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Abstract: This paper presents a mathematical framework for a family of distirege-discrete-frequency transforms in terms of
matrix signal algebra. The matrix signal algebra is a mathematics enwrdreomposed of a signal space, a finite dimensional linear
operators and special matrices where algebraic methods are usedetatgethese signal transforms as computational estimators.
The matrix signal algebra contribute to analysis, design and implementdtjmarallel algorithms in multi-core proccesors. In this
work, an implementation and experimental investigation of the mathematizakfvork are performed using MATLAB with the
Parallel Computing Toolbd®. We found that there is advantage to use multi-core processors amdli@lpgomputing environment

to minimize the high execution time. Also, speedup and efficiency increeses the number of logical processor and length of the
signal increase. Moreover, a superlinear speedup is obtained in g@smental investigation.
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1 Introduction [7], the modified discrete chirp-Fourier transform
(MDCFT) [8] and the new discrete chirp-Fourier

In signal processing, an important aspect of the study of éransform (NDCFT) 9]. These transforms have several

signal is understanding how its frequency varies with timeﬁﬁg'_(f:?;'ounesncm gnggseeenqgggn\ga\é?m;? dig]es[%n:k?l)[r
[1,2]. The time-frequency analysis was developed to aidex ansigns aynd \F/)Ve I-Heisenber frame‘rsi][ radar

get this information using time-frequency representation . P . y-ne 9 ’ .
of a signal, through of time-frequency transfornsg, ~ S'9nal processing as estimator of range and velocity
Time-frequency transforms can represent a signals over parameters of the moving objec?,12] and synthetic
time-frequency plane. These transforms combine.aperture radar (SAR) and inverse SAR imagigy Many

time-domain and frequency-domain analyses to yield Amplementations of these DT-DF transforms have been

picture of the temporal localization of a signals spectralsmd'ed and developed i2 5, 7,8,9,12,13), but very few

components. They may also serve for signal synthesis(,jeveIODEd a parallel computing (see, €.43,14)).

coding and processing.[3]. In this paper, we present a new general mathematical
A computational implementation of time-frequency framework for all DT-DF transforms mentioned above
transforms is performed using discrete periodic signal§DAF, DSTFT, DZT, DCFT, MDCFT, NDCFT). This
and discrete-time discrete-frequency (DT-DF) transforms mathematical framework is different to others
A signal is a discrete periodic signal if it completes a implementations because express each DT-DF transform
pattern within a measurable time frame, called a periodn terms of a matrix signal algebra, which is a
and repeats that pattern over identical subsequent periodmathematics environment composed of a signal space,
Examples of DT-DF transforms are the discrete ambiguityfinite dimensional linear operators and special matrices,
function (DAF) [M4], the discrete short-time Fourier where algebraic methods are used to generate these signal
transforms (DSTFT) 4], the discrete Zak transform transforms as computational estimatatg][ This matrix
(DZT) [6], the discrete chirp-Fourier transform (DCFT) signal algebra contributes to analysis, design and
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implementation of parallel algorithms. Thus, an It replaces every entrym,n) of A by the matrix
implementation and experimental investigation of this  A(m,n)C. In the special casé = Iy, it is called
mathematical framework are performed using  parallel operation]6].

MATLAB ® with the Parallel Computing Toolbd¥ in a e Let N = RS The stride permutation matrix is defined
computer with multi-core proccesors. ang e CN*N sych that it permutes the elements of the
The present paper is organized as follows. In Section  input signalx € CN asmR+n — nS+m, me Zsand
2, we define the matrix signal algebra and we explain  n e Zg [16,17]. This matrix permutation governs the
some applications to parallel computing. In Sect&mve data flow required to parallelize a Kronecker product

explain the different types of DT-DF transforms to use in  computation 16].

this paper. Furthermore, we develop a mathematical e The vec operatory : CM*N — CMN| transforms a
framework of DT-DF transforms in terms of the matrix matrix into a vector, by stacking all the columns of
signal algebra. In Section4, we explain an this matrix one underneath the other. On the other
implementation and experimental investigation of this  hand, the vec inverse operatafy \ CMN _, CMxN
mathematical framework using parallel computing in transforms a vector of dimensidiN into a matrix of

multi-core processors with IVIIATLA@- Finally, in sizeM x N. Zn is related to the stride permutation
Section5, we present some conclusions. o matrix: Zn n{LNV} = (% n{VD)T, for ve CNV
Throughout the paper, the f_o_llowmg notation is used. The acbu{mﬂla'[}ion( 6pgr}é)tor of  matrices,
Zn ={0,1,...,N—1} is the additive groufZ of integers T CMnxP _, CMXP with M = 5 M. is
modulo N, CM*N s the matrix space ofl rows andN defined o neZyn
columns with complex numbers entries a@tl = CN*1. Ao
The rows and columns oA € CM*N are indexed by
elements ofZy and Zy, respectively.A(m,n), A(m,:), |_| An = :
A(:,n), AandAT represent entrym, n), row m, columnn, neZn An-1
conjugate matrix and transpose matrixAyfrespectively. The following examples illustrate how the matrix
In € CN*N and 1y € CN are identity matrix and ones signal algebra contributes to analysis, design and
vector, respectively. implementation of parallel algorithms.
Example 2.1.Let A € CR*M x e CRN andy e CMN, we
s consider the matrix operation® (Iy ® A)y. This matrix
2 Matrix Signal Algebra operation can be decomposed as follows:
We define the matrix signal algebra as a mathematics [ Xo A Yo X0 ® AYp
environment composed of a signal space, finite o .. : - : 7

dimensional linear operators and special matrices where ' ' |
algebraic methods gre used to ggnerate algorithms in \N-1 AJ N1 XN-1 O AYN-1
signal processing area. where Xy, € CR and y,,, € CM. The matrix operation
LetAB e CYN, C e CP*Q and{An}nez, such that  x o (Iy ® A)y can be divided intoN sub-operations
A, € CM*P_ Some spaces, operators and matrices,, ® Ay, for m € Zy. The structure operation of
associated to the matrix signal algebra are the following: x © (Iy ® A)y allows an implementation using parallel
computing, because eachkm @ Ay, is computed
independently. |
Example 2.2.Matrix signal algebra is using to compute
signals with finite energy antl-periodic sequences, the d|screte2Four|gr Transform (DFT’;‘Q’ 18,19). The
i.e., for eactk, € Z, x(ky) = x(k), wherek, € Zy and ~ PFT of x €l (ZiN) IS representekd agx : Zn — C such
k; = ko modN. that 7 (k) = TN ZneZn x(nay™, where awy =e/N.
e The Hadamard product of and B is defined as The matrix representation of DFT afis .7 = L Fux,
A®B e CM*N sych that N

e The space of discrete periodics sign#fgZy), is the
set of C-valued signals otZy. Moreover,x € |2 (ZN)
if and only if x € CN [15]. This space corresponds to

where Fy € CNVN such that Fy(mn) = ™. If
(A@B)(m,n) = A(m,n) - B(m,n). N = RS then t_he matrix formali;m can _be used to express
Fn as factorizations of matrices using operators and
The Hadamard product is also known as pointwise ormatrices from matrix signal algebra€, 18]:
coordinatewise product. Fn= L NN EALNTN (e Ea)LN
e The Kronecker product ofA and C is defined as N= T8 LsUREFILRTR(Is®FR)LS:
MPxN . . . .. .
A® Ce CYPNQ such that Here, TN is a diagonal matrix containing the twiddle
) B factors. This factorization ofFy is the recursive
A0,0C AQN-1)C general-radix decimation in time Cooley-Tukey FFT for
A®C= : : . N = RS In addition, this representation &f allows the
AM-1,00C--- AM—-1,N-1)C implementation using parallel computingjs. |

© 2014 NSP
Natural Sciences Publishing Cor.



16

Appl. Math. Inf. Sci.8, No. 6, 2795-2801 (2014)www.naturalspublishing.com/Journals.asp NS 2 2797

Table 1: Values ofA andH from DT-DF transforms -|[H(0, NTo [4(0, :)]Tel_
DT-DF Transforms A(m,k) H(m,n)
DAF 1 y(n+m)
DSTFT 1 w(n—m) HE@, ) e [AQ, ) o1
DZT wll 1 .
DCFT L o™ g : To
MDCFT 1 A+ (-~ g™/ .
NDCET (—1)K w';m(n—N/Z)Z/Z -I[H(N—2, :)]To[A(N—z, :)]To|-
wy = e#M/Nis a root of unity.
y € 12(Zy) is a discrete periodic echo signal. U1, [AW-1,9]%0H

w € 12(Zy) is a discrete periodic window function. ) )
Fig. 1: Parallel model of DT-DF transforms for a signal

x € 12(Zy) using the matrix signal algebra.

3 Discrete-Time Discrete-Frequency

Transforms explained above, or matrix form. Both representations of

N DT-DF transform allow to develop a fast algorithm, but
3.1 Definition the matrix representation permits an implementation
) ] ) o using parallel computing.
In signal processing, time-frequency analysis is a body of | ot T, ¢ CN*N the matrix representation of DT-DF
techniques and methods used for characterizing angansforms, such thalt, (m,k) = Z(m k). The following

manipulating signals whose statistics vary in time, such agesy|t representsy in terms of matrix signal algebra.
transient signals. For discrete periodics signals, we US&haorem 3.2.1 Let x & 12(Zy). Then
L. L. N)-

discrete-time discrete-frequency (DT-DF) transforms.

Each signak € 12(Zy) can be express in two dimension 1 N2
using a DT-DF transforn, such that Tx= g AOZNN {'-N (IN®FN) (ho (In ®X))}’ 2)
T {12(ZN),Znx ZnY = C whereh € CV* such thah = [ |z, [H(m,)]" .

x(mk} = T(mk Proof. Let z— LIV (In@ Fa) (h® (1n ©x)). This vector

wherem,k € Zy. In this paper, a DT-DF transform afis ~ ¢an be expressed as

expressed as
P z=LN" || sm 3)
% AN XDIN — C meZn
(mk) +— Fx(mKk)
_ _ . where sy € CN, such thatsy = Fy ([H(m,:)]TGX).
As already mentioned above, the discrete amb|gur[yA Ving the 72 tor | btai
function (DAF), the discrete short-time Fourier ~PPYING %N N operatorin 8), we obtain
transforms (DSTFT), the discrete Zak transform (DZT), )
the discrete chirp-Fourier transform (DCFT), the ZnN{Z} = ZNN {LN | Sm}
modified discrete chirp-Fourier transform (MDCFT) and meZn
the new discrete chirp-Fourier transform (NDCFT) are T
some types of DT-DF transforms. These transforms have — (,@N_N { |_| Sm})

the same structure: meZn

Let Se CN*N such thalS = Zn N {[mezy, Sm} - Then

1
F(mk) = —=Amk) § x(mHmma"™ (1)
\/N neéN %N,N{Z}(m’ k) = ST(mv k)

wherex € 12(Zy) andA,H € CN*N are given in Tabld. = sm(k)
For DAF,y € 1%(Zy) is a discrete periodic echo signd] [ = z x(n)H(m, k)w,g”k.
and for DSTFTw € IZ(ZN) is a discrete periodic window nEZn

function [20]. Finally, if we make the Hadamard product®andS',

then we obtain

3.2 Mathematical Framework H(AGST) (MK = Z5 A(mk)-ST(mK)
-1 .
There are two fundamentally different ways of o \NA(m’k) Sm(k)
representing the DT-DF transforms: as summations, = Tx(mk) |
© 2014 NSP
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Fig. 2: Computing time of theN x N DT-DF Transforms.

Fig. 1 shows a model of DT-DF transforms using the 4 Implementation and Experimental

matrix signal algebra. We can obseri independent

Investigation

processes, making this approach a parallel operation.

Now, using the propertyZyn{LNV} = (Zun{v})T,

equation ) can write as

Tx =k AOZun{(IN®FN) (ho (Invex)} . (4)

i

The computational complexity of%’N,N{LHZV} and
(%nn{v})T can be implemented linearly; thus, the
equations?) and @) are computationally similar.

The following algorithm shows the implementation of

equation 4).

Algorithm 1: DT-DF Transform Algorithm

Require: x € CN
Ensure: Ty € CNxN
1.for m«0:N-1
2. h«[Hm:)"
3. vi+XxX®Gh
4, Vo< \%FNvl
5. Tx(,m) « [AM)]" ov,
6. end for
7. T+ (T)T

4.1 General Information

The investigations have been carried out on multi-core
processors computer of Instituto Teobgico de Costa
Rica (Costa Rica Institute Technology). The computer
consists of 4 two-processor units (8 logical processors)
with Intel® Core™ i7-3632QM CPU processor, system
clock of 2.20 GHz and 8 GB of RAM.

In this experiment, we do the implementation and
testing of Algorithm1 for all DT-DF transforms defined
above. We use a chirp signal € 1%(Zy) such that
X(n) = 25730 | ;y-5F-63 a5 experimental signal.
We select a chirp signal because the time-frequency plane
is a natural representation space for chirps signals and,
therefore it is a signal frequently used in DT-DF
transforms 21]. For the DAF, we use the same chirp
signal x as echo signdland, for the DSTFT, we use a
discrete Hamming signaw € 12(Zy) as the discrete
window  function, where it is defined as
w(n) = 0.54—0.46 cog2rm/(N — 1)).

The implementation of Algorithni to compute each
DT-DF transform is performed using MATLAB.
MATLAB ® provides two main ways to take advantage of
multicore and multiprocessor computers: built-in

Steps 2-5 are independent in each iteration, thereforenultithreading and parallelism using MATLABworkers

the above algorithm allows parallel computation. Also, in
the caseA(m,n) = 1, for all mn € Zy, the Hadamard
product of Step 5 can be omitted.

1| discrete echo signal is the same sigmalthen DAF is
called discrete cross-ambiguity functid?].[
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Table 2: Speedup of Algorithm 1

DT-DF Transform  p N=256 N=512 N=1024 N=2048 N=4096 N=28192

2 2267 1255 2878 3751 2172 2141

DAF 4 1921 1206 2592 5335 6318 5661
8 2593 1660 4291 11146 15140 15288

2 0.975 2109 3543 2177 1935 2186

DSTFT 4 0921 2191 2685 6457 4844 6854
8 1243 1880 4569 9527 13702 16317

2 2443 1445 2213 2402 2047 2885

DZT 4 2035 1257 2644 4571 4497 7318
8 2670 1779 4701 10555 11269 12465

2 1670 1692 1780 2072 1617 1993

DCFT 4 2102 2895 3123 2805 2584 2820
8 1867 4432 8263 7761 7599 8355

2 2009 1680 1895 1653 2238 2315

MDCFT 4 1996 2181 3266 3017 3789 3251
8 2853 3967 8173 6178 7120 8764

2 2325 1678 1581 1968 2306 2408

NDCFT 4 1998 3200 2638 2811 2673 3080
8 2.899 3649 6480 8017 7810 8136

N is length of the signal and is the number of logical processor.

[22,23]. We use parallelism using MATLAB workers.  (43.04% of Ty), T, = 28310 s (1582% of T;) and
We can run multiple MATLAE®Y workers (MATLAB®  Tg = 11.700s (6.54% ofT;). This shows the advantage of
computational engines) on a multi-core computer toto use multi-core processors and a parallel computing
execute applications in parallel, with the Parallel environment to minimize the high execution time in each
Computing ToolboX™. This approach allows more DT-DF transform. This is due because parallel computing
control over the parallelism than with built-in is a form of computation in which many calculations are
multithreading 22]. With programming constructs such carried out simultaneously2§,25], operating on the
as parallel for-loopspar f or) and batch, we write the principle that large problems can often be divided into
parallel MATLAB programs of the mathematical smaller ones, which are then solved concurrently, and
framework for DT-DF transforms. minimize execution timeZ5, 26].

Tables2 and 3 represent speedup and efficiency of
. . Algorithm 1 obtained from the experimental chirp signal
4.2 Results and Discussion with each DT-DF transform. In Tab it is observed that
the acceleration of most DT-DF transforms increases
henp increases, regardless of the valueNofMoreover,
e obtain superlinear speedup in about 42% of

The computational performance analysis of Algorithm
is evaluated using the metrics speedup (or acceleration

and efficiency. Lef the execution time of the sequential simulations and most of it is obtained whihincreases.

algorithm and T, the execution time of the parallel It indicate that speedup increases and superlinear speedup
algorithm, wherep is the number of logical processors. . obtained wherp and N increase, using Algorithn

The speedup is the ratio between the execution times of ® b
sequencial and parallel implementations, and it is a valueand MATLAB® with the Parallel Computing ToolboX

tpcally betveen 1 andp I 1 represented by the 2 COMPUET Wil Sl chracterite o ose useq
formula S= T;/T,. The efficiency is determined by the Paper. sup P P P

ratio between the speedup and the number of processin o(renepdujln?n. it? et?za\:\lllelrierr?eﬁa rrﬂ:aistati%kg?g:a eaegu?{g]r)lmear
elements, and it is a value typically between 0 and 1. It is P P P L uE

Some research mentioned various reasons for superlinear
represented by the formula = T1/(pTy). WhenS> p ; ! .
andE > 1, itis called superlinear speedup. speedup: cache effect resulting from the different memory

Fig. 2 shows the execution tim, in econdss of e CREs O & MATE BOlBUATL e o ted
Algorithm 1 as a function o, whereN is the size of at the same time or the efficient utilization of resources b
signal of each DT-DF transform. In this figure, it is y

observed that there is significant reduction in the para"elmultlprocessorsz[9].

execution time of each DT-DF transform. For example,to  Now, Table3 shows increasing values of efficiency
compute DAF with a chirp signal of siz&l = 8192  with the increase op of most DT-DF transforms. For all
produce a time of serial execution = 178845 s. But, DT-DF transforms, we obtain an efficiency above of 23%
using parallel computing, we obtaif, = 82339 s  in the range 256X N < 1024 and an efficiency above of

© 2014 NSP
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Table 3: Efficiency of Algorithm 1

DT-DF Transform p N=256 N=512 N=1024 N=2048 N=4096 N=28192

2 1333 0628 1439 1876 1086 1071

DAF 4 0.480 Q0302 0648 1334 1580 1415
8 0.324 0208 0536 1393 1893 1911

2 0.487 1055 1772 1088 Q968 1093

DSTFT 4 0230 0548 0671 1191 1211 1713
8 0.155 0235 0571 1036 1713 2040

2 1221 Q722 1106 1201 1023 1443

DZT 4 0.509 0314 0661 1143 1124 1829
8 0.334 0222 0588 1319 1409 1558

2 0.835 0846 0890 1036 0809 Q997

DCFT 4 0525 Q724 Q781 Q701 0646 Q705
8 0.233 0554 1033 Q970 Q0950 1044

2 1004 0840 0948 Q827 1119 1157

MDCFT 4 0499 0545 0816 Q754 Q947 0813
8 0.357 0496 1022 Q772 0890 1096

2 1162 0839 Q790 0984 1153 1204

NDCFT 4 0499 Q800 0660 Q703 0659 Q770
8 0.362 0456 0810 1002 Q976 1017

N is length of the signal and is the number of logical processor.

57% in the range 204& N < 8192. In special case with the Parallel Computing Toolbd¥ in a computer
N = 8192, we obtain an efficiency above of 70%. with multi-core proccesors:

Furthermore, we obtain an efficiency above 100% of 42%
of simulations and an efficiency above 80% in 60% of
simulations. It indicates a good efficiency to calculate
DT-DF transforms using Algorithml and MATLAB®
with the Parallel Computing Toolbd¥ in a computer
with similar characteristic to those used in this paper.
Many research in parallel computing mention a good
efficienfy whenk > 70% (see, e.g.30,31,32,33)).

—there is advantage to use multi-core processors and a
parallel computing environment to minimize the high
execution time (for DAF, we obtaifi; = 178845,

T, =82339s, T, = 28310sandTg = 11.700s),

—speedup increases and superlinear speedup is obtained
when the number of logical processpand length of
the signaN increase (42% of simulations),

—a good efficiency too is obtained whem and N
increase (above 80% in 60% of simulations).

5 Conclusion

This work presents a new general mathematicalACknowledgement

framework for a family of DT-DF transforms: the discrete

ambiguity function (DAF), the discrete short-time Fourier The author wish to thank Vicerrectarde Investigadin y

transforms (DSTFT), the discrete Zak transform (DZT), Extenson of Instituto Tecndigico de Costa Rica, Prof.

the discrete chirp-Fourier transform (DCFT), the Roger Moya (Instituto Tecnbbico de Costa Rica) for

modified discrete chirp-Fourier transform (MDCFT) and useful suggestions of improving the presentation of the

the new discrete chirp-Fourier transform (NDCFT). This paper and Prof. Domingo Rdduez (University of Puerto

mathematical framework is expressed in equati@hs(4) Rico, Mayagiez Campus) for insightful discussions and

and Algorithm1. to motivate the study of the digital signal processing area.
This framework is possible because this DT-DF

transforms have the same structure and it is expressed in
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