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Abstract: In this paper, an optimization algorithm is presented for solving systemagfilar boundary value problems. In this
technique, the system is formulated as an optimization problem by the direirhimation of the overall individual residual error
subject to the given constraints boundary conditions, and is then saimgleontinuous genetic algorithm in the sense that each of the
derivatives is replaced by an appropriate difference quotient appation. Two numerical experiments are carried out to verify the
mathematical results, and the theoretical statements for the solutionppreted by the results of numerical experiments. Meanwhile,
the statistical analysis is provided in order to capture the behavior of thésssand to discover the effect of system parameters on
the convergence speed of the algorithm. The numerical results demterthat the algorithm is quite accurate and efficient for solving
systems of singular boundary value problems.
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1 Introduction absence of solutions. In such situations, one has to resort
to numerical methods to obtain approximate solutions to

1in mathematics, in the field of differential equations, a SCMe number of decimal points by a computer by

system of singular boundary value problems (BVPs) is acOmputer algorithmic approximation techniques.
system of singular differential equations together with a  Informally, ~an algorithm is any well-defined
set of additional restraints, called the boundarycOomputational procedure that takes some value, or set of
conditions. A solution to such systems is a solution to thevalues, as input and produces some value, or set of values,
given system of singular differential equations which also@s output. An algorithm is thus a sequence of
satisfies the given boundary conditions. Systems ofcomputational steps that transform the input into the
singularly BVPs appear in several branches of appliedoutput. We can also view an algorithm as a tool for
mathematics, theoretical physics, engineering, and ebntr Solving a well-specified computational problem. The
and optimization theory1}2,3,4,5]. Generally speaking, ~Statement of the problem specifies in general terms the
most systems of singular BVPs cannot be solved exactlylesired input/output relationship. The algorithm deszsib
by using the well-known analytical methods and @ specific comp'utatlo.nal procedure for achieving that
relatively few of those can be solved in closed form by theinput/output relationship.
standard mathematical tricks. So, it's natural to begin  Numerical optimization is an important tool in
thinking about what can be said about such systems in thdecision science and in the analysis of physical and
engineering systems. It is well known that optimization

1 This paper is dedicated to the great Iraqgi scientist Samirand nonlinear analysis are two branches of modern
Hadid on the occasion of his 65th birthday. mathematics much developed lately. An important step in
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optimization is the identification of some objective, iz., In general, optimization problems have the following
guantitative measure of the performance of the systemcharacteristics 15]; first, different decision alternatives
This objective can be any quantity or combination of are available. Second, additional constraints limit the
guantities that can be represented by a single number. Theumber of available decision alternatives. Third, each
objective depends on certain characteristics of the systendecision alternative can have a different effect on the
called parameters, which are often restricted orevaluation criteria. Fourth, an evaluation function dedine
constrained in some way. Furthermore, the parametersn the decision alternatives describes the effect of the
can have either continuous or discrete val@s [ different decision alternatives. On the other aspect as
In this paper, we utilize a methodical way based onwell, optimization problems can be divided into several
the use of continuous genetic algorithm (GA) for categories depending on whether they are continuous or
numerically approximating a solution of systems of discrete, constrained or unconstrained, single-objediv
singular BVPs in which the given boundary conditions multi-objective, static or dynamiclf]. In order to find
can be involved. The new method has the following satisfactory solutions for these problems, metaheusistic
characteristics; first, it should not require any can be used. A metaheuristic is an algorithm designed to
modification while switching from the linear to the solve approximately a wide range of hard optimization
nonlinear case; as a result, it is of versatile natureproblems without having to deeply adapt to each problem.
Second, it should not resort to more advancedAlmost all metaheuristics share the following
mathematical tools; that is, the algorithm should becharacteristics16]: first, they are nature-inspired (based
simple to understand, implement, and should be thusn some principles from physics, biology, or ethology).
easily accepted in the mathematical and engineeringsecond, they make use of stochastic components
application’s fields. Third, the algorithm is of global (involving random variables). Third, they do not use the
nature in terms of the solutions obtained as well as itsgradient or Hessian matrix of the objective function.
ability to solve other mathematical and engineeringFourth, they have several parameters that need to be fitted
problems. Fourth, the present algorithm can avoid anyto the problem at hand.
singularities in the computations process with less effort  In mathematics, information science, and decision
and less computation cost. theory, optimization is the selection of the best solution
The rest of the paper is synthesized as follows. Inwithin certain given domain, which can minimize or
Section 2, a short introduction to optimization problems maximize a function. As yet, different approaches are
and their applications is presented. In Section 3, wedeveloped to deal with these optimization problems.
formulate the system of singular BVPs as an optimizationClassification of these approaches can be accomplished in
problem. Section 4 shows a brief preface to optimizationmany ways. However, in most cases, according to their
techniques. Section 5 covers the description of GA innature, these approaches can primarily be classified as
detail. Section 6 utilizes and evaluates the continuous GAwo groups: classical methods and stochastic algorithms.
as an efficient evolutionary algorithm for solving system Classical methods have a fixed move. For the same initial
of singular BVPs. Software libraries and numerical inputsinput values, they follow the same path and eventually
are given in Section 7 in order to verify the mathematicalfind the same final solutions. However, stochastic
simulation of the proposed algorithm. In Section 8, we algorithms are based on randomization, and the final
report our numerical finding and demonstrate thesolutions will be dissimilar each time even starting from
accuracy of the proposed scheme by considering twdhe identical initial values. Despite these differences, i
numerical examples. Statistical analysis is supported bynost of the cases, though slightly dissimilar, finally these
the results of numerical experiments in Section 9. Finally,two sorts of algorithms will find the similar optimal
in Section 10 some concluding remarks are presented. values. The immersion of nature-inspired metaheuristic
algorithms as a benediction from the statistical and
artificial intelligence theory has opened up a novel aspect
with the aim of fulfilling function optimization. To a
degree, all stochastic methods attempt to make trade-off
between exploitation and exploratioh7].
Optimization problems are common in many disciplines
and various domains 7[8,9,10,11,12,1314]. In
optimization problems, we have to find solutions which .
are optimal or near-optimal with respect to some goals.3 Problem formulation
Usually, we are not able to solve problems in one step, but
we follow some process which guides us through problemMathematically speaking, optimization is minimization or
solving. Often, the solution process is separated intomaximization of a function subject to constraints on its
different steps which are executed one after the othervariables. In this section, system of singular BVPs is first
Commonly used steps are recognizing and definingransformed into discrete version in order to formulate it
problems, constructing and solving models, andas an optimization problem based on the minimization of
evaluating and implementing solutioris]. the cumulative residual of all unknown interior nodes.

2 Optimization problems
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The aim of this paper is to apply the continuous GA for wherey = (y1,Y2), o = (a1,02), B = (B1,82), andx; <
solving systems of singular ordinary differential equaso X < xy_1, wherei =1,2,...,N—1.
subject to given boundary conditions. More specifically, = The finite difference approximation for derivatives is

we consider the following system: one of the very effective methods used for solving the
o1 (0 differential equations numerically. It involves replagin
X the derivatives appearing in the differential equation by
Y109+ p1(X) G (% ¥4(x).5(x)) suitable finite difference approximations. In fact, the
az (X) az (X) accuracy of the solution depends upon the number of
+ ® G2 (X,Y1(X), y2(X)) + il 0, mesh points chosen. However, by increasing the number
52( ) P3 (1) of mesh points one can increase the accuracy of the
’ X solution to a desire degree. In this paper, we will employ
Y209+ a1 () H (% %1(%),¥2(9) this technique to approximate the solutions of Ed9. (
by (X) bs (X) and @) numerically using continuous GA. Anyhow, the
+ Ha (X,y1(X),y2(X)) + =0, difference approximation formulas, which closely
G2 (¥) ds (x) approximatey, (x;) andy; (xi), wherek = 1,2 andi = 1,
i - 2,..., N—1 using (n+1)-point at the interior mesh
subject to the boundary conditions points with error of order ¢h""™1), wheren=2,3, ...,
y1(0) = a1, y1(1) = Bu, N andm= 1,2 is the order of the derivative can be easily
(2) obtained by using Algorithm (&) in [18]. We mention
y2(0) = a2,¥2(1) = Bz, here that the numbaen is starting from 2 and gradually

. increases up tol.
wherex € (0,1), ax, B are real finite constants, a@, Hy To corr?plete the formulation substituting the
zirg linear or nonlinear real-valued functions, whkre approximate formulas off, (x) andyf(( x) in Eq. @), a
e discretized form of Eqgs.1j and @) is obtained. The
Remark 1: The two functionsp; (X), i (X) may take the  resulting algebraic equations will be a discrete functibn o
valuesp; (0) =¢q; (0) =0orp; (1) =q (1) =0which make  Xi, ¥k (Xi—(n—]?)i Yk (Xi—(n_—Z)_): oy @ndyk (X% (n-1)), where
Eq. (1) to be singular ak = 0 orx = 1, whilea; (x),a; (x) k = 1,2. After that, it is necessary to rewrite the

are continuous real-valued functions fin1], wherei =  discretized Eq.J) in the form of the following:
1,2,3.

. Fi (Xiay(xi—(n )) y(X| (n— 2) 7Y(X|+(n 1)))
Remark 2: Throughout this work, we assume that E). ( a (%) as (%)
subject to boundary condition®)( has a unique two + ' Go (%,y(%)) + 3\ ~ 0,
solutions on[0,1] (one solution for each dependent P2 (%) Ps (%)
variable). P (%,Y (%i—(n-1)) Y (Xi—(n-2)) 5 Y (Xis(n-1)))
Remark 3: The term “"continuous” is used to emphasize i 2(X|)H2 (%, y(%)) + bz (x) ~
that the continuous nature of the optimization problem and g2 (%) 0 (Xa) '

the continuity of the resulting solution curves. _
] _ ) whereF, F, are given as
For the first step of formulation, the independent

interval [0,1] is partitioned intoN subintervals of equal ay ()

length h given ash = 1/N. The mesh points, nodes, are ~ F1(6Y (X),¥1(X)) = ¥1(x) + O] (X:)Gl (%Y (¥)),
obtained using the equation=ih,i =0,1,...,N. Thus,

at the interior mesh pointsg, i = 1,2,...,N — 1, the Fa(x.Y (X),Y4(x) = Y4(x) + by (%)

Hi(xy (X))

system to be approximated is given as: a1 (%)
, ag (%) The conventional design procedures aim at finding an
Yo (%) P (X@)Gl 06,y (%)) acceptable or adequate design that merely satisfies the
az (x) az(x) functional and other requirements of the problem. In
+ D (xi)GZ (%, Y(%)) + Ps (X)) =0, general, there will be more than one acceptable design,
2 3 (3) and the purpose of optimization is to choose the best one
(%) + by (X)) Hy (%,Y (%)) of the many acceptable designs available. Thus a criterion
22T (% 1V, YA has to be chosen for comparing the different alternative
by 2X|)H o bs (%) 0 acceptable designs and for selecting the best one. The
+ a2 (%) 2(%,¥(x)) + Bx) criterion with respect to which the design is optimized,
when expressed as a function of the design variables, is
subject to the boundary conditions known as the fithess function. The choice of fitness
function is governed by the nature of problem and the
y(Xo) =a,y(xn) = B, selection of this function can be one of the most
@© 2014 NSP
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important decisions in the whole optimum design processhill climbing in the function space by moving in local

Next, we define the fitness function related to EGsafd
(2). But firstly, we present the following definitions.

gradient direction, while in indirect methods the gradient
of the objective function is set to zero and thus solution is

get by solving these set of equations. All the calculus
based methods assume strictly the existence of derivatives
and are local in scope too. These constrains limit their
application in real-world problems; however in small
class of unimodal problems these can be efficiently used.
= Fl(XhY(Xi—(n—l)) aY(Xi—(n—Z)) yeees Enumerative techniques tends to evaluate each and
a (%) ag (%) every point of the finite, or discrete infinite, search space
ps(x)’ to sought_ optimal solutlon. A \_/vell-know_n example c_)f
enumerative search technique is dynamic programming.
Thus, in order to search each and every point enumerative
needs to break down the problems even of moderate size
and complexity into smaller divisions.
g2 (%) gz ()’ Guided random search techniques are based on the
concept of enumerative methods only but with the use of
Definition 2: The overall individual residual, Oir, is a additional information about the search space in order to
function of the residuals of all interior nodes. It may be seek the potential regions faster. Guided is further
stated as categorized into single-point and multi-point search,
means whether it is searching just with one point or with
several points at a given time. For single-point search
technique, simulated annealing is widely used. It uses
thermodynamic evolution in order to find states of
Definition 3: The fitness function, denoted by Fit, is Minimum energy. For multi-point search, where random
defined as: choice is used as a tool to guide through a highly
1 explorative search space, GA is in trend. They are
~1+0ir basically used assuming that a near-optimal solution will

) . . be accepted; given the search space is huge, noisy,
The fitness function plays a fundamental rule in ped, 9 b 9 y

optimization techniques (continuous and discrete) aanUItl_mOdal as well as discontinuous.
their applications. This function is required in our work in

order to convert the minimization problem of Oir into a
maximization problem of Fit. In fact, the value of

individual fitness is improved if a decrease in the value of
the Oir is achieved. On the other hand, the optimal
solution of the problem, nodal values, will be achieved
when Oir approaches zero and thus Fit approaches unity.

Definition 1: The residual of the general interior node,
denoted by Res, is defined as:

Res (i)
Y (X (n-1)))

<Gz (X, y(%)) +
Res (i g)z Y )
= FZ(XhY(Xif(nfl)) 7Y(Xi7(n72)) a~-~7Y(Xi+(n—1)))

N bz(Xi)H2 (%, y(%)) + b3 (x)

Oir = \/ﬁg(Reé(i) +Reg (i)).

Fit

5 Overview of genetic algorithm

Modern metaheuristics like GA is easy-to-apply
optimization concepts that are widely used for
fully-automated decision making and problem solving. In
this section, a summary of GA approach and its
characteristics to the design optimization problem are
presented by a brief introduction.

GA is efficient, self-adaptable, self-repairable, and
robust, nature-inspired search and optimization tool. GA
There are a few common techniques which are commorperforms well in large, complex and multi-modal search
to both single-objective and multi-objective optimizatio space. GA are modelled based upon the natural genetic
problems. However there are some advanced techniqugsinciples where the potential solution is encoded in
which are applied to multi-objective optimization structures known as chromosomes. These make use of
problems as these problems contain multi-dimensionaproblem or domain dependent knowledge to search
objectives to be satisfied. potential and promising areas in search space. Each

In general, the different optimization techniques canindividual or chromosome has a fitness value associated
be broadly classified into the following three categorieswith it, which describes its goodness compared to other
[19: first, calculus-based techniques or numericalindividuals in the current population with respect to the
methods. Second, enumerative techniques. Third, randorsolution. The genetic operators such as selection,
techniques. crossover, and mutation are also inspired by the nature

Calculus methods, also known as numerical methodsand are applied to chromosomes in order to yield better
use a set of necessary and sufficient conditions whichand potential solutions. GA is adaptive computational
must be satisfied by the solution of the optimization tools modelled on the mechanics of nature. These
problem. Numerical methods further divided into direct efficiently exploit historical information to guess newly
and indirect methods. Direct search methods deals withupcoming offspring with improved performance. GA is

4 Techniques for optimization
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metaheuristics search methods means it estimates thHseen also applied in the solution of fuzzy differential
solution, which can be used for both solving problemsequations 33]. On the other hand, the numerical
and modelling evolutionary systems. GA is preferred solvability of other version of differential equations and
when the search space is huge, discontinuouspther related equations can be found 34,B35,36,37,38,
multi-dimensional, multi-modal and noisyL9,20,21,22, 39,40] and references therein.

23). The reader is asked to refer t8526,27,28,29,30,

The major features of GA like direct use of coding, 31,32,33] in order to know more details about continuous
search from a population, blindness to auxiliary GA, including their justification for use, conditions on
information and randomized operators contribute to itssmoothness of the functions used in the algorithm, several
robustness and resulting advantage over other moradvantages of continuous GA over conventional GA
commonly used techniques. In particular, GA has many(discrete version) when it is applied to problems with
advantages over the traditional numerical optimizationcoupled parameters and(or) smooth solution curves, etc.
approaches, including the following fac®/; first, it can
optimize with continuous or discrete parameters. Second,
it does not require derivative information. Third, it 7 Software libraries and numerical inputs
simultaneously searches from a wide sampling of the cost
surface. Fourth, it can work with large number of The solution of most practical optimization problems
variables. Fifth, it provides a list of optimum parameters, requires the use of computers. Several commercial
not just a single solution. Sixth, it may encode the software systems are available to solve optimization
parameters and the optimization is done with the encodegroblems that arise in different mathematical and
parameters. Seventh, it works with numerically generatecengineering areas. All the simulations in the optimization
data, experimental data, or analytical functions. runs presented in this paper were performed using Visual

Basic Platform.

The continuous GA proposed in this paper is used to

6 Continuous genetic algorithm solve the given system of singular BVPs. The input data

to the algorithm is divided into two parts; the continuous
This section utilizes and evaluates the continuous GA as aGA related parameters and the system of singular BVPs
efficient evolutionary algorithm including its history and related parameters. The continuous GA related
its characteristics. In this summary, itis intended tognés  parameters include the population siki, the individual
the most representative works in a continuous GA. crossover probabilitypg, the curve crossover probability,

Continuous GA depends on the evolution of curves inpg, the individual mutation probabilitypyi, the curve
one-dimensional space, surfaces in two-dimensionamutation probability,pmc, the rank-based ratidyy,, the
space, and volumes in three-dimensional spaceinitialization method, the selection scheme used, the
Generally, continuous GA uses smooth operators andeplacement method, the immigration threshold value and
avoids sharp jumps in the parameter values. Thehe corresponding number of generations, and finally the
algorithm begins with a population of randomly generatedtermination criterion. The system of singular BVPs
candidates and evolves towards better solution byelated parameters include the governing singular
applying genetic operators. This novel approach is adifferential system, the independent interval1], the
relatively new class of optimization technique, which boundary valuesg, 3, and finally the number of nodes,
generates a growing interest in the mathematics andN. The reader is kindly requested to go throudi, 2,
engineering community. 43,44,45,46,47,48,49,50] for more details about the

Continuous GA has recently emerged as a powerfulselection scheme, the replacement method, the control
framework in the numerical analysis field. Continuous parameters, and others.

GA was developed in2b] as an efficient method for the Optimization algorithms are iterative. They begin
solution of optimization problems in which the with an initial guess of the variable and generate a
parameters to be optimized are correlated with each othesequence of improved estimates (called “iterates or
or the smoothness of the solution curve must be achievedjenerations”) until they terminate, hopefully at a solatio

It has been successfully applied in the motion planning ofWhat is the termination condition? As the algorithm runs
robot manipulators, which is a highly nonlinear, coupled until it reach a certain extent, the structure of individual
problem P6,27], in the solution of collision-free path between every two ones is very similar. It will be difficult
planning problem for robot manipulator2d], in the to find a better individual if the algorithm till runs. Under
numerical solution of second-order, two-point regular this condition, we think this algorithm is convergent. In
BVPs [29], in the solution of optimal control problems this paper, we think the population is convergent when
[30], in the solution of second-order, two-point singular one of the following conditions is met. First, the fithess of
BVPs [31], and in the solution of systems of second-order the best individual of the population reaches a value of
regular BVPs B2]. Their novel development has opened 0.9999999. Second, the maximum nodal residual of the
the doors for wide applications of the algorithm in the best individual of the population is less than or equal to
fields of mathematics, physics, and engineering. It ha®.00000001. Third, a maximum number of 3000
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generations is reached. Fourth, the improvement in théd Numerical experiments

fitness value of the best individual in the population over

1000 generations is less thar®01. It is to be noted that Numerical experiments are performed to measure the

the first two conditions indicate to a successful relative accuracy and computational efficiency. Accuracy

termination process (optimal solution is found), while the refers to how closely a computed or measured value

last two conditions point to a partially successful endagrees with the true value, since, a computer has a finite

depending on the fitness of the best individual in theword length and so only a fixed number of digits are

population (near-optimal solution is reachedp,26,27, stored and used during computation. Thus, we offer two

28,29,30,31,32,33]. types of error, the absolute error which is the absolute
The sequence of steps taken in a continuous GA tdlumerical difference between the exact solution and the

solve Egs. ) and @) numerically is shown in the next @pPproximate solution, and the absolute residual error

algorithm. which is a positive number that found by E4).(In fact,
the residual error will be zero at the two endpoints of
[0,1].

Algorithm 1: To approximate the solutions of system of

singular BVPs 1) and @) atN — 1 equally spaced number Next, two examples are studied to demonstrat_e the
in (0,1): accuracy and applicability of the present algorithm.

Results obtained are compared with the exact solution

] _ and are found to be in good agreement with each other.
Input: System of singular BVPs parameters: endpoints of . . . .
0,1]; integer N; and boundary conditionsx, . Example 1: Consider the following linear singular

Continuous GA parameters: population  si; differential system with singulariteis at left-right
values of probabilities ps, P, Pmi, Pme; and ~ €ndpoints:

rank-based rati®y . %1
Output: Approximation ®; and @, of y; and y», Y1 (X) + ey [V} (X) 4+ %2y, (X)]

respectively, aN + 1 values ofx. 3

1
—— —————[y1(X) =€y (X)] + f1(x) =0,

Step 1Seth Nt _ cos( ) Y1 (X) — €y2 (X)] + f1(X)
Step 2Fori =0,1,...,N setx = ih; x
Step 3Do stepg1',2',3,45,6,7,8.,9): Y5 (X) + ——=Y1 (%)

Step’: Initialization process; (x=1)

Step2’: Fitness evaluation process; L X X) — xyo ()] + fo (X) = 0

Step3d’: Selection process; sin(7x) (0 =272 ()] + 2 (x) =0,

Step4’: Crossover process;

Step5': Mutation process: subject to the boundary conditions

A ; .
Step6/: Fitness evaluation proF:ess, y1(0) =0,y; (1) =0,
Step7': Replacement process; 0)=0.v» (1) =0
Step8': If termination process doesn’t hold then go to y2(0) =0,y2(1) =0,

Step 3, elsegoto 9
Step9:Output(x;, @1 (%)) and(x;, @2 (X));
Step 4Stop.

wherex € (0,1) and f1 (x), f2 (x) are chosen such that the
exact solutions arg (x) = sin(7x) andys (X) = x*> — x.

Using continuous GA, taking; = 7, i = 0,1,...,N
with the fitness function Fit, the Algorithm 1, and the
termination conditions listed in the previous section, the
numerical results ofp; (x;) and @, (x;) for approximating
y1(xi) andyz (x;) at some selected grid points fidr= 10,

Np =500, p;i = 0.9, pec = 0.5, pm = 0.9, pmc = 0.5, and
Ry = 0.1 are given in Tables 1 and 2, respectively.

To summarize the evolution process in continuous GA
an individual is a candidate solution that consists of two
curves each oN — 1 nodal values. The population of
individuals undergoes the selection process, which result
in a mating pool among which pairs of individuals are
crossed over with probabilityp within that pair of
parents, individual solution curves are crossed withExample 2: Consider the following nonlinear singular
probability pe.. This process results in an offspring differential system with singulariteis at left-right
generation where every child undergoes mutation withendpoints:
probability pmi, within that child individual solution

curves are mutated with probabilifymc. After that, the / 20 _ 2] cos(x)
next generation is produced according to the replacement VL0 + X(x—1) {)/1 () = (2 (%)) } sint? (x)
strategy applied. The complete process is repeated till the % Ty2 () 4 xsin(ys (X) v X)) ] + f1 (X) = 0
convergence criterion is met where the two curves of the [Z;(( ) (2 (9¥2()] + f1.(x) =0,
best individual are the required solution curves. The final / 3_ inh 3
goal of discovering the required nodal values is translated Y209+ XSinx (¥ () V1— x[Sln () (v2 (%)
into finding the fittest individual in genetic terms. +sin(x)y2 (x) cos(yy (x))] + f2(x) =0,
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Table 1: Numerical results of; (x) for Example 1.
% y1 (%) @1 (%) ly1 (%) — @1.04)] IRes (%)
0 0 0 0 0
0.1 0.3090169944 (3090169709 B4377574< 1078 2.4690626% 10~/
0.2 0.5877852523 5877852301 21766321 108 7.33246741x 10~/
0.3 0.8090169944 B090169716 27738666< 108 1.31747821x 10~/
0.4 0.9510565163 ®510564898 54554492 108 1.57196727% 10~/
0.5 1 09999999884 16274315¢10°8 1.43210365< 10~/
0.6 0.9510565163 ®510565048 15035971x 10°8 1.16714975< 10~/
0.7 0.8090169944 B090169852 @0499440< 10°° 9.08216851x 10~/
0.8 0.5877852523 877852479 43163132¢10°9 6.0996231% 10~/
0.9 0.3090169944 (3090169837 D7166703<10°8 3.1949715% 10~/
1 0 0 0 0
Table 2: Numerical results o (x) for Example 1.
Xi ¥2 (%) P> (%) ly2 (X) = P2 (%) IRes (%)
0 0 0 0 0
0.1 —0.09 —0.0900000036 B5472876< 109 2.82238980« 108
0.2 —0.16 —0.1600000087 $8203299¢ 10° 3.31277996¢ 10°8
0.3 -0.21 —0.2100000323 22981050< 108 3.94634569%< 107
0.4 -0.24 —0.2400000186 B5934107% 108 4.50275413< 107
0.5 -0.25 —0.2500000991 91166535¢ 108 4.94881138< 10/
0.6 —-0.24 —0.2400000641 £1332590< 108 5.20706622< 107
0.7 -0.21 —0.2100000110 10134028108 5.45125595¢ 10~ '
0.8 —0.16 —0.1600000024 B6580521x 102 5.35900147% 1078
0.9 —0.09 —0.0900000074 7A2388421x 109 5.38354922< 108
1 0 0 0 0

subject to the boundary conditions speed of the proposed algorithm are investigated in order
to capture the behavior of solutions. The analysis includes
y1(0)=1y1(1) =e the evolutionary progress plots, of the best-fitness
y2(0) = 0,y> (1) = sinh(1), individual, the evolution of nodal values, the effect of the
step size in addition to an analysis of the population size,
wherex € (0,1) and 1 (x), f2(x) are chosen such that the the curve crossover and the curve mutation probabilities,
exact solutions ang (X) = X andy2 (X) = Sinh(x)_ and the maximum nodal residual effect.

i Definition 4: The convergence speed of the algorithm,
with the fitness function Fit, the Alg%;rithm 1, and the Whenever used, means the average number of generations
termination conditions listed in the previous section, the®duired for convergence.
numerical results ofP; (x;) and @, (x;) for approximating  Remark 4: Throughout this paper, we will try to give the
y1(x) andy2 (x;) at some selected grid points fiir=10,  results of the two examples; however, in some cases we
Np =500, pci = 0.9, pec = 0.5, pmi = 0.9, pmc = 0.5, and  will switch between the results obtained for the examples
Ror = 0.1 are given in Tables 3 and 4, respectively. in order not to increase the length of the paper without the

loss of generality for the remaining results.

It is to be noted that the accuracy of a certain node is
in advanced, since it has a truncation error of the orde
O(h'?). On the other aspect as well, from the last
mentioned tables, we see that we can achieve a goo
approximations with the exact solutions.

Using continuous GA, taking; = i, i = 0,1,...,N

Due to the stochastic nature of continuous GA, twelve
Wifferent runs were made for every result obtained in this
ork using a different random number generator seed;
sults are the average values of these runs. This means
that each run of the continuous GA will result in a slight
different result from the other runs.

The convergence data of the two examples is given in
Table 5. It is clear from the table that the examples take
1623 generations, on average, to converge to a fitness
In this section, the effects of various continuous GA value of about 199999789 with an average absolute
operators and control parameters on the convergenceodal residual of the value.715502448< 10~/ and an

9 Statistical analysis
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Table 3: Numerical results of (x) for Example 2.
Xi y1 (%) Py (%) lys (%) — @1 (%) |Res (%)
0 1 1 0 0
0.1 11051709181 11051709176 42360174« 1010 6.13045170< 10°°
0.2 12214027582 2214027580 11405697 1010 4.18143742¢10°°
0.3 1.3498588076 B498588074 56059423« 1010 3.81930265¢< 10°
0.4 14918246976 4918246975 B7788104«< 1010 3.52955665< 109
0.5 16487212707 5487212704 381392881010 2.24281038< 102
0.6 18221188004 8221188003 B5799902« 1010 2.11427986< 10°
0.7 20137527075 D137527073 B7605628< 1010 1.63476344x 10°°
0.8 2.2255409285 2255409278 B6103139% 1010 1.07448717% 10°°
0.9 24596031112 2596031111 00001307 1011 3.15012016< 10°
1 27182818285 2182818285 0 0
Table 4: Numerical results oy, (x) for Example 2.
% y2 (%) P2 (%) Y2 (%) — P2 (%) [Res (%)
0 0 0 0 0
0.1 0.1001667500 (1001667490 D6187525¢ 10~ 8.02476012< 108
0.2 0.2013360025 (2013360002 B7455608< 109 3.96756814x 108
0.3 0.3045202934 (3045202917 78401083< 109 4.46209980< 108
0.4 0.4107523258 2107523239 D3059550« 109 5.46656354x 108
0.5 0.5210953055 (5210953042 18153001« 10~ 3.33396211x 108
0.6 0.6366535821 ®366535804 776460065< 109 3.02547742< 10°8
0.7 0.7585837018 (585836993 54339745¢ 10~ 3.84077958< 1078
0.8 0.8881059822 (3881059811 11469865« 109 2.51190269« 108
0.9 10265167257 0265167250 §4489897 1010 2.78001644< 10°°
1 11752011936 11752011936 0 0
Table 5: Convergence data of Examples 1 and 2.
Example Average generations Average fitness Average error dwatfasolute residual
1 1597 0999999836 216394062« 108 3.30061098< 10~/
2 1649 0999999741 B8056433« 1010 2.09437978< 1078
average absolute nodal error of the valuefine-tuning stage is the final stage in which the

1.12887313«< 108, evolutionary plots reach steady-state values and do not
The evolutionary progress plots, of the best-fitnesshave oscillations by usual inspection. In other words,
individual of Examples 1 and 2 are shown in Figure 1. It evolution has initial oscillatory nature for all nodes, et
is clear from the figure that, in the first 30% of same example. As a result, all nodes, in the same
generations the best-fitness approaches to one very fagtxample, reach the near optimal solution together.
after that, it approaches to one slower. That means the The effect of the step size on the convergence speed
approximate of continuous GA converge to the actualand the corresponding errors is explored next. Tables 6
solution very fast in the first 30% of the generations. and 7 give the relevant data for Examp|e 1, where the
The way in which the nodal values evolve for number of nodes covers the range from 10 to 80. It is
Example 2 is studied next. Figure 2 shows the evolutionobserved that the reduction in the step size results in a
of the first,x;, and middle xs, nodal values ofp;, while  reduction in the error and correspondingly an
Figure 3 shows the evolution of the middie, and ninth,  improvement in the accuracy of the obtained solutions.
Xg, hodal values ofp,. This goes in agreement with the known fact about finite
It is observed that from the evolutionary plots that the difference schemes where more accurate solutions are
convergence process is divided into two stages: theachieved using a reduction in the step size. On the other
coarse-tuning stage and the fine-tuning stage, where thieand, the cost to be paid while going in this direction is
coarse-tuning stage is the initial stage in which the rapid increase in the number of generations required
oscillations in the evolutionary plots occur, while the for convergence. For instance, while reducing the step
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Fig. 1: Evolutionary progress plots of fitness function across all Fi9- 2: Evolution of the nodal values @b, for Example 2 across
generations for: (a) Example 1; (b) Example 2. all generations at: (a) the first nodal; (b) the fifth nodal.

size from 01 to 0.05, the required number of generations 0.9 for both p. and pm. It is clear from the tables that
for convergence jumps from almost 1600 to 2000, i.e.when the probabilities valuep: and py are increasing
1.25 multiplication factor. gradually, the average number of generation required for
The influence of the population size on the convergence is decreasing as well. It is noted that the best
convergence speed of CGA, the average fitness, and theerformance of the algorithm is achieved fgr= 0.9 and
corresponding errors is studied next for Example 2 aspm = 0.9. As aresult, these values are set as the algorithm
shown in Table 8. The population size is increased indefault values.
steps of 100 starting with 100 and ending with 1000.  Finally, the influence of the maximum nodal residual
Small population sizes suffer from larger number of of the best individual on the convergence speed, the
generations required for convergence and the probabilityaverage execution time, and the corresponding fitness is
of being trapped in local minima, while large population investigated. This is the second termination condition of
size suffer from larger number of fitness evaluations thatthe algorithm and its value is set betweenl Cand
means larger execution time. However, it is noted that thep.0000000001. Table 10 gives the relevant data for
improvement in the convergence speed becomes almogtxample 2. Regarding the convergence speed, it is
negligible after a population size of 700. obvious that as the maximum nodal residual decreases,
The particular settings of several continuous GAthe number of generations required for convergence
tuning parameters including the probabilities of applyingincreases rapidly since the searching process will be
crossover operator and mutation operator are investigatedominated by the fine-tuning stage. The difference
here. These tuning parameters are typicallybetween the exact and the continuous GA nodal values
problem-dependent and have to be determineddecreases initially till a maximum nodal residual of the
experimentally. They play a non-negligible role in the value 00000000001 is reached. After that, there will be
improvement of the efficiency of the algorithm. Table 9 no improvement in the accuracy of the solutions obtained
shows the effect of the crossover probabilipy, and the  for further reduction in the maximum nodal residual. The
mutation probabilitypm, on the convergence speed of the proposed approach is a variant of the finite difference
algorithm for Example 1. The probability value is scheme with a truncation error of order(}éo). As a
increased in steps of D starting with 01 and ending with  result, the accuracy of the solutions obtained is dependent
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Table 6: The influence of the step size on the convergence speed and thepoodig errors of/1 (x) for Example 1.

Step size Average generations Maximum absolute error Maximum absesideal
0.1 1597 264554492« 108 9.08216851x 10~/
0.05 2034 308997577 1010 1.51010432« 108
0.025 2469 87751763« 1011 8.87771443< 1079
0.0125 3000 108971653« 10~ 11 4.08996140< 10 °

Table 7: The influence of the step size on the convergence speed and thepoodes) errors of (x) for Example 1.

Step size Average generations Maximum absolute error Maximum absesidieial
0.1 1597 991166535« 108 5.45125595«< 10~/

0.05 2034 159980346x 1010 4.99476087% 108

0.025 2469 609975746¢ 1011 6.53925227% 10~

0.0125 3000 716424350« 10712 8.09066997« 1010

Table 8: The effect of the population size on the convergence speed, thegavidreess, and the corresponding errors for Example 2.

Np Average generations Average fitness Average error Averageusdsid
100 2751 00990485702 217489011x 10~/ 7.28242506x 10°°
200 2316 09999370096 $1924967« 108 1.00274567 10~
300 2042 00999910414 D6727973 1078 8.21219268«< 107
400 1852 09999963452 £0331248< 10°° 3.46816826< 107
500 1649 09999997407 B8056433« 10710 2.09437978< 108
600 1598 00999997956 35343296x 1010 9.23276812x 1072
700 1507 09999998259 24209177 1011 6.52598677 109
800 1479 00999998474 83182201« 1011 9.37609028« 1010
900 1423 09999999000 35861153« 1011 5.01801005« 1010
1000 1399 9999999000 D1056846¢ 1011 2.19434710< 1010

on the step size used, and for a certain step size there wibbf nodal values, the maximum nodal residual, the
be initial improvement while decreasing the maximum population size, the curve’s probabilities, and the step si
nodal residual till the step size limit is reached whereis also studied.

further reduction will be of no use. The evolutionary progress investigations showed that

approximate of continuous GA converge to the actual
solution very fast in the first 30% of the generations, and
the problems spent about 20% of generations, on average,
in the coarse-tuning stage, while the remaining 80% is
spent in the fine-tuning stage. The accuracy obtained
using continuous GA is moderate since it has a truncation
Serror of the order @nlo). The accuracy of the solution
obtained is dependent on the step size used, and for a

10 Concluding remarks

The aim of present work is to develop an efficient and
accurate method for solving systems of singular BVPs.
We can conclude that the continuous GA approach i
powerful and efficient technique in finding approximate

solutions for linear and nonlinear systems of singular.eain step size there will be initial improvement while

BVPs with singularity at one or both endpoints. In the yecreasing the maximum nodal residual till the step size
proposed algorithm, each of the derivatives is replaced byinit i reached where further reduction will be of no use.

an appropriate difference quotient approximation, wherég ration population is reached at a population size of
two smooth solution curves are used for representing the,

required nodal values. There is an important point to

make here; the results obtained by the continuous GA

approach are very effective and convenient in linear and

nonlinear cases with less computational work and time Acknowledgments

This confirms our belief that the efficiency of our

technique gives it much wider applicability in the future

for general classes of linear and nonlinear BVPs of

different orders and types. On the other aspect as well, th&he authors would like to express their thanks to unknown
influence of different parameters, including the evolution referees for their careful reading and helpful comments.
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Table 9: The effect of the crossover probability and the mutation probability ondheergence speed for Example 1.

(Pm; Pc) 0.1 0.3 05 0.7 0.9

0.1 3000 2916 2681 2422 2139
0.3 2915 2774 2592 2269 1955
0.5 2722 2540 2377 2117 1838
0.7 2354 2264 2122 1922 1619
0.9 2266 2106 1934 1703 1597

Table 10: The influence of the maximum nodal residual on the convergence sipeeaverage execution time, and the average fitness
for Example 2.

Maximum nodal residual Average execution time (seconds) Averagergtions Average fitness
0.1 239540 580 0766103194
0.01 253180 607 0939420902
0.001 358939 871 0990364603
0.0001 433396 1003 (999389592
0.00001 486255 1155 (999787974
0.000001 576378 1353 (999987891
0.0000001 58956 1416 (999997543
0.00000001 683284 1649 0099999741
0.000000001 74077 1783 (999999846
0.0000000001 78891 1871 (999999900
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