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Abstract: The coherent-one-way and the differential-phase-shift protocols are two of the most recent practical quantum key
distribution protocols for quantum cryptography. These protocols belong to a class of so-called distributed-phase-reference quantum
key distribution protocols. While security proofs for some limited attacks exist, the unconditional security proofs this class of protocol
remain unrealised. The existing tools for proving security of protocols against the most general attacks fail to apply to this class of
protocol in a straight forward way. One of the necessary conditions for a quantum key distribution protocol to be secure is the presence
of noncommuting measurements. In this paper, the coherent-one-wayprotocol is formalised, and we describe Bob’s measurements by
non-commuting POVM elements, showing that this security condition is met.
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1 Introduction

Quantum key distribution (QKD), one aspect of quantum
cryptography, provides the only method proven to be
physically secure for the transmission of a secret key
between two distant parties, Alice and Bob [1]. The goal
of QKD is to guarantee that a possible eavesdropper
known as Eve, with access to the communication channel,
is unable to obtain useful information about the generated
key, which could then be used to encrypt the classical
message [1,2]. Since the presentation of the first complete
protocol i.e., BB84 protocol [3], several QKD protocols
have been proposed. This has seen the development of the
class of so-called distributed-phase-reference (DPR)
QKD protocols, in which the coherence of the sequential
pulses play an important role in security. Members of this
class are the differential-phase-shift (DPS) protocol and
coherent-one-way (COW) protocols [1].

The DPR protocols are tailored to work with weak
coherent pulses at high bit rates and have been proven to
be more practically implementable in the existing optical
communication systems [1,4]. The DPS protocol was
proposed by Inoue in 2002 [5] as a way to offer higher
key creation efficiency as compared to the BB84 protocol.

The COW QKD protocol was first proposed by Stucki in
2005 [4,6] and has been shown to be a simple high speed
protocol which is easy to implement and yields even
better rates than the class of so-called discrete variable
protocols [1]. The COW protocol is also robust against
reduced visibility [4] and against photon number splitting
(PNS) attacks [8]. In 2005, Takesure reported an
experimental implementation of the DPS protocol over
105km fiber [9]. In the same year, by using up-conversion
detectors with 1GHz clock frequency, a successful
generation of secure keys by using the DPS protocol for
over 100km of fiber with a 166 bit/s key rate was reported
by Diamanti [10]. This was followed by a security proof
under the assumption that Eve is restricted to individual
attacks by Waks in 2006 [11]. In the same year, Inoue
[12] showed the robustness of DPS protocols against
photon-number-splitting attacks. It was shown that the
PNS attacks are not effective in the DPS and COW
protocols because information is encoded in the phase
difference between pulses, so any PNS attack will break
the sequential coherent pulses which results in errors in
Bob’s measurements. The security for the DPS protocol
against sequential attacks based on unambiguous
discrimination and minimum error discrimination was
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shown in [13]. In the same year, security bounds for
sequential attacks which can be more powerful than
individual attacks were derived for the DPS protocol [14].
General security bounds against individual attacks and
upper bounds for the error rates in the presence of
coherent attacks were derived for both the COW and DPS
protocols by Branciard in 2008 [15]. Again, security
upper bounds for collective beam splitting attacks have
been derived for the COW protocol [15]. Zero-error
attacks have also been studied for the COW protocol [16].
In the same year, Zhao proved the security of the DPS
protocol against weak coherent light source in the
noiseless case [17]. Moreover, the effect of detector dead
times on the evaluation of security for the DPS protocol
against sequential attacks has been evaluated in [18].
Recently, lower bounds on the key generation rate for the
COW protocol in the finite-size key scenario has been
shown [19]. However, an unconditional security proof
still remains elusive because there is no correspondence
between the potential key bits and prepared states. Since
these protocols rely on the mutual independence of all
potential key bits therefore the present tools for proving
the security of QKD protocols cannot be adopted to this
class of protocols in a straightforward way.

The class of distributed-phase-reference QKD
protocols use coherent sequences of signals which are not
symmetric as opposed to qubits in other classes of
protocols. These protocols move away from the
symbol-per-symbol type of coding [15]. Since the
formalism to be used to develop a full unconditional
security proof still remains unsure for this class of
protocols. Therefore, the efficiency and robustness as well
as the practical communication advantages of the COW
QKD protocol, together with the lack of an unconditional
security proof for the protocol, motivate this study.
Therefore, our goals here are to (i) motivate why the
COW protocol is useful as a means of distributing a key,
(ii) describe the operation and key extraction procedure of
the COW protocol in the absence of a detailed
explanation as presented in the original literature [4,6]
and (iii) provide a formalism of Bob’s measurement that
is a step towards developing a full unconditional security
proof, which includes describing Bob’s measurements by
non-commuting POVM elements. Such a description of
Bob’s measurement is a necessary condition for a QKD
protocol to be secure [20]. However, such a description
has not been explicitly worked out for complicated
protocols as the COW protocol. Therefore, we hope that
the approach in this paper may be used as a base on which
to further develop an unconditional security proof for this
protocol.

2 Operation of the COW protocol

According to Figure 1, Alice prepares a sequence of
coherent pulses that are either empty or non-empty
pulses. The non-empty pulses have a mean photon

Fig. 1: Diagram for the COW Protocol.DB represents the
data detector,DM1 andDM2 are monitoring detectors,ϕ is the
phase between successive non-empty pulses. The paths through
Bob’s interferometer are labelled 0-8. BS1 & BS2: symmetric
beamsplitters, M1 & M2: mirrors, D: detector.

numberµ <1 and a well defined time intervalτ. Each
logical bit of information is encoded in a sequence of two
pulses, and Alice can also send decoy sequences. The
decoy sequences are used to check for coherence in the
data line and are then to be discarded in the public
discussion. This is in contrast to the decoy states in the
BB84 protocol which encode bit values [3]. So in each of
k = 1, ...,N time intervals, Alice prepares the states|φ0〉
and |φ1〉 (which represent the logical states ‘0’ or ‘1’
respectively) or decoy states defined by:

|φ0〉k = |√µ〉2k−1|0〉2k,

|φ1〉k = |0〉2k−1|
√

µ〉2k,

|decoy〉k = |√µ〉2k−1|
√

µ〉2k, (1)

where the index on the left hand side labels the time
interval, k = 1, ...,N, and the indices on the right hand
side label the pulse index,j = 1, ...,2N. In the case of a
small mean photon number, the states|φ0〉 and|φ1〉 have a
large overlap because of their vacuum component. There
is also a phase coherence between any two non-empty
pulses with a bit separation. The key is obtained by
measuring the time-of-arrival of photons on the data line,
detectorDB. The presence of the eavesdropper is checked
interferometrically in a monitoring line by randomly
measuring the coherence between the successive
non-empty pulses, i.e., bit sequences ‘1-0’ or decoy
sequences, with the interferometer and detectorsDM1 and
DM2 as shown in Figure 1. The bit sequence is read from
left to right as the bits arrive at Bob’s detector. IfDM2
fires, it means coherence is broken, and an error is
recorded.

Bob uses a detectorDB to unambiguously
discriminate the non-orthogonal states|φ0〉 and |φ1〉.
Sinceµ the average photon number is small, Bob doesn’t
always get a click. But when Bob gets a click in time
interval k, if the click corresponds to the first (second)
pulse of the pair, he records a zero (one).

According to Figure 1, the signal entering Bob’s
interferometer in path ‘0’ at time intervalj can be
described in terms of the creation operators ˆa†

0, j and the
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Table 1: Bob’s detection events for the COW protocol. An
example of the implementation of the COW protocol fork =
1, . . . ,6 wherek labels pairs;a is the logical bit recorded by Bob;
b represents the states received at detectorDB and c is the bit
value sent by Alice.

k = 6 k = 5 k = 4 k = 3 k = 2 k = 1

1 0 0 0 1 ← c
|µ〉12|µ〉11 |0〉10|µ〉9 |µ〉8|0〉7 |µ〉6|0〉5 |µ〉4|0〉3 |0〉2|µ〉1 ← b

decoy 1 0 0 0 1 ← a

outgoing paths, ˆa†
3, j, â†

7, j andâ†
8, j, where the first index in

the subscript is the spatial mode and the second is the
temporal mode. In order to describe the signals entering
Bob’s interferometer, we follow the same approach used
by Marais [21], since these protocols belong to the same
class. The total action of the interferometer is derived to
be

â†
0, j→

1

2
√

2
(â†

7, j−eiφ3â†
8, j+2â†

3, j+ â†
7,( j+1)+eiφ3â†

8,( j+1),

(2)
whereφ3 is a phase shift associated with symmetric BS3.

When Alice prepares a|φ0〉, the input state is
transformed to the output state as follows

|φ0〉 = |
√

µ〉0,(2k−1)|0〉0,k
I→ |
√µ
2
√

2
〉7,(2k−1)|−eiφ3

√µ
2
√

2
〉8,(2k−1)

⊗ |
√µ√

2
〉3,(2k−1)|

√µ
2
√

2
〉7,k|eiφ3

√µ
2
√

2
〉8,k, (3)

whereI is for the interferometer. Here, Bob gets a click
in DB which corresponds to a click in time slotj−1 with
pclick=1− e−µ/8, which is the first of the slots constituting
intervalk, and records a ‘0’. SinceDM1 andDM2 click with
equal probability in slotsj− 1 and j, there is no test for
coherence from|0k〉 above.

When Alice prepares a|φ1〉, the output state is of the
form

|φ1〉k = |0〉0,(2k−1)|
√

µ〉0,k
I→ |
√µ√

2
〉3,k|
√µ
2
√

2
〉7,k|
−√µ
2
√

2
〉8,k

⊗ |
√µ
2
√

2
〉7,(2k+1)|

√µ
2
√

2
〉8,(2k+1). (4)

Here, Bob gets a click in slotj in DB with pclick =
1− e−µ/8 and records a ‘1’ for the time intervalk. Again,
this follows for each ofk = 1, ...,N intervals, Bob records
a ‘0’(‘1’) when he gets a click in slot 2k−1.

In order to check for coherence in the data line, Alice
prepares and sends decoy states to Bob. A loss of
coherence reveals the presence of an eavesdropper, which
contributes to the error rate. When Alice prepares a decoy
state, the output is of the form

|decoy〉k = |
√

µ〉(2k−1)|
√

µ〉k, (5)

but states formed from|φ1〉k|φ0〉k+1 can also be used for
the channel estimation, i.e.,
|φ1〉k|φ0〉k+1 = |0〉( j−1)

0 |√µ〉 j
0|
√µ〉( j+1)

0 |0〉( j+2)
0 . The state

|√µ〉t0|
√µ〉(t+1)

0 transforms the interferometer as follows

|√µ〉t0|
√

µ〉(t+1)
0

I→ |
√µ√

2
〉t3|
√µ
2
√

2
〉t7|
−√µ
2
√

2
〉t8|
√µ√

2
〉(t+1)
3

⊗ |
√µ√

2
〉(t+1)
7 |0〉(t+1)

8 |
√µ√

2
〉(t+2)
7 |

√µ√
2
〉(t+2)
8 .

So, it can be seen that decoy states and|φ1〉k|φ0〉k+1
sequences do not contribute to the key since hereDB has a
probability to click for both slotsj in the pairk, so that Bob
learns no key bit. But, ifDM2 clicks, this is an indication
of a loss of coherence since if the consecutive non-empty
pulses have a constant relative phase, this detector has zero
probability of clicking as seen above.

Table 1 shows how the bits sent by Alice correspond
to the sent states. To obtain the bit value, Bob has to
distinguish unambiguously between the two
non-orthogonal states,|φ0〉k and |φ1〉k, given in Equation
(1), that arrive at his detector. As can be seen in Table 1,
checks for coherence can be done via decoy states as well
as between two consecutive non-empty pulses for
example across the pair ink = 4 and k = 5. Based on
these states Bob can record each respective bit as shown
in the example depicted by the same Table 1.

3 Bob’s measurements

We exploit the mathematical convenience of POVM’s
[22,23] as a tool for describing Bob’s measurement
statistics. The projectors constituting Bob’s measurement
in the time intervals j ∈ {1, ...,2N}, where j is the
superscript are written as

G1 = |0〉〈0|,

G2 =
∞

∑
n=1
|n〉13〈n⊗|0〉〈0|,

G3 = |0〉13〈0|⊗
∞

∑
n=1
|n〉17〈n|⊗ |0〉〈0|,

G4 = |0〉13〈0⊗|0〉17〈0⊗
∞

∑
n=1
|n〉18〈n|⊗ |0〉〈0|,

G5 = |0〉13〈0⊗|0〉17〈0⊗|0〉18〈0⊗
∞

∑
n=1
|n〉23〈n⊗|0〉〈0|,

.

.

.

G26N =
∞

∑
n=1
|n〉〈n|. (6)

The Gi′s are projectors onto the basis of photon
number states,|n〉. They represent all the possible
outcomes for an implementation of the COW protocol
with signals sent in 2N time intervals. The projectorG1
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represent an implementation of the protocol when Bob
measures a vacuum. Since Bob has a probability of
detecting one or more photons (a click) or vacuum (no
click) in each of the three detectors in 2N time intervals,
there are 26N possible measurement outcomes
corresponding to 26N POVM elements. This is
represented as a projectorG26N .

The action of Bob’s beamsplitter BS1, together with
the interferometer are represented by the operator which
maps the incoming state in path ‘0’, ‘1’ and ‘4’ to the
outgoing states in paths ‘3’, ‘7’ and ‘8’. The effects which
we denote asE j are the operators that act on the states in
path ‘0’. This action can be represented as

E j = 4〈0|1〈0|U †G jU |0〉1|0〉4. (7)

The expectation value with respect to the vacuum in
path ‘1’ reduces the action of the operatorU †G jU to the
subspace of the states in path ‘0’, similar to the partial
trace.

The POVM element that corresponds to a click in
Bob’s detectorDB in j = 1, ...,5 and vacuum everywhere
else is given by

E2 =
∞

∑
n=1

1
2nn!

(â†
0,1)

n|0〉〈0|(â0,1)
n,

E3 =
∞

∑
m=1

1
8mm!

(â†
0,1+ â†

0,2)
m|0〉〈0|(â0,1+ â0,2)

m,

E4 =
∞

∑
n=1

1
2nn!

(â†
0,2)

n|0〉〈0|(â0,2)
n,

E5 =
∞

∑
m=1

1
8mm!

(â†
0,2+ â†

0,3)
m|0〉〈0|(â0,2+ â0,3)

m,

(8)

If we consider a click inDB in j = 2 and a click in
DM1 in time interval j = 3, and vacuum everywhere else,
the commutator is given by

[E2,E3] 6= 0, (9)

since the operators〈0|(â†
0,1)

n(â†
0,2)

m|0〉 6= 0 act on
different Hilbert spaces, the matrix elements do not
cancel. Similarly, if we consider a click inDB in j = 2
and a click inDM1 in time interval j = 4, and vacuum
everywhere else, the commutator is given by

[E2,E4] = 0. (10)

since〈0|(â0,1)
n(â0,2)

m|0〉 = 0. We have shown in the
case of the COW protocol that without clicks for checks
of coherence, there is no security. This is easily seen since
if we describe Bob’s measurements by commuting
operators, an eavesdropper could gain full knowledge of
the key with a measurement that commutes with Bob’s,
thus remaining undetected. Therefore, it is important that
some of the POVM elements describing Bob’s
measurements must be non-commuting.

Based on the above relations, one can observe that

[E j,E j+1] = 4〈0|1〈0|U †G jU ,U †G j+1U |0〉1|0〉4
6= 0, (11)

and also that

[E j,E j+2] = 4〈0|1〈0|U †G jU ,U †G j+2U |0〉1|0〉4
= 0. (12)

Based on these generalizations, we note that if the
effects come from consecutive time intervals, the POVM
elements describing Bob’s measurements do not commute
and if the time intervals are not consecutive, the POVM
elements commute. However, we note that ifj is odd
Equation (12) is not satisfied. This might look strange at
first but this situation gives an inconclusive event because
the clicks come from different time intervals. Therefore,
we have shown that there exist non-commuting POVM
elements in Bob’s measurements, hence a precondition
for the security of the COW protocol has been shown to
be met. Recently it has been noted that nondisturbance is
equivalent to commutativity on the condition that the
second measurement has sufficiently many independent
outcomes [24]. However, nondisturbance is inequivalent
to commuting in general, hence such a description of
Bob’s measurement in terms of non-commuting POVM
elements is an essential step in a potential proof of
security against the most general kind of attack.

4 Conclusion

We have highlighted the practical advantages and
efficiency of the COW QKD protocol, and as well as
explicitly describing the implementation and key
distribution procedure of the protocol. In spite of the
challenges that come with showing the unconditional
security of the COW QKD protocol, we have managed to
provide a formalism for Bob’s measurements that may be
used as a base to develop an unconditional security proof
for the COW QKD protocol. Specifically, from the above
calculation, we can recognize that there exist
non-commuting POVM elements in Bob’s measurement.
Thus, the COW protocol has been proven to satisfy an
important necessary condition for security. Such a
description of Bob’s measurement is an essential element
for a security proof against the most general kind of
attack.
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