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Abstract: This paper presents a mathematical framework for a family of discrete-time discrete-frequency transforms in terms of
matrix signal algebra. The matrix signal algebra is a mathematics environment composed of a signal space, a finite dimensional linear
operators and special matrices where algebraic methods are used to generate these signal transforms as computational estimators.
The matrix signal algebra contribute to analysis, design and implementation of parallel algorithms in multi-core proccesors. In this
work, an implementation and experimental investigation of the mathematical framework are performed using MATLABr with the
Parallel Computing ToolboxTM . We found that there is advantage to use multi-core processors and a parallel computing environment
to minimize the high execution time. Also, speedup and efficiency increaseswhen the number of logical processor and length of the
signal increase. Moreover, a superlinear speedup is obtained in this experimental investigation.
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1 Introduction

In signal processing, an important aspect of the study of a
signal is understanding how its frequency varies with time
[1,2]. The time-frequency analysis was developed to aid
get this information using time-frequency representations
of a signal, through of time-frequency transforms [2,3].
Time-frequency transforms can represent a signals over a
time-frequency plane. These transforms combine
time-domain and frequency-domain analyses to yield a
picture of the temporal localization of a signals spectral
components. They may also serve for signal synthesis,
coding and processing [1,3].

A computational implementation of time-frequency
transforms is performed using discrete periodic signals
and discrete-time discrete-frequency (DT-DF) transforms.
A signal is a discrete periodic signal if it completes a
pattern within a measurable time frame, called a period
and repeats that pattern over identical subsequent periods.
Examples of DT-DF transforms are the discrete ambiguity
function (DAF) [4], the discrete short-time Fourier
transforms (DSTFT) [5], the discrete Zak transform
(DZT) [6], the discrete chirp-Fourier transform (DCFT)

[7], the modified discrete chirp-Fourier transform
(MDCFT) [8] and the new discrete chirp-Fourier
transform (NDCFT) [9]. These transforms have several
applications in engineering: waveform designs [10],
time-frequency representations of audio [5], Gabor
expansions and Weyl-Heisenberg frames [11], radar
signal processing as estimator of range and velocity
parameters of the moving object [2,12] and synthetic
aperture radar (SAR) and inverse SAR imaging [8]. Many
implementations of these DT-DF transforms have been
studied and developed in [2,6,7,8,9,12,13], but very few
developed a parallel computing (see, e.g., [13,14]).

In this paper, we present a new general mathematical
framework for all DT-DF transforms mentioned above
(DAF, DSTFT, DZT, DCFT, MDCFT, NDCFT). This
mathematical framework is different to others
implementations because express each DT-DF transform
in terms of a matrix signal algebra, which is a
mathematics environment composed of a signal space,
finite dimensional linear operators and special matrices,
where algebraic methods are used to generate these signal
transforms as computational estimators [12]. This matrix
signal algebra contributes to analysis, design and
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implementation of parallel algorithms. Thus, an
implementation and experimental investigation of this
mathematical framework are performed using
MATLAB r with the Parallel Computing ToolboxTM in a
computer with multi-core proccesors.

The present paper is organized as follows. In Section
2, we define the matrix signal algebra and we explain
some applications to parallel computing. In Section3, we
explain the different types of DT-DF transforms to use in
this paper. Furthermore, we develop a mathematical
framework of DT-DF transforms in terms of the matrix
signal algebra. In Section 4, we explain an
implementation and experimental investigation of this
mathematical framework using parallel computing in
multi-core processors with MATLABr. Finally, in
Section5, we present some conclusions.

Throughout the paper, the following notation is used.
ZN = {0,1, ...,N−1} is the additive groupZ of integers
modulo N, CM×N is the matrix space ofM rows andN
columns with complex numbers entries andC

N = C
N×1.

The rows and columns ofA ∈ C
M×N are indexed by

elements ofZM and ZN, respectively.A(m,n), A(m, :),
A(:,n), A andAT represent entry(m,n), row m, columnn,
conjugate matrix and transpose matrix ofA, respectively.
IN ∈ C

N×N and 1N ∈ C
N are identity matrix and ones

vector, respectively.

2 Matrix Signal Algebra

We define the matrix signal algebra as a mathematics
environment composed of a signal space, finite
dimensional linear operators and special matrices where
algebraic methods are used to generate algorithms in
signal processing area.

Let A,B ∈ C
M×N, C ∈ C

P×Q and{An}n∈ZN such that
An ∈ C

Mn×P. Some spaces, operators and matrices
associated to the matrix signal algebra are the following:

• The space of discrete periodics signals,l2 (ZN), is the
set ofC-valued signals onZN. Moreover,x ∈ l2 (ZN)
if and only if x ∈ C

N [15]. This space corresponds to
signals with finite energy andN-periodic sequences,
i.e., for eachk1 ∈ Z, x(k1) = x(k2), wherek2 ∈ ZN and
k1≡ k2 modN.
• The Hadamard product ofA and B is defined as

A⊙B ∈ C
M×N such that

(A⊙B)(m,n) = A(m,n) ·B(m,n).

The Hadamard product is also known as pointwise or
coordinatewise product.
• The Kronecker product ofA and C is defined as

A⊗C ∈ C
MP×NQ such that

A⊗C =







A(0,0)C · · · A(0,N−1)C
...

.. .
...

A(M−1,0)C · · · A(M−1,N−1)C






.

It replaces every entry(m,n) of A by the matrix
A(m,n)C. In the special caseA = IN, it is called
parallel operation [16].
• Let N = RS. The stride permutation matrix is defined

asLN
S ∈CN×N such that it permutes the elements of the

input signalx ∈ C
N asmR+n→ nS+m, m∈ZS and

n ∈ ZR [16,17]. This matrix permutation governs the
data flow required to parallelize a Kronecker product
computation [16].
• The vec operator,V : CM×N → C

MN, transforms a
matrix into a vector, by stacking all the columns of
this matrix one underneath the other. On the other
hand, the vec inverse operator,RM,N : CMN→ C

M×N,
transforms a vector of dimensionMN into a matrix of
sizeM×N. RN,N is related to the stride permutation

matrix:RN,N{LN2

N v}= (RN,N{v})T , for v ∈ C
N2
.

• The accumulation operator of matrices,
⊔

: ∏n∈ZN
C

Mn×P→ C
M×P with M = ∑n∈ZN

Mn, is
defined as

⊔

n∈ZN

An =







A0
...

AN−1






.

The following examples illustrate how the matrix
signal algebra contributes to analysis, design and
implementation of parallel algorithms.
Example 2.1.Let A ∈ C

R×M, x ∈ C
RN andy ∈ C

MN. We
consider the matrix operationx⊙ (IN⊗A)y. This matrix
operation can be decomposed as follows:






x0
...

xN−1






⊙







A
. . .

A













y0
...

yN−1






=







x0⊙Ay0
...

xN−1⊙AyN−1






,

where xm ∈ C
R and ym ∈ C

M. The matrix operation
x ⊙ (IN ⊗ A)y can be divided intoN sub-operations
xm ⊙ Aym, for m ∈ ZN. The structure operation of
x⊙ (IN ⊗ A)y allows an implementation using parallel
computing, because eachxm ⊙ Aym is computed
independently. �

Example 2.2.Matrix signal algebra is using to compute
the discrete Fourier Transform (DFT) [16,18,19]. The
DFT of x ∈ l2(ZN) is represented asFx : ZN → C such
that Fx(k) = 1√

N ∑n∈ZN
x(n)ω−nk

N , where ωN = e2π i/N .

The matrix representation of DFT ofx is Fx =
1√
N

FNx ,

where FN ∈ C
N×N such that FN(m,n) = ω−mn

N . If
N = RS, then the matrix formalism can be used to express
FN as factorizations of matrices using operators and
matrices from matrix signal algebra [16,18]:

FN = 1√
N

LN
S(IR⊗FS)LN

R TN
R(IS⊗FR)LN

S .

Here, TN
R is a diagonal matrix containing the twiddle

factors. This factorization ofFN is the recursive
general-radix decimation in time Cooley-Tukey FFT for
N = RS. In addition, this representation ofFN allows the
implementation using parallel computing [17]. �
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Table 1: Values ofA andH from DT-DF transforms
DT-DF Transforms A(m,k) H(m,n)

DAF 1 y(n+m)
DSTFT 1 w(n−m)

DZT ωmk
N 1

DCFT 1 ω−mn2

N

MDCFT 1 (1+(−1)n)ω−mn2/2
N

NDCFT (−1)k ω−m(n−N/2)2/2
N

ωN = e2π i/N is a root of unity.
y ∈ l2(ZN) is a discrete periodic echo signal.
w ∈ l2(ZN) is a discrete periodic window function.

3 Discrete-Time Discrete-Frequency
Transforms

3.1 Definition

In signal processing, time-frequency analysis is a body of
techniques and methods used for characterizing and
manipulating signals whose statistics vary in time, such as
transient signals. For discrete periodics signals, we use
discrete-time discrete-frequency (DT-DF) transforms.
Each signalx ∈ l2(ZN) can be express in two dimension
using a DT-DF transformT , such that

T : {l2(ZN),ZN×ZN} → C

{x,(m,k)} 7→ T (m,k)

wherem,k∈ ZN. In this paper, a DT-DF transform ofx is
expressed as

Tx : ZN×ZN → C

(m,k) 7→ Tx(m,k)

As already mentioned above, the discrete ambiguity
function (DAF), the discrete short-time Fourier
transforms (DSTFT), the discrete Zak transform (DZT),
the discrete chirp-Fourier transform (DCFT), the
modified discrete chirp-Fourier transform (MDCFT) and
the new discrete chirp-Fourier transform (NDCFT) are
some types of DT-DF transforms. These transforms have
the same structure:

Tx(m,k) =
1√
N

A(m,k) ∑
n∈ZN

x(n)H(m,n)ω−nk
N , (1)

wherex ∈ l2(ZN) andA,H ∈ C
N×N are given in Table1.

For DAF,y ∈ l2(ZN) is a discrete periodic echo signal [4]
and for DSTFT,w ∈ l2(ZN) is a discrete periodic window
function [20].

3.2 Mathematical Framework

There are two fundamentally different ways of
representing the DT-DF transforms: as summations,

Fig. 1: Parallel model of DT-DF transforms for a signal
x ∈ l2(ZN) using the matrix signal algebra.

explained above, or matrix form. Both representations of
DT-DF transform allow to develop a fast algorithm, but
the matrix representation permits an implementation
using parallel computing.

Let Tx ∈ C
N×N the matrix representation of DT-DF

transforms, such thatTx(m,k) = Tx(m,k). The following
result representsTx in terms of matrix signal algebra.
Theorem 3.2.1.Let x ∈ l2(ZN). Then

Tx =
1√
N

A⊙RN,N

{

LN2

N (IN⊗FN)(h⊙ (1N⊗x))
}

, (2)

whereh ∈ C
N2

such thath =
⊔

m∈ZN
[H(m, :)]T .

Proof. Let z = LN2

N (IN⊗FN)(h⊙ (1N⊗x)). This vector
can be expressed as

z = LN2

N

⊔

m∈ZN

sm, (3)

where sm ∈ C
N, such that sm = FN

(

[H(m, :)]T ⊙x
)

.

Applying theRN,N operator in (3), we obtain

RN,N{z} = RN,N

{

LN2

N

⊔

m∈ZN

sm

}

=

(

RN,N

{

⊔

m∈ZN

sm

})T

.

Let S ∈ C
N×N such thatS = RN,N

{
⊔

m∈ZN
sm
}

. Then

RN,N{z}(m,k) = ST(m,k)

= sm(k)

= ∑
n∈ZN

x(n)H(m,k)ω−nk
N .

Finally, if we make the Hadamard product ofA andST ,
then we obtain

1√
N
(A⊙ST)(m,k) = 1√

N
A(m,k) ·ST(m,k)

= 1√
N

A(m,k) · sm(k)

= Tx(m,k) �
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Fig. 2: Computing time of theN×N DT-DF Transforms.

Fig. 1 shows a model of DT-DF transforms using the
matrix signal algebra. We can observeN independent
processes, making this approach a parallel operation.
Now, using the propertyRN,N{LN2

N v} = (RN,N{v})T ,
equation (2) can write as

Tx =
1√
N

A⊙RN,N {(IN⊗FN)(h⊙ (1N⊗x))}T . (4)

The computational complexity ofRN,N{LN2

N v} and
(RN,N{v})T can be implemented linearly; thus, the
equations (2) and (4) are computationally similar.

The following algorithm shows the implementation of
equation (4).

Algorithm 1: DT-DF Transform Algorithm

Require: x ∈ C
N

Ensure: Tx ∈ C
N×N

1. for m← 0 : N−1
2. h← [H(m, :)]T

3. v1← x⊙h
4. v2← 1√

N
FNv1

5. Tx(:,m)← [A(m, :)]T ⊙ v2

6. end for
7. Tx← (Tx)

T

Steps 2-5 are independent in each iteration, therefore
the above algorithm allows parallel computation. Also, in
the caseA(m,n) = 1, for all m,n ∈ ZN, the Hadamard
product of Step 5 can be omitted.

4 Implementation and Experimental
Investigation

4.1 General Information

The investigations have been carried out on multi-core
processors computer of Instituto Tecnológico de Costa
Rica (Costa Rica Institute Technology). The computer
consists of 4 two-processor units (8 logical processors)
with Intelr CoreTM i7-3632QM CPU processor, system
clock of 2.20 GHz and 8 GB of RAM.

In this experiment, we do the implementation and
testing of Algorithm1 for all DT-DF transforms defined
above. We use a chirp signalx ∈ l2(ZN) such that
x(n) = ω−25n2−30n + ω−5n2−63n as experimental signal.
We select a chirp signal because the time-frequency plane
is a natural representation space for chirps signals and,
therefore it is a signal frequently used in DT-DF
transforms [21]. For the DAF, we use the same chirp
signal x as echo signal1 and, for the DSTFT, we use a
discrete Hamming signalw ∈ l2(ZN) as the discrete
window function, where it is defined as
w(n) = 0.54−0.46cos(2πn/(N−1)).

The implementation of Algorithm1 to compute each
DT-DF transform is performed using MATLABr.
MATLAB r provides two main ways to take advantage of
multicore and multiprocessor computers: built-in
multithreading and parallelism using MATLABr workers

1 If discrete echo signal is the same signalx, then DAF is
called discrete cross-ambiguity function [2].
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Table 2: Speedup of Algorithm 1
DT-DF Transform p N= 256 N = 512 N = 1024 N = 2048 N = 4096 N = 8192

2 2.267 1.255 2.878 3.751 2.172 2.141
DAF 4 1.921 1.206 2.592 5.335 6.318 5.661

8 2.593 1.660 4.291 11.146 15.140 15.288
2 0.975 2.109 3.543 2.177 1.935 2.186

DSTFT 4 0.921 2.191 2.685 6.457 4.844 6.854
8 1.243 1.880 4.569 9.527 13.702 16.317
2 2.443 1.445 2.213 2.402 2.047 2.885

DZT 4 2.035 1.257 2.644 4.571 4.497 7.318
8 2.670 1.779 4.701 10.555 11.269 12.465
2 1.670 1.692 1.780 2.072 1.617 1.993

DCFT 4 2.102 2.895 3.123 2.805 2.584 2.820
8 1.867 4.432 8.263 7.761 7.599 8.355
2 2.009 1.680 1.895 1.653 2.238 2.315

MDCFT 4 1.996 2.181 3.266 3.017 3.789 3.251
8 2.853 3.967 8.173 6.178 7.120 8.764
2 2.325 1.678 1.581 1.968 2.306 2.408

NDCFT 4 1.998 3.200 2.638 2.811 2.673 3.080
8 2.899 3.649 6.480 8.017 7.810 8.136

N is length of the signal andp is the number of logical processor.

[22,23]. We use parallelism using MATLABr workers.
We can run multiple MATLABr workers (MATLABr

computational engines) on a multi-core computer to
execute applications in parallel, with the Parallel
Computing ToolboxTM . This approach allows more
control over the parallelism than with built-in
multithreading [22]. With programming constructs such
as parallel for-loops (parfor) and batch, we write the
parallel MATLAB programs of the mathematical
framework for DT-DF transforms.

4.2 Results and Discussion

The computational performance analysis of Algorithm1
is evaluated using the metrics speedup (or acceleration)
and efficiency. LetT1 the execution time of the sequential
algorithm and Tp the execution time of the parallel
algorithm, wherep is the number of logical processors.
The speedup is the ratio between the execution times of
sequencial and parallel implementations, and it is a value
typically between 1 andp. It is represented by the
formula S= T1/Tp. The efficiency is determined by the
ratio between the speedup and the number of processing
elements, and it is a value typically between 0 and 1. It is
represented by the formulaE = T1/(pTp). When S> p
andE > 1, it is called superlinear speedup.

Fig. 2 shows the execution timeTp, in secondss, of
Algorithm 1 as a function ofN, whereN is the size of
signal of each DT-DF transform. In this figure, it is
observed that there is significant reduction in the parallel
execution time of each DT-DF transform. For example, to
compute DAF with a chirp signal of sizeN = 8192
produce a time of serial executionT1 = 178.845 s. But,
using parallel computing, we obtainT2 = 82.339 s

(43.04% of T1), T4 = 28.310 s (15.82% of T1) and
T8 = 11.700s (6.54% ofT1). This shows the advantage of
to use multi-core processors and a parallel computing
environment to minimize the high execution time in each
DT-DF transform. This is due because parallel computing
is a form of computation in which many calculations are
carried out simultaneously [24,25], operating on the
principle that large problems can often be divided into
smaller ones, which are then solved concurrently, and
minimize execution time [25,26].

Tables2 and 3 represent speedup and efficiency of
Algorithm 1 obtained from the experimental chirp signal
with each DT-DF transform. In Table2, it is observed that
the acceleration of most DT-DF transforms increases
whenp increases, regardless of the value ofN. Moreover,
we obtain superlinear speedup in about 42% of
simulations and most of it is obtained whenN increases.
It indicate that speedup increases and superlinear speedup
is obtained whenp and N increase, using Algorithm1
and MATLABr with the Parallel Computing ToolboxTM

in a computer with similar characteristic to those used in
this paper. Superlinear speedup is not common in parallel
computing. A few researches obtain a superlinear
speedup in its parallel implementation (see, e.g., [27,28]).
Some research mentioned various reasons for superlinear
speedup: cache effect resulting from the different memory
hierarchies of a modern compute [27], the termination
time can be reduced when several searches are executed
at the same time or the efficient utilization of resources by
multiprocessors [29].

Now, Table3 shows increasing values of efficiency
with the increase ofp of most DT-DF transforms. For all
DT-DF transforms, we obtain an efficiency above of 23%
in the range 256≤ N ≤ 1024 and an efficiency above of
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Table 3: Efficiency of Algorithm 1
DT-DF Transform p N= 256 N = 512 N = 1024 N = 2048 N = 4096 N = 8192

2 1.333 0.628 1.439 1.876 1.086 1.071
DAF 4 0.480 0.302 0.648 1.334 1.580 1.415

8 0.324 0.208 0.536 1.393 1.893 1.911
2 0.487 1.055 1.772 1.088 0.968 1.093

DSTFT 4 0.230 0.548 0.671 1.191 1.211 1.713
8 0.155 0.235 0.571 1.036 1.713 2.040
2 1.221 0.722 1.106 1.201 1.023 1.443

DZT 4 0.509 0.314 0.661 1.143 1.124 1.829
8 0.334 0.222 0.588 1.319 1.409 1.558
2 0.835 0.846 0.890 1.036 0.809 0.997

DCFT 4 0.525 0.724 0.781 0.701 0.646 0.705
8 0.233 0.554 1.033 0.970 0.950 1.044
2 1.004 0.840 0.948 0.827 1.119 1.157

MDCFT 4 0.499 0.545 0.816 0.754 0.947 0.813
8 0.357 0.496 1.022 0.772 0.890 1.096
2 1.162 0.839 0.790 0.984 1.153 1.204

NDCFT 4 0.499 0.800 0.660 0.703 0.659 0.770
8 0.362 0.456 0.810 1.002 0.976 1.017

N is length of the signal andp is the number of logical processor.

57% in the range 2048≤ N ≤ 8192. In special case
N = 8192, we obtain an efficiency above of 70%.
Furthermore, we obtain an efficiency above 100% of 42%
of simulations and an efficiency above 80% in 60% of
simulations. It indicates a good efficiency to calculate
DT-DF transforms using Algorithm1 and MATLABr

with the Parallel Computing ToolboxTM in a computer
with similar characteristic to those used in this paper.
Many research in parallel computing mention a good
efficienfy whenE > 70% (see, e.g., [30,31,32,33]).

5 Conclusion

This work presents a new general mathematical
framework for a family of DT-DF transforms: the discrete
ambiguity function (DAF), the discrete short-time Fourier
transforms (DSTFT), the discrete Zak transform (DZT),
the discrete chirp-Fourier transform (DCFT), the
modified discrete chirp-Fourier transform (MDCFT) and
the new discrete chirp-Fourier transform (NDCFT). This
mathematical framework is expressed in equations (2), (4)
and Algorithm1.

This framework is possible because this DT-DF
transforms have the same structure and it is expressed in
equation (1). This mathematical framework is performed
in terms of matrix signal algebra, which is a mathematics
environment composed of a signal space, finite
dimensional linear operators and special matrices, where
algebraic methods are used to generate algorithms in
signal processing area. The matrix signal algebra
contributes to analysis, design and implementation in
parallel of Algorithm 1 to compute each DT-DF
transform. An experimental investigation is performed
and it indicated the following results, using MATLABr

with the Parallel Computing ToolboxTM in a computer
with multi-core proccesors:

–there is advantage to use multi-core processors and a
parallel computing environment to minimize the high
execution time (for DAF, we obtainT1 = 178.845 s,
T2 = 82.339s, T4 = 28.310sandT8 = 11.700s),

–speedup increases and superlinear speedup is obtained
when the number of logical processorp and length of
the signalN increase (42% of simulations),

–a good efficiency too is obtained whenp and N
increase (above 80% in 60% of simulations).
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