAX100 and S%P100 benchmarks. TS
generated best value for mean return error in S%P 100
index, while PSO obtained best variance of return error in
DAX100 test.

From the presented analysis it can be concluded that
the our approach obtained results in CCMV portfolio
optimization problem that can be more valuable for the
investors. ABC-FS’s results are more accurate and the
generated investment strategy is able to more efficiently
diversify the risk of the portfolio.

7 Conclusions

In this paper we present enhancement of the ABC
algorithm by hybridization with the FA metaheuristic for
cardinality constrained MV (CCMV) portfolio
optimization problem. We adopted FA search procedure
for the employed bees. Original ABC suffers from slow
convergence and unbalanced trade-off between
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exploitation and exploration. By introducing FA search
into ABC, we overcame this deficiency.

According to the test results and comparative analysis
we conclude that in overall, ABC-FS is better than all
state-of-the-art algorithms taken for the purpose of
comparative analysis. Euclidean distance is smaller in all
five benchmarks, and inHangSengand FTSE100 tests,
ABC-FS outperformed all four metaheuristics in terms of
all three indicators - mean Euclidean distance, mean
variance of return and mean return error.

Future research may include application of here
proposed ABC-FS algorithm to other portfolio
optimization models and formulations with different
constraints. Also, additional modifications of the ABC
algorithm can be investigated for possible further
improvement of results.
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