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Abstract: In this paper, an optimization algorithm is presented for solving systems of singular boundary value problems. In this
technique, the system is formulated as an optimization problem by the direct minimization of the overall individual residual error
subject to the given constraints boundary conditions, and is then solved using continuous genetic algorithm in the sense that each of the
derivatives is replaced by an appropriate difference quotient approximation. Two numerical experiments are carried out to verify the
mathematical results, and the theoretical statements for the solutions are supported by the results of numerical experiments. Meanwhile,
the statistical analysis is provided in order to capture the behavior of the solutions and to discover the effect of system parameters on
the convergence speed of the algorithm. The numerical results demonstrate that the algorithm is quite accurate and efficient for solving
systems of singular boundary value problems.
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1 Introduction

1In mathematics, in the field of differential equations, a
system of singular boundary value problems (BVPs) is a
system of singular differential equations together with a
set of additional restraints, called the boundary
conditions. A solution to such systems is a solution to the
given system of singular differential equations which also
satisfies the given boundary conditions. Systems of
singularly BVPs appear in several branches of applied
mathematics, theoretical physics, engineering, and control
and optimization theory [1,2,3,4,5]. Generally speaking,
most systems of singular BVPs cannot be solved exactly
by using the well-known analytical methods and
relatively few of those can be solved in closed form by the
standard mathematical tricks. So, it’s natural to begin
thinking about what can be said about such systems in the

1 This paper is dedicated to the great Iraqi scientist Samir
Hadid on the occasion of his 65th birthday.

absence of solutions. In such situations, one has to resort
to numerical methods to obtain approximate solutions to
some number of decimal points by a computer by
computer algorithmic approximation techniques.

Informally, an algorithm is any well-defined
computational procedure that takes some value, or set of
values, as input and produces some value, or set of values,
as output. An algorithm is thus a sequence of
computational steps that transform the input into the
output. We can also view an algorithm as a tool for
solving a well-specified computational problem. The
statement of the problem specifies in general terms the
desired input/output relationship. The algorithm describes
a specific computational procedure for achieving that
input/output relationship.

Numerical optimization is an important tool in
decision science and in the analysis of physical and
engineering systems. It is well known that optimization
and nonlinear analysis are two branches of modern
mathematics much developed lately. An important step in
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optimization is the identification of some objective, i.e.,a
quantitative measure of the performance of the system.
This objective can be any quantity or combination of
quantities that can be represented by a single number. The
objective depends on certain characteristics of the system,
called parameters, which are often restricted or
constrained in some way. Furthermore, the parameters
can have either continuous or discrete values [6].

In this paper, we utilize a methodical way based on
the use of continuous genetic algorithm (GA) for
numerically approximating a solution of systems of
singular BVPs in which the given boundary conditions
can be involved. The new method has the following
characteristics; first, it should not require any
modification while switching from the linear to the
nonlinear case; as a result, it is of versatile nature.
Second, it should not resort to more advanced
mathematical tools; that is, the algorithm should be
simple to understand, implement, and should be thus
easily accepted in the mathematical and engineering
application’s fields. Third, the algorithm is of global
nature in terms of the solutions obtained as well as its
ability to solve other mathematical and engineering
problems. Fourth, the present algorithm can avoid any
singularities in the computations process with less effort
and less computation cost.

The rest of the paper is synthesized as follows. In
Section 2, a short introduction to optimization problems
and their applications is presented. In Section 3, we
formulate the system of singular BVPs as an optimization
problem. Section 4 shows a brief preface to optimization
techniques. Section 5 covers the description of GA in
detail. Section 6 utilizes and evaluates the continuous GA
as an efficient evolutionary algorithm for solving system
of singular BVPs. Software libraries and numerical inputs
are given in Section 7 in order to verify the mathematical
simulation of the proposed algorithm. In Section 8, we
report our numerical finding and demonstrate the
accuracy of the proposed scheme by considering two
numerical examples. Statistical analysis is supported by
the results of numerical experiments in Section 9. Finally,
in Section 10 some concluding remarks are presented.

2 Optimization problems

Optimization problems are common in many disciplines
and various domains [7,8,9,10,11,12,13,14]. In
optimization problems, we have to find solutions which
are optimal or near-optimal with respect to some goals.
Usually, we are not able to solve problems in one step, but
we follow some process which guides us through problem
solving. Often, the solution process is separated into
different steps which are executed one after the other.
Commonly used steps are recognizing and defining
problems, constructing and solving models, and
evaluating and implementing solutions [15].

In general, optimization problems have the following
characteristics [15]; first, different decision alternatives
are available. Second, additional constraints limit the
number of available decision alternatives. Third, each
decision alternative can have a different effect on the
evaluation criteria. Fourth, an evaluation function defined
on the decision alternatives describes the effect of the
different decision alternatives. On the other aspect as
well, optimization problems can be divided into several
categories depending on whether they are continuous or
discrete, constrained or unconstrained, single-objective or
multi-objective, static or dynamic [16]. In order to find
satisfactory solutions for these problems, metaheuristics
can be used. A metaheuristic is an algorithm designed to
solve approximately a wide range of hard optimization
problems without having to deeply adapt to each problem.
Almost all metaheuristics share the following
characteristics [16]: first, they are nature-inspired (based
on some principles from physics, biology, or ethology).
Second, they make use of stochastic components
(involving random variables). Third, they do not use the
gradient or Hessian matrix of the objective function.
Fourth, they have several parameters that need to be fitted
to the problem at hand.

In mathematics, information science, and decision
theory, optimization is the selection of the best solution
within certain given domain, which can minimize or
maximize a function. As yet, different approaches are
developed to deal with these optimization problems.
Classification of these approaches can be accomplished in
many ways. However, in most cases, according to their
nature, these approaches can primarily be classified as
two groups: classical methods and stochastic algorithms.
Classical methods have a fixed move. For the same initial
input values, they follow the same path and eventually
find the same final solutions. However, stochastic
algorithms are based on randomization, and the final
solutions will be dissimilar each time even starting from
the identical initial values. Despite these differences, in
most of the cases, though slightly dissimilar, finally these
two sorts of algorithms will find the similar optimal
values. The immersion of nature-inspired metaheuristic
algorithms as a benediction from the statistical and
artificial intelligence theory has opened up a novel aspect
with the aim of fulfilling function optimization. To a
degree, all stochastic methods attempt to make trade-off
between exploitation and exploration [17].

3 Problem formulation

Mathematically speaking, optimization is minimization or
maximization of a function subject to constraints on its
variables. In this section, system of singular BVPs is first
transformed into discrete version in order to formulate it
as an optimization problem based on the minimization of
the cumulative residual of all unknown interior nodes.
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The aim of this paper is to apply the continuous GA for
solving systems of singular ordinary differential equations
subject to given boundary conditions. More specifically,
we consider the following system:

y′′1(x)+
a1 (x)
p1 (x)

G1 (x,y′1(x),y
′
2(x))

+
a2 (x)
p2 (x)

G2 (x,y1(x),y2(x))+
a3 (x)
p3 (x)

= 0,

y′′2(x)+
b1 (x)
q1 (x)

H1 (x,y′1(x),y
′
2(x))

+
b2 (x)
q2 (x)

H2 (x,y1(x),y2(x))+
b3 (x)
q3 (x)

= 0,

(1)

subject to the boundary conditions

y1 (0) = α1,y1(1) = β1,

y2(0) = α2,y2(1) = β2,
(2)

wherex ∈ (0,1), αk,βk are real finite constants, andGk,Hk
are linear or nonlinear real-valued functions, wherek =
1,2.

Remark 1: The two functionspi (x) ,qi (x) may take the
valuespi (0) = qi (0) = 0 or pi (1) = qi (1) = 0 which make
Eq. (1) to be singular atx = 0 or x = 1, whileai (x) ,ai (x)
are continuous real-valued functions on[0,1], wherei =
1,2,3.

Remark 2: Throughout this work, we assume that Eq. (1)
subject to boundary conditions (2) has a unique two
solutions on [0,1] (one solution for each dependent
variable).

Remark 3: The term ”continuous” is used to emphasize
that the continuous nature of the optimization problem and
the continuity of the resulting solution curves.

For the first step of formulation, the independent
interval [0,1] is partitioned intoN subintervals of equal
length h given ash = 1/N. The mesh points, nodes, are
obtained using the equationxi = ih, i = 0,1, . . . ,N. Thus,
at the interior mesh points,xi, i = 1,2, . . . ,N − 1, the
system to be approximated is given as:

y′′1(xi)+
a1 (xi)

p1 (xi)
G1 (xi,y′(xi))

+
a2 (xi)

p2 (xi)
G2 (xi,y(xi))+

a3 (xi)

p3 (xi)
= 0,

y′′2(xi)+
b1 (xi)

q1 (xi)
H1 (xi,y′(xi))

+
b2 (xi)

q2 (xi)
H2 (xi,y(xi))+

b3 (xi)

q3 (xi)
= 0,

(3)

subject to the boundary conditions

y(x0) = α,y(xN) = β ,

wherey = (y1,y2), α = (α1,α2), β = (β1,β2), andx1 ≤
xi ≤ xN−1, wherei = 1,2, . . . ,N −1.

The finite difference approximation for derivatives is
one of the very effective methods used for solving the
differential equations numerically. It involves replacing
the derivatives appearing in the differential equation by
suitable finite difference approximations. In fact, the
accuracy of the solution depends upon the number of
mesh points chosen. However, by increasing the number
of mesh points one can increase the accuracy of the
solution to a desire degree. In this paper, we will employ
this technique to approximate the solutions of Eqs. (1)
and (2) numerically using continuous GA. Anyhow, the
difference approximation formulas, which closely
approximatey′k (xi) andy′′k (xi), wherek = 1,2 andi = 1,
2, . . . , N − 1 using (n+1)-point at the interior mesh
points with error of order O

(

hn−m+1
)

, wheren = 2,3, . . .,
N andm = 1,2 is the order of the derivative can be easily
obtained by using Algorithm (6.1) in [18]. We mention
here that the numbern is starting from 2 and gradually
increases up toN.

To complete the formulation substituting the
approximate formulas ofy′k (xi) and y′′k (xi) in Eq. (3), a
discretized form of Eqs. (1) and (2) is obtained. The
resulting algebraic equations will be a discrete function of
xi, yk

(

xi−(n−1)
)

, yk
(

xi−(n−2)
)

, ..., andyk
(

xi+(n−1)
)

, where
k = 1,2. After that, it is necessary to rewrite the
discretized Eq. (3) in the form of the following:

F1
(

xi,y
(

xi−(n−1)
)

,y
(

xi−(n−2)
)

, ...,y
(

xi+(n−1)
))

+
a2 (xi)

p2 (xi)
G2 (xi,y(xi))+

a3 (xi)

p3 (xi)
≈ 0,

F2
(

xi,y
(

xi−(n−1)
)

,y
(

xi−(n−2)
)

, ...,y
(

xi+(n−1)
))

+
b2 (xi)

q2 (xi)
H2 (xi,y(xi))+

b3 (xi)

q3 (xi)
≈ 0,

whereF1,F2 are given as

F1(x,y′ (x) ,y′′1(x)) = y′′1(x)+
a1 (xi)

p1 (xi)
G1 (x,y′ (x)) ,

F2(x,y′ (x) ,y′′2(x)) = y′′2(x)+
b1 (xi)

q1 (xi)
H1 (x,y′ (x)) .

The conventional design procedures aim at finding an
acceptable or adequate design that merely satisfies the
functional and other requirements of the problem. In
general, there will be more than one acceptable design,
and the purpose of optimization is to choose the best one
of the many acceptable designs available. Thus a criterion
has to be chosen for comparing the different alternative
acceptable designs and for selecting the best one. The
criterion with respect to which the design is optimized,
when expressed as a function of the design variables, is
known as the fitness function. The choice of fitness
function is governed by the nature of problem and the
selection of this function can be one of the most
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important decisions in the whole optimum design process.
Next, we define the fitness function related to Eqs. (1) and
(2). But firstly, we present the following definitions.

Definition 1: The residual of the general interior node,
denoted by Res, is defined as:

Res1 (i)

= F1(xi,y
(

xi−(n−1)
)

,y
(

xi−(n−2)
)

, ...,y
(

xi+(n−1)
)

)

+
a2 (xi)

p2 (xi)
G2 (xi,y(xi))+

a3 (xi)

p3 (xi)
,

Res2 (i)

= F2(xi,y
(

xi−(n−1)
)

,y
(

xi−(n−2)
)

, ...,y
(

xi+(n−1)
)

)

+
b2 (xi)

q2 (xi)
H2 (xi,y(xi))+

b3 (xi)

q3 (xi)
.

(4)

Definition 2: The overall individual residual, Oir, is a
function of the residuals of all interior nodes. It may be
stated as

Oir =

√

N−1

∑
i=1

(

Res21 (i)+Res22 (i)
)

.

Definition 3: The fitness function, denoted by Fit, is
defined as:

Fit =
1

1+Oir
.

The fitness function plays a fundamental rule in
optimization techniques (continuous and discrete) and
their applications. This function is required in our work in
order to convert the minimization problem of Oir into a
maximization problem of Fit. In fact, the value of
individual fitness is improved if a decrease in the value of
the Oir is achieved. On the other hand, the optimal
solution of the problem, nodal values, will be achieved
when Oir approaches zero and thus Fit approaches unity.

4 Techniques for optimization

There are a few common techniques which are common
to both single-objective and multi-objective optimization
problems. However there are some advanced techniques
which are applied to multi-objective optimization
problems as these problems contain multi-dimensional
objectives to be satisfied.

In general, the different optimization techniques can
be broadly classified into the following three categories
[19]: first, calculus-based techniques or numerical
methods. Second, enumerative techniques. Third, random
techniques.

Calculus methods, also known as numerical methods
use a set of necessary and sufficient conditions which
must be satisfied by the solution of the optimization
problem. Numerical methods further divided into direct
and indirect methods. Direct search methods deals with

hill climbing in the function space by moving in local
gradient direction, while in indirect methods the gradient
of the objective function is set to zero and thus solution is
get by solving these set of equations. All the calculus
based methods assume strictly the existence of derivatives
and are local in scope too. These constrains limit their
application in real-world problems; however in small
class of unimodal problems these can be efficiently used.

Enumerative techniques tends to evaluate each and
every point of the finite, or discrete infinite, search space
to sought optimal solution. A well-known example of
enumerative search technique is dynamic programming.
Thus, in order to search each and every point enumerative
needs to break down the problems even of moderate size
and complexity into smaller divisions.

Guided random search techniques are based on the
concept of enumerative methods only but with the use of
additional information about the search space in order to
seek the potential regions faster. Guided is further
categorized into single-point and multi-point search,
means whether it is searching just with one point or with
several points at a given time. For single-point search
technique, simulated annealing is widely used. It uses
thermodynamic evolution in order to find states of
minimum energy. For multi-point search, where random
choice is used as a tool to guide through a highly
explorative search space, GA is in trend. They are
basically used assuming that a near-optimal solution will
be accepted; given the search space is huge, noisy,
multi-modal as well as discontinuous.

5 Overview of genetic algorithm

Modern metaheuristics like GA is easy-to-apply
optimization concepts that are widely used for
fully-automated decision making and problem solving. In
this section, a summary of GA approach and its
characteristics to the design optimization problem are
presented by a brief introduction.

GA is efficient, self-adaptable, self-repairable, and
robust, nature-inspired search and optimization tool. GA
performs well in large, complex and multi-modal search
space. GA are modelled based upon the natural genetic
principles where the potential solution is encoded in
structures known as chromosomes. These make use of
problem or domain dependent knowledge to search
potential and promising areas in search space. Each
individual or chromosome has a fitness value associated
with it, which describes its goodness compared to other
individuals in the current population with respect to the
solution. The genetic operators such as selection,
crossover, and mutation are also inspired by the nature
and are applied to chromosomes in order to yield better
and potential solutions. GA is adaptive computational
tools modelled on the mechanics of nature. These
efficiently exploit historical information to guess newly
upcoming offspring with improved performance. GA is
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metaheuristics search methods means it estimates the
solution, which can be used for both solving problems
and modelling evolutionary systems. GA is preferred
when the search space is huge, discontinuous,
multi-dimensional, multi-modal and noisy [19,20,21,22,
23].

The major features of GA like direct use of coding,
search from a population, blindness to auxiliary
information and randomized operators contribute to its
robustness and resulting advantage over other more
commonly used techniques. In particular, GA has many
advantages over the traditional numerical optimization
approaches, including the following facts [24]; first, it can
optimize with continuous or discrete parameters. Second,
it does not require derivative information. Third, it
simultaneously searches from a wide sampling of the cost
surface. Fourth, it can work with large number of
variables. Fifth, it provides a list of optimum parameters,
not just a single solution. Sixth, it may encode the
parameters and the optimization is done with the encoded
parameters. Seventh, it works with numerically generated
data, experimental data, or analytical functions.

6 Continuous genetic algorithm

This section utilizes and evaluates the continuous GA as an
efficient evolutionary algorithm including its history and
its characteristics. In this summary, it is intended to present
the most representative works in a continuous GA.

Continuous GA depends on the evolution of curves in
one-dimensional space, surfaces in two-dimensional
space, and volumes in three-dimensional space.
Generally, continuous GA uses smooth operators and
avoids sharp jumps in the parameter values. The
algorithm begins with a population of randomly generated
candidates and evolves towards better solution by
applying genetic operators. This novel approach is a
relatively new class of optimization technique, which
generates a growing interest in the mathematics and
engineering community.

Continuous GA has recently emerged as a powerful
framework in the numerical analysis field. Continuous
GA was developed in [25] as an efficient method for the
solution of optimization problems in which the
parameters to be optimized are correlated with each other
or the smoothness of the solution curve must be achieved.
It has been successfully applied in the motion planning of
robot manipulators, which is a highly nonlinear, coupled
problem [26,27], in the solution of collision-free path
planning problem for robot manipulators [28], in the
numerical solution of second-order, two-point regular
BVPs [29], in the solution of optimal control problems
[30], in the solution of second-order, two-point singular
BVPs [31], and in the solution of systems of second-order
regular BVPs [32]. Their novel development has opened
the doors for wide applications of the algorithm in the
fields of mathematics, physics, and engineering. It has

been also applied in the solution of fuzzy differential
equations [33]. On the other hand, the numerical
solvability of other version of differential equations and
other related equations can be found in [34,35,36,37,38,
39,40] and references therein.

The reader is asked to refer to [25,26,27,28,29,30,
31,32,33] in order to know more details about continuous
GA, including their justification for use, conditions on
smoothness of the functions used in the algorithm, several
advantages of continuous GA over conventional GA
(discrete version) when it is applied to problems with
coupled parameters and(or) smooth solution curves, etc.

7 Software libraries and numerical inputs

The solution of most practical optimization problems
requires the use of computers. Several commercial
software systems are available to solve optimization
problems that arise in different mathematical and
engineering areas. All the simulations in the optimization
runs presented in this paper were performed using Visual
Basic Platform.

The continuous GA proposed in this paper is used to
solve the given system of singular BVPs. The input data
to the algorithm is divided into two parts; the continuous
GA related parameters and the system of singular BVPs
related parameters. The continuous GA related
parameters include the population size,Np, the individual
crossover probability,pci, the curve crossover probability,
pcc, the individual mutation probability,pmi, the curve
mutation probability,pmc, the rank-based ratio,Rbr, the
initialization method, the selection scheme used, the
replacement method, the immigration threshold value and
the corresponding number of generations, and finally the
termination criterion. The system of singular BVPs
related parameters include the governing singular
differential system, the independent interval[0,1], the
boundary values,α,β , and finally the number of nodes,
N. The reader is kindly requested to go through [41,42,
43,44,45,46,47,48,49,50] for more details about the
selection scheme, the replacement method, the control
parameters, and others.

Optimization algorithms are iterative. They begin
with an initial guess of the variable and generate a
sequence of improved estimates (called “iterates or
generations”) until they terminate, hopefully at a solution.
What is the termination condition? As the algorithm runs
until it reach a certain extent, the structure of individual
between every two ones is very similar. It will be difficult
to find a better individual if the algorithm till runs. Under
this condition, we think this algorithm is convergent. In
this paper, we think the population is convergent when
one of the following conditions is met. First, the fitness of
the best individual of the population reaches a value of
0.9999999. Second, the maximum nodal residual of the
best individual of the population is less than or equal to
0.00000001. Third, a maximum number of 3000
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generations is reached. Fourth, the improvement in the
fitness value of the best individual in the population over
1000 generations is less than 0.001. It is to be noted that
the first two conditions indicate to a successful
termination process (optimal solution is found), while the
last two conditions point to a partially successful end
depending on the fitness of the best individual in the
population (near-optimal solution is reached) [25,26,27,
28,29,30,31,32,33].

The sequence of steps taken in a continuous GA to
solve Eqs. (1) and (2) numerically is shown in the next
algorithm.

Algorithm 1: To approximate the solutions of system of
singular BVPs (1) and (2) atN −1 equally spaced number
in (0,1):

Input: System of singular BVPs parameters: endpoints of
[0,1]; integer N; and boundary conditionsα,β .
Continuous GA parameters: population sizeNp;
values of probabilities pci, pcc, pmi, pmc; and
rank-based ratioRbr.

Output: Approximation Φ1 and Φ2 of y1 and y2,
respectively, atN +1 values ofx.

Step 1:Seth =
1
N

;

Step 2:For i = 0,1, ...,N setxi = ih;
Step 3:Do steps(1′,2′,3′,4′,5′,6′,7′,8′,9′):

Step1′: Initialization process;
Step2′: Fitness evaluation process;
Step3′: Selection process;
Step4′: Crossover process;
Step5′: Mutation process;
Step6′: Fitness evaluation process;
Step7′: Replacement process;
Step8′: If termination process doesn’t hold then go to

Step 3′, else go to 9′;
Step9′:Output(xi,Φ1 (xi)) and(xi,Φ2 (xi));

Step 4:Stop.

To summarize the evolution process in continuous GA
an individual is a candidate solution that consists of two
curves each ofN − 1 nodal values. The population of
individuals undergoes the selection process, which results
in a mating pool among which pairs of individuals are
crossed over with probabilitypci within that pair of
parents, individual solution curves are crossed with
probability pcc. This process results in an offspring
generation where every child undergoes mutation with
probability pmi, within that child individual solution
curves are mutated with probabilitypmc. After that, the
next generation is produced according to the replacement
strategy applied. The complete process is repeated till the
convergence criterion is met where the two curves of the
best individual are the required solution curves. The final
goal of discovering the required nodal values is translated
into finding the fittest individual in genetic terms.

8 Numerical experiments

Numerical experiments are performed to measure the
relative accuracy and computational efficiency. Accuracy
refers to how closely a computed or measured value
agrees with the true value, since, a computer has a finite
word length and so only a fixed number of digits are
stored and used during computation. Thus, we offer two
types of error, the absolute error which is the absolute
numerical difference between the exact solution and the
approximate solution, and the absolute residual error
which is a positive number that found by Eq. (4). In fact,
the residual error will be zero at the two endpoints of
[0,1].

Next, two examples are studied to demonstrate the
accuracy and applicability of the present algorithm.
Results obtained are compared with the exact solution
and are found to be in good agreement with each other.

Example 1: Consider the following linear singular
differential system with singulariteis at left-right
endpoints:

y′′1 (x)+
2x−1
x2
√

x

[

y′1 (x)+ x2y′2 (x)
]

− x3

cos
(π

2 x
) [y1 (x)− exy2 (x)]+ f1 (x) = 0,

y′′2 (x)+
x

(x−1)2 y′1 (x)

+
x

sin(πx)
[y1 (x)− xy2 (x)]+ f2 (x) = 0,

subject to the boundary conditions

y1 (0) = 0,y1 (1) = 0,

y2 (0) = 0,y2 (1) = 0,

wherex ∈ (0,1) and f1 (x) , f2 (x) are chosen such that the
exact solutions arey1 (x) = sin(πx) andy2 (x) = x2− x.

Using continuous GA, takingxi =
i
N , i = 0,1, ...,N

with the fitness function Fit, the Algorithm 1, and the
termination conditions listed in the previous section, the
numerical results ofΦ1 (xi) andΦ2 (xi) for approximating
y1 (xi) andy2 (xi) at some selected grid points forN = 10,
Np = 500, pci = 0.9, pcc = 0.5, pmi = 0.9, pmc = 0.5, and
Rbr = 0.1 are given in Tables 1 and 2, respectively.

Example 2: Consider the following nonlinear singular
differential system with singulariteis at left-right
endpoints:

y′′1 (x)+
20

x(x−1)

[

y′1 (x)− (y′2 (x))
2
]

− cos(x)

sinh2 (x)

×
[

y2
1 (x)+ xsin(y1 (x)y2 (x))

]

+ f1 (x) = 0,

y′′2 (x)+
5ex

xsinx
(y′2 (x))

3− x√
1− x

[sinh(x)(y2 (x))
3

+sin(x)y2 (x)cos(y1 (x))]+ f2 (x) = 0,
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Table 1: Numerical results ofy1 (x) for Example 1.
xi y1 (xi) Φ1 (xi) |y1 (xi)−Φ1 (xi)| |Res1 (xi)|
0 0 0 0 0
0.1 0.3090169944 0.3090169709 2.34377574×10−8 2.46906269×10−7

0.2 0.5877852523 0.5877852301 2.21766321×10−8 7.33246741×10−7

0.3 0.8090169944 0.8090169716 2.27738666×10−8 1.31747821×10−7

0.4 0.9510565163 0.9510564898 2.64554492×10−8 1.57196727×10−7

0.5 1 0.9999999884 1.16274315×10−8 1.43210365×10−7

0.6 0.9510565163 0.9510565048 1.15035971×10−8 1.16714975×10−7

0.7 0.8090169944 0.8090169852 9.20499440×10−9 9.08216851×10−7

0.8 0.5877852523 0.5877852479 4.43163132×10−9 6.09962319×10−7

0.9 0.3090169944 0.3090169837 1.07166703×10−8 3.19497157×10−7

1 0 0 0 0

Table 2: Numerical results ofy2 (x) for Example 1.
xi y2 (xi) Φ2 (xi) |y2 (xi)−Φ2 (xi)| |Res2 (xi)|
0 0 0 0 0
0.1 −0.09 −0.0900000036 3.55472876×10−9 2.82238980×10−8

0.2 −0.16 −0.1600000087 8.68203299×10−9 3.31277996×10−8

0.3 −0.21 −0.2100000323 3.22981050×10−8 3.94634569×10−7

0.4 −0.24 −0.2400000186 1.85934107×10−8 4.50275413×10−7

0.5 −0.25 −0.2500000991 9.91166535×10−8 4.94881138×10−7

0.6 −0.24 −0.2400000641 6.41332590×10−8 5.20706622×10−7

0.7 −0.21 −0.2100000110 1.10134028×10−8 5.45125595×10−7

0.8 −0.16 −0.1600000024 2.36580521×10−9 5.35900147×10−8

0.9 −0.09 −0.0900000074 7.42388421×10−9 5.38354922×10−8

1 0 0 0 0

subject to the boundary conditions

y1 (0) = 1,y1 (1) = e,

y2 (0) = 0,y2 (1) = sinh(1) ,

wherex ∈ (0,1) and f1 (x) , f2 (x) are chosen such that the
exact solutions arey1 (x) = ex andy2 (x) = sinh(x).

Using continuous GA, takingxi =
i
N , i = 0,1, ...,N

with the fitness function Fit, the Algorithm 1, and the
termination conditions listed in the previous section, the
numerical results ofΦ1 (xi) andΦ2 (xi) for approximating
y1 (xi) andy2 (xi) at some selected grid points forN = 10,
Np = 500, pci = 0.9, pcc = 0.5, pmi = 0.9, pmc = 0.5, and
Rbr = 0.1 are given in Tables 3 and 4, respectively.

It is to be noted that the accuracy of a certain node is
in advanced, since it has a truncation error of the order
O
(

h10
)

. On the other aspect as well, from the last
mentioned tables, we see that we can achieve a good
approximations with the exact solutions.

9 Statistical analysis

In this section, the effects of various continuous GA
operators and control parameters on the convergence

speed of the proposed algorithm are investigated in order
to capture the behavior of solutions. The analysis includes
the evolutionary progress plots, of the best-fitness
individual, the evolution of nodal values, the effect of the
step size in addition to an analysis of the population size,
the curve crossover and the curve mutation probabilities,
and the maximum nodal residual effect.

Definition 4: The convergence speed of the algorithm,
whenever used, means the average number of generations
required for convergence.

Remark 4: Throughout this paper, we will try to give the
results of the two examples; however, in some cases we
will switch between the results obtained for the examples
in order not to increase the length of the paper without the
loss of generality for the remaining results.

Due to the stochastic nature of continuous GA, twelve
different runs were made for every result obtained in this
work using a different random number generator seed;
results are the average values of these runs. This means
that each run of the continuous GA will result in a slight
different result from the other runs.

The convergence data of the two examples is given in
Table 5. It is clear from the table that the examples take
1623 generations, on average, to converge to a fitness
value of about 0.999999789 with an average absolute
nodal residual of the value 1.75502448× 10−7 and an
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Table 3: Numerical results ofy1 (x) for Example 2.
xi y1 (xi) Φ1 (xi) |y1 (xi)−Φ1 (xi)| |Res1 (xi)|
0 1 1 0 0
0.1 1.1051709181 1.1051709176 4.52360174×10−10 6.13045170×10−9

0.2 1.2214027582 1.2214027580 1.11405697×10−10 4.18143742×10−9

0.3 1.3498588076 1.3498588074 1.66059423×10−10 3.81930265×10−9

0.4 1.4918246976 1.4918246975 1.87788104×10−10 3.52955665×10−9

0.5 1.6487212707 1.6487212704 3.38139288×10−10 2.24281038×10−9

0.6 1.8221188004 1.8221188003 1.35799902×10−10 2.11427986×10−9

0.7 2.0137527075 2.0137527073 1.57605628×10−10 1.63476344×10−9

0.8 2.2255409285 2.2255409278 7.36103139×10−10 1.07448717×10−9

0.9 2.4596031112 2.4596031111 7.00001307×10−11 3.15012016×10−9

1 2.7182818285 2.7182818285 0 0

Table 4: Numerical results ofy2 (x) for Example 2.
xi y2 (xi) Φ2 (xi) |y2 (xi)−Φ2 (xi)| |Res2 (xi)|
0 0 0 0 0
0.1 0.1001667500 0.1001667490 1.06187525×10−9 8.02476012×10−8

0.2 0.2013360025 0.2013360002 2.37455608×10−9 3.96756814×10−8

0.3 0.3045202934 0.3045202917 1.78401083×10−9 4.46209980×10−8

0.4 0.4107523258 0.4107523239 1.93059550×10−9 5.46656354×10−8

0.5 0.5210953055 0.5210953042 1.28153001×10−9 3.33396211×10−8

0.6 0.6366535821 0.6366535804 1.76460065×10−9 3.02547742×10−8

0.7 0.7585837018 0.7585836993 2.54339745×10−9 3.84077958×10−8

0.8 0.8881059822 0.8881059811 1.11469865×10−9 2.51190269×10−8

0.9 1.0265167257 1.0265167250 6.74489897×10−10 2.78001644×10−9

1 1.1752011936 1.1752011936 0 0

Table 5: Convergence data of Examples 1 and 2.
Example Average generations Average fitness Average error Average absolute residual
1 1597 0.999999836 2.16394062×10−8 3.30061098×10−7

2 1649 0.999999741 9.38056433×10−10 2.09437978×10−8

average absolute nodal error of the value
1.12887313×10−8.

The evolutionary progress plots, of the best-fitness
individual of Examples 1 and 2 are shown in Figure 1. It
is clear from the figure that, in the first 30% of
generations the best-fitness approaches to one very fast,
after that, it approaches to one slower. That means the
approximate of continuous GA converge to the actual
solution very fast in the first 30% of the generations.

The way in which the nodal values evolve for
Example 2 is studied next. Figure 2 shows the evolution
of the first,x1, and middle,x5, nodal values ofΦ1, while
Figure 3 shows the evolution of the middle,x5, and ninth,
x9, nodal values ofΦ2.

It is observed that from the evolutionary plots that the
convergence process is divided into two stages: the
coarse-tuning stage and the fine-tuning stage, where the
coarse-tuning stage is the initial stage in which
oscillations in the evolutionary plots occur, while the

fine-tuning stage is the final stage in which the
evolutionary plots reach steady-state values and do not
have oscillations by usual inspection. In other words,
evolution has initial oscillatory nature for all nodes, in the
same example. As a result, all nodes, in the same
example, reach the near optimal solution together.

The effect of the step size on the convergence speed
and the corresponding errors is explored next. Tables 6
and 7 give the relevant data for Example 1, where the
number of nodes covers the range from 10 to 80. It is
observed that the reduction in the step size results in a
reduction in the error and correspondingly an
improvement in the accuracy of the obtained solutions.
This goes in agreement with the known fact about finite
difference schemes where more accurate solutions are
achieved using a reduction in the step size. On the other
hand, the cost to be paid while going in this direction is
the rapid increase in the number of generations required
for convergence. For instance, while reducing the step
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(a)

(b)

Fig. 1: Evolutionary progress plots of fitness function across all
generations for: (a) Example 1; (b) Example 2.

size from 0.1 to 0.05, the required number of generations
for convergence jumps from almost 1600 to 2000, i.e.
1.25 multiplication factor.

The influence of the population size on the
convergence speed of CGA, the average fitness, and the
corresponding errors is studied next for Example 2 as
shown in Table 8. The population size is increased in
steps of 100 starting with 100 and ending with 1000.
Small population sizes suffer from larger number of
generations required for convergence and the probability
of being trapped in local minima, while large population
size suffer from larger number of fitness evaluations that
means larger execution time. However, it is noted that the
improvement in the convergence speed becomes almost
negligible after a population size of 700.

The particular settings of several continuous GA
tuning parameters including the probabilities of applying
crossover operator and mutation operator are investigated
here. These tuning parameters are typically
problem-dependent and have to be determined
experimentally. They play a non-negligible role in the
improvement of the efficiency of the algorithm. Table 9
shows the effect of the crossover probability,pc, and the
mutation probability,pm, on the convergence speed of the
algorithm for Example 1. The probability value is
increased in steps of 0.2 starting with 0.1 and ending with

(a)

(b)

Fig. 2: Evolution of the nodal values ofΦ1 for Example 2 across
all generations at: (a) the first nodal; (b) the fifth nodal.

0.9 for both pc and pm. It is clear from the tables that
when the probabilities valuespc and pm are increasing
gradually, the average number of generation required for
convergence is decreasing as well. It is noted that the best
performance of the algorithm is achieved forpc = 0.9 and
pm = 0.9. As a result, these values are set as the algorithm
default values.

Finally, the influence of the maximum nodal residual
of the best individual on the convergence speed, the
average execution time, and the corresponding fitness is
investigated. This is the second termination condition of
the algorithm and its value is set between 0.1 and
0.0000000001. Table 10 gives the relevant data for
Example 2. Regarding the convergence speed, it is
obvious that as the maximum nodal residual decreases,
the number of generations required for convergence
increases rapidly since the searching process will be
dominated by the fine-tuning stage. The difference
between the exact and the continuous GA nodal values
decreases initially till a maximum nodal residual of the
value 0.0000000001 is reached. After that, there will be
no improvement in the accuracy of the solutions obtained
for further reduction in the maximum nodal residual. The
proposed approach is a variant of the finite difference
scheme with a truncation error of order O

(

h10
)

. As a
result, the accuracy of the solutions obtained is dependent
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Table 6: The influence of the step size on the convergence speed and the corresponding errors ofy1 (x) for Example 1.
Step size Average generations Maximum absolute error Maximum absoluteresidual
0.1 1597 2.64554492×10−8 9.08216851×10−7

0.05 2034 3.08997577×10−10 1.51010432×10−8

0.025 2469 8.87751763×10−11 8.87771443×10−9

0.0125 3000 1.08971653×10−11 4.08996140×10−9

Table 7: The influence of the step size on the convergence speed and the corresponding errors ofy2 (x) for Example 1.
Step size Average generations Maximum absolute error Maximum absoluteresidual
0.1 1597 9.91166535×10−8 5.45125595×10−7

0.05 2034 1.59980346×10−10 4.99476087×10−8

0.025 2469 6.09975746×10−11 6.53925227×10−9

0.0125 3000 7.16424350×10−12 8.09066997×10−10

Table 8: The effect of the population size on the convergence speed, the average fitness, and the corresponding errors for Example 2.
Np Average generations Average fitness Average error Average residual
100 2751 0.9990485702 2.47489011×10−7 7.28242506×10−6

200 2316 0.9999370096 8.01924967×10−8 1.00274567×10−6

300 2042 0.9999910414 1.06727973×10−8 8.21219268×10−7

400 1852 0.9999963452 4.00331248×10−9 3.46816826×10−7

500 1649 0.9999997407 9.38056433×10−10 2.09437978×10−8

600 1598 0.9999997956 3.15343296×10−10 9.23276812×10−9

700 1507 0.9999998259 8.24209177×10−11 6.52598677×10−9

800 1479 0.9999998474 6.33182201×10−11 9.37609028×10−10

900 1423 0.9999999000 3.15861153×10−11 5.01801005×10−10

1000 1399 0.9999999000 1.91056846×10−11 2.19434710×10−10

on the step size used, and for a certain step size there will
be initial improvement while decreasing the maximum
nodal residual till the step size limit is reached where
further reduction will be of no use.

10 Concluding remarks

The aim of present work is to develop an efficient and
accurate method for solving systems of singular BVPs.
We can conclude that the continuous GA approach is
powerful and efficient technique in finding approximate
solutions for linear and nonlinear systems of singular
BVPs with singularity at one or both endpoints. In the
proposed algorithm, each of the derivatives is replaced by
an appropriate difference quotient approximation, where
two smooth solution curves are used for representing the
required nodal values. There is an important point to
make here; the results obtained by the continuous GA
approach are very effective and convenient in linear and
nonlinear cases with less computational work and time.
This confirms our belief that the efficiency of our
technique gives it much wider applicability in the future
for general classes of linear and nonlinear BVPs of
different orders and types. On the other aspect as well, the
influence of different parameters, including the evolution

of nodal values, the maximum nodal residual, the
population size, the curve’s probabilities, and the step size
is also studied.

The evolutionary progress investigations showed that
approximate of continuous GA converge to the actual
solution very fast in the first 30% of the generations, and
the problems spent about 20% of generations, on average,
in the coarse-tuning stage, while the remaining 80% is
spent in the fine-tuning stage. The accuracy obtained
using continuous GA is moderate since it has a truncation
error of the order O

(

h10
)

. The accuracy of the solution
obtained is dependent on the step size used, and for a
certain step size there will be initial improvement while
decreasing the maximum nodal residual till the step size
limit is reached where further reduction will be of no use.
Saturation population is reached at a population size of
700.
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Table 9: The effect of the crossover probability and the mutation probability on the convergence speed for Example 1.
(pm, pc) 0.1 0.3 0.5 0.7 0.9
0.1 3000 2916 2681 2422 2139
0.3 2915 2774 2592 2269 1955
0.5 2722 2540 2377 2117 1838
0.7 2354 2264 2122 1922 1619
0.9 2266 2106 1934 1703 1597

Table 10: The influence of the maximum nodal residual on the convergence speed, the average execution time, and the average fitness
for Example 2.
Maximum nodal residual Average execution time (seconds) Average generations Average fitness
0.1 239.540 580 0.766103194
0.01 253.180 607 0.939420902
0.001 358.939 871 0.990364603
0.0001 433.396 1003 0.999389592
0.00001 486.255 1155 0.999787974
0.000001 576.378 1353 0.999987891
0.0000001 589.056 1416 0.999997543
0.00000001 685.984 1649 0.999999741
0.000000001 747.077 1783 0.999999846
0.0000000001 787.691 1871 0.999999900

(a)

(b)

Fig. 3: Evolution of the nodal values ofΦ2 for Example 2 across
all generations at: (a) the fifth nodal; (b) the ninth nodal.
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