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Abstract: This paper presents a novel approach for the classification of acute leukemia subtypes using image processing and
mathematical techniques. The preprocessing phase analyses 376 features from abdnormal leukocytes images. The features or
parameters are Leukemia Parameters that helps to lymphoblastic subtypes detection which come from bone marrow images with
heterogeneous staining. The second phase imply the robust generalized principal component analysis as segmentation method for data
classification into a subspace arrangement with tree dimensions for eachplane of lymphoblastic subtype and four dimension for the
subspace arrangement. The novel of our proposal states that the twosubtypes of acute leukemia can be classified into a subspace
arrangement trough robust generalized principal component analysis method. The subspace arrangement is achieved with singular
value decomposition, an hibrid linear model to noise samples detection and homogeneus polynomial. Test reveals that variation in
dimension of subspace arrangement depends on features size, the outliers percentage and noise parameters are tunned, dimension of
subspace and effective dimension are adjusted, time in execution algorithm and segmentation percentage are measured to lymphoblastic
subtypes classification with only 4 parameters from 376 attributes set that are previously computed from cell images and their respective
nucleous and cytoplasm.

Keywords: Leukemia feature extraction, generalized principal component analisis, lymphoblastic subtype, homogeneus polynomial,
subspace arrangement.

1 Introduction

Leukemia is a type of cancer that starts in the bone
marrow. The cause of its production is of immature
leucocytes. This leucocytes replaces normal blood cells.
The body is then exposed to many diseases let them
without defenses. This cancer is one of the causes of
many deaths in Mexico. The National Institute of
Statistics, Geography, and Informatics [1] reported as the
third cause of death in 65 of 100 people where 13.1 %
were woman and 14.6 % were men, only for people of old
age. Leukemia can be detected in early stage and can be
treated with a complete blood count. The abnormalities in
this count can be detected by morphological bone marrow
smear analysis. This analysis is done to confirm the

leukemic cells presence. The pathologist uses a
microscopy to observe the cells looking for abnormalities
in cytoplasm of the cells classify types and subtypes of
leukemia. The classification of this data can be taken as
support to diagnostic process in order to determine the
kind of treatment given. The goal of this paper is devoted
to subtypes detection of lymphocytic leukemia thorough
feature information inside cytoplasm of cell images [2],
[3] Specifically, there are two types of acute lymphocityc
leukemia: L1, L2 and L3, but the samples of lymphocytic
leukemia handled in this paper are only of L1 and L2
subtypes. Other approaches allows segmentations of
leukocytes with markov random fields and teager energy
in [4] and [5] and fuzzy approach as in [6], [7]
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2 The Robust Generalized Algorithm

The RGPCA algorithm is implemented as a variation of
the GPCA Algebraic algorithm in a semi-supervised
fashion with noiseless data. The description of the
RGPCA is as follows: The first phase depends about: (1)
A number of subspaces that are defined for the number of
sets or classes desired. (2) The total of the dimension is
another data that depends of the number of features of the
system plus 1 (maximum of dimension of the
arrangement). (3) Other input data is the matrix ofN
points with the feature vector of one of each leukemia
data. The second phase is about the polynomial
embedding. This phase generates a polynomial set that
allows the intersection between planes, the bases of each
subspaces and the veronese map required for the final
phase. The third phase imply the computation of
polynomial fitting that allows the equation linear system.
Inside this phase the computation of a singular value
decomposition is performed. The fourth phase of the
system obtains the Jacobian matrix to obtain the bases
that allow the final segmentation or clustering.

The implementation of this stage requires to choose the
most suitable version of GPCA algorithm that Yi Ma [8]
offers, then the feature leukemia parameters are taken as
input for the algorithm.

The original GPCA algorithm presented in [9] and
improved in [8] is included in this Section. This algorithm
will be applied at leukemia diagnostic. The GPCA
algorithm is given below in Table1.

One of the first versions is based in robust GPCA with
influence (RGPCA-I), second version is based in the
robust GPCA with influence speedup (RGPCA-IS) and
the third version is about robust GPCA with multivariate
timming (RGPCA-MVT). One of each version was
briefly described as follows:

Robust GPCA with influence (RGPCA-I):] This
approach classifies outliers form a set of small probability
samples with respect to the distribution in question. The
given data set is therefore an atypical set if such samples
constitute a significant portion of the data.

Robust GPCA with influence speedup (RGPCA-IS):
The second approach classifies outliers form a set of
samples that have relatively large influence on the
estimated model parameters. A measure of influence is
normally the difference between the model estimated with
and without the sample in question.

Robust GPCA with multivariate timming
(RGPCA-MVT): In this case, outliers form a set of
samples that are not consistent with (the model inferred
from) the remainder of the data. A measure of
inconsistency is normally the error residue of the sample
in question with respect to the model.

The Multivariate timming process (MVT) is described
as follows: First, an initially robust mean of samples are
obtained, then a trimming parameter need to be specified
equivalent to the outliers percentage. A Mehalanobis
distance is computed and a Mehalanobis distance also

Table 1: Algorithm 2: GPCA (Taken from [8])

Given a set of samples(z1,z2, ...,zn)
from a (transversal arrangement) ofn
linear subspaces with dimensions
(d1,d2, ...,dn) in R

D

STEP 1. Construct the matrix
Ln = (vn(z1),vn(z2), ...,vn(zN)).

STEP 2. Compute the singular value
decomposition (SVD)
of Ln and letC be the matrix
whose columns are the
singular vectors associated with all
zero singular values.

STEP 3. Construct the polynomials
Q(X) =CTvn(X).

STEP 4. for all 1≤ i ≤ n do
STEP 5. Pick one pointzi

per subspaceVi
and compute the Jacobian
J(Q)(zi).

STEP 6. Compute a basis
Bi = (b1,b2, . . . ,bid) of Vi
from the right null space
of J(Q)(zi) via the singular
value decomposition
of J(Q)(zi) .

STEP 7. Assign samples
zj that satisfy
BT

i zj = 0
to the subspaceVi .

STEP 8. end for

using samples of polynomials. Then a difference between
both distance is iterated as stop criteria that ends the
algorithm [8]. We made an analysis about visual
classification of the three of the versions where the MVT
results the highest in classification, spare data and clearest
definition more than one model of subspaces.

3 Existence and analysis of Subspace
Arrangements

This section provides a technical explanation about
theorical approaches of algebraic concepts that hold the
fundamentals of this research. Some of the most
important concepts to define distance between
polynomials between planes are the Sampson Distance
that is explained in this section. Other of the basic
concepts are the singular value decomposition whose
intention is to expose the importance of discrimination
fratures or attributes to define between the two classes of
data treatment in leukemia diagnostic. The subspace
arrangement concept is provided with the intention to
understand the hyperplanes array that represents the final
classification or segmentation of data. Finally, the GPCA
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Algorithm is provided in detail to understand how the
previous concepts are handled in this segmentation
method.

Sampson DistanceWe assume that he polynomials in
Q(X ) are linearly independent [8]. Given a pointz close
to the zero set ofQ(X ), i.e., the subspace arrangement
A , we let ẑ denote the point closest toz on A . Using the
Taylor series ofQ(X ) expanded atz, the value ofQ(X)
at ẑ is given by

Q(ẑ) = Q(z)+J(Q)(z)(ẑ−z)+O(‖ẑ−z‖2). (1)

After ignoring the higher order terms and nothing that
Q(ẑ) = 0, we have

z− ẑ≈ (J(Q)(z)TJ(Q)(z))†J(Q)(z)TQ(z) ∈ R
D (2)

where (J(Q)(z)TJ(Q)(z))† is the pseudo-inverse of
the matrix (J(Q)(z)TJ(Q)(z). Thus, the approximate
square distance fromz to A is given by

‖z− ẑ‖≈ Q(z)T(J(Q)(z)J(Q)(z)T)†Q(z) ∈ R (3)

The expression on the right-hand side is known as the
Sampson distance [3]. Thus, the average Sampson
distance:

1
N

N

∑
i=1

Q(zi)
T(J(Q)(zi)J(Q)(zi)

T)†Q(zi) (4)

is an approximation of the mean square distance.
Minimizing the Sampson distance typically leads to a
good approximation to the maximum-likelihood estimate
that minimizes the mean square distance. There is
however, a certain redundancy in the expression of
Sampson distance. IfA is the zero set ofQ(X), it is also
the zero set of the polynomialsQ(X) = MQ(X) for any
nonsingular matrixM ∈ R

mxm. It is easy to check that the
Sampson distance is invariant under the nonsingular
linear transformation M. Thus the estimate of
polynomials in Q that minimize the average Sampson
distance (or the mean square error) is not unique, at least
not in terms of the terms of the coefficients of the
polynomials inQ(X).

One way to reduce the redundancy is to impose some
constraints on the coefficients of the polynomials inQ(X).
Notice that

(J(Q̂)(zi)J(Q̂)(zi)
T) = MJ(Q)(zi)J(Q)(zi)

TMT (5)

and, if there is no polynomial of lower degree (than
those inQ(X)) that vanishes onA , the matrix

1
N

N

∑
i=1

(J(Q)(zi)J(Q)(zi)
T)εRmxm (6)

is a positive definite symmetric matrix. Therefore, we
can choose the matrixM such that the following is the
identity:

1
N

N

∑
i=1

(J(Q)(zi)J(Q)(zi)
T) = Imxm (7)

Thus, the problem of minimizing the average Sampson
distance now becomes a constrained nonlinear problem:

Q∗ = argminP
1
N

N

∑
i=1

(Q)(zi)
T(J(Q)(zi)J(Q)(zi)

T)†Q(zi)

(8)
subject to

1
N

N

∑
i=1

J(Q)(zi)(J(Q)(zi)
T = Imxm (9)

Many nonlinear optimization algorithm can be
employed here to minimize the above objetivo function
via iterative gradient-descent techniques. However, in
order for the iterative process to coverge quicly to the
global minimum, a good initizalization is needed. Below
we discuss one such method.

Singular Value Decomposition The principal
components of a set of data inRp provide a sequence of
the best linear approximations to that data, of all ranks
q ≤ p [8]. Denote the observations byx1,x2, . . . ,xN and
consider the rank-q linear model for representing them

f (λ ) = µ +Vqλ , (10)

whereµ is a location vector inRp, Vq is a pxqmatrix
with q orthogonal unit vectors as columns, andλ is a q
vector of parameters. This is the parametric representation
of an affine hyperplane of rankq. Fitting q value of such a
model to the data by least squares amounts to minimizing
thereconstruction error

minµ ,{λi},Vq

N

∑
i=1

‖ xi −µ −Vqλi ‖
2 (11)

We can partially optimizeµ and theλi to obtain

µ̂ = x (12)

λ̂i =VT
q (xi −x) (13)

This leaves us to find the orthogonal matrixVq:

minVq

N

∑
i=1

‖(xi −x)−VqV
T
q (xi −x)‖2 (14)

For convenience we assume thatx = 0 (otherwise we
simply replace the observations with their centered
versions xi − x). The p × p matrix Hq = VqVT

q is a
projection matrix, and it maps each pointxi on to its
rank-q reconstructionHqxi , the orthogonal projection ofxi

c© 2014 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


2792 L. Flores-Pulido et. al. : Dimension Reduction Parameters

onto the subspace spanned by the columns ofVq. The
solution can be expressed as follows. Stack the (centered)
observations into the rows of anN× p of matrix X. We
construct thesingular value decomposition of X:

X = UDVT (15)

Here U is an N × p orthogonal matrix(UTU = Ip)
whose columnsu j are called theleft singular vectors, and
D is a p× p orthogonal matrix (VT

V = Ip) with columns
v j called theright singular vectors, and D is a p× p
diagonal matrix, with diagonal elementsd1 ≥ d2 . . . ≥ 0
known as thesingular values. For each rankq, the
solutionVq to (14) consist of the firstq column ofV. the
columns ofUD are called the principal components ofX.
TheN optimalλi in equation (13) are given by the firstq
principal component (TheN rows of theN × q matrix
UqDq).

The SVD is specially used in discrimination of
leukemia cell features as it is explained in [10], [11], [12],
and [13] with the intention to reduce the search space and
increasing segmentation percentage.

The Veronese map of degreeh is the map

vh : FD → FM[D]
h (16)

given by

vh




x1
x2
...

xD


=




xh
1

xh−1
1 x2

...
xh

D


 (17)

An arbitrary homogeneous polynomialq(X) of degree
h in X = {X1,X2, ...,XD} can be written asq(X) = cTvh(X)

for some vectorc∈ F
M[D]

h that collects all the coefficients
associated with the monomials [8].

Vanishing Ideal Let I1, ..., Ir be the linear ideals in an
infinite field k[x1, ...,xn] that are the defining ideals of the
subspaces inA . Denote byVA the union of the subspaces
in A [9]. The vanishing ideal ofVA is the reduced ideal
(rad(Ir))

IA = I1∩ ...∩ rad(Ir) (18)

When A is an arrangement of hyperplanes its
vanishing idealIA is a very simple object - a principal
ideal generated by the product of linear forms that define
the hyperplanes. In general, the idealIA is generated by
products of linear forms up to a radical, since:

rad(I1...Ir) = rad(I1)∩ ...∩ rad(Ir) = I1∩ ...∩ Ir = IA
(19)

but is difficult to construct a nice system of generators
of IA itself. Geometrically, is required to find generators
of IA .

Subspace ArrangementA subspace arrangement inFD

is a union

A
.
=V1∪V2∪ ...∪Vn. (20)

of n subspacesV1,V2, ...,Vn of FD.
For a non empty subsetSof the index set{1,2, ...,n},

we define the intersection

VS
.
= ∩s∈SVs (21)

with dimension dS
.
= dimVS and co dimension

cS
.
= D−dS [9].

4 Perspective

This section explains the tests achieved for the leukemia
diagnosis. The segmentation process handles parameters
obtained from features extracted from samples of cells.
The cells, the nucleus and the cythoplasm reveals
important features about abnormalities in bone marrow
for the cancer detection. The approach tested in this work
apply RGPCA in segmentation data for classification of
abnormalities in two types of leukemia: L1 and L2. There
were three kind of evaluations that compares results
obtained in segmentation data of leukemia features:

Evaluation One: Parameters variation in dimension of
subspaces. This test obtains 10 important results. Where
the noise level takes values from〈0.01,0.015,0.02〉. The
outliers percentage is changed only once from
〈0.06− 0.02〉. The variation of segmentation error is of
15.32 (in the best case) and 51.26 (in the worst case). The
execution time was meassured and the best case was
obtained with 11 seconds. The sets dimension size ( of L1
and L2 sets) was variated from〈2,2〉,〈3,3〉,〈3,3〉,〈4,4〉,
〈5,5〉and〈6,6〉. The max dimension must be the max
dimension of the sets plus one, so, this parameter is
increased in a range of〈3−7〉. So, the best case result in
the Test Number 5 where the lowest segmentation error
was of 15.32% with 0.02 of noise level, 0.2 of outliers
percentage, the execution time is of 1 minute with 32
seconds, with size dimension of the sets of〈3,3〉 and max
dimension of 4. This results can be observed in Table2.

Evaluation Two: Decreasing Noise Level and Outlier
Percentage. This test obtains 6 important results. Where
the noise level takes values from〈0.005,0.01,0.02〉. The
outliers percentage is changed only once from
〈0.01− 0.06〉. The variation of segmentation error is of
15.52 (in the best case) and 21.23 (in the worst case). The
execution time was meassured and the best case was
obtained with 21 seconds. The sets dimension size ( of L1
and L2 sets) was stated with〈3,3〉. The max dimension
must be the max dimension of the sets plus one, so, this
parameter is increased in 4. So, the best case result in the
Test Number 4 where the lowest segmentation error was
of 15.52% with 0.01 of noise level, 0.2 of outliers
percentage, the execution time is of 1 minute with 16
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Table 2: Evaluation One: Variation of the dimension.

no. Noise Out. Seg. Exec. Sets
Level % Error Time Dim. Dim.

1 0.01 0.06 31.91% 19s [2,2] 3
2 0.015 0.06 32.50% 30s [2,2] 3
3 0.01 0.06 32.30% 25s [2,2] 3
4 0.02 0.06 48.21% 11s [2,2] 3
5 0.02 0.02 15.32% 92 s [3,3] 4
6 0.02 0.06 42.48% 48 s [4,4] 5
7 0.02 0.06 48.67% 41 s [5,5] 6
8 0.02 0.06 51.26% 88 s [3,2] 4
9 0.02 0.06 43.77% 73 s [6,6] 7
10 0.02 0.06 31.70% 20 s [2,2] 3

seconds, with size dimension of the sets of〈3,3〉 and max
dimension of 4. This results can be observed in Table3.

Evaluation Three: Variation of Angle between Planes.
This test obtains 3 important results. Where the noise level
take a value of 0.01. The outliers percentage is of 0.02.
The variation of segmentation error is of 15.52% (in the
best case) and 20.35% (in the worst case). The execution
time was meassured and the best case was obtained with
22 seconds. The sets dimension size ( of L1 and L2 sets)
was stated with〈3,3〉. The max dimension must be the
max dimension of the sets plus one, so, this parameter is
stated in 4. The angle between planes is stated in following
values:π/4,π/8 andπ/16. So, the best case result in the
Test Number 1 where the lowest segmentation error was of
15.52% with 0.01 of noise level, 0.2 of outliers percentage,
the execution time is of 1 minute with 16 seconds, with
size dimension of the sets of〈3,3〉 and an angle between
planes ofπ/4. This results can be observed in Table4. The
best case for three test can be visually observed in Figure
1.

The subspace arrangement has been succesfully used
in image retrieval segmentation, and ordinary differential
equations. The leukemia pathologies imply a deep
analysis and a carfully selection or discrimination process
of features extracted frome the bone marrow.

It is important to observe that singular value
decomposition method and the simpson distance are
relevant concepts to compute the segmentation ideal to
model leukemia classification of lymphoblastic
classification of L1, L2 and L3.
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