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Abstract: The Jensen divergence is used to measure the difference between twoprobability distributions. This divergence has been
generalised to allow the comparison of more than two distributions. In this paper, we consider some bounds for generalised Jensen
divergence form-time differentiable functions.
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1. Introduction

In probability theory and statistics, the Jensen divergence
is used to measure the difference between two probability
distributions. In Burbea and Rao [1], a generalisation of
the Jensen divergence is considered to allow the
comparison of more than two distributions. IfΦ is a
function defined on an intervalI of the real lineR, the
(generalised) Jensen divergencebetween two elements
x = (x1, . . . , xn) andy = (y1, . . . , yn) in In (wheren ≥
1) is given by the following equation, (cf. Burbea and
Rao [1])

Jn,Φ(x, y) :=

n
∑

i=1

[

1

2
[Φ(xi) + Φ(yi)]− Φ

(

xi + yi
2

)]

for all x, y ∈ In × In. Several measures have been
proposed to quantify the difference (also known as the
divergence) of two (or more) probability distributions. We
refer to Grosse et. al. [2], Kullback and Leibler [3], and
Csiszar [4] for further references.

These measures can be applied in a variety of fields,
for example in fuzzy information systems [5]. TheJensen
divergencehas tremendous applications in the fields of
Bioinformatics [7], [8], where it is usually utilised to
compare two samples of healthy population (control) and
diseased population (case) in detecting gene expression
for a certain disease. We refer the readers to Dragomir [6]
for applications in other areas.

Recently, Dragomir, Dragomir and Sherwell [10]
obtained several sharp bounds for the Jensen divergence,
for different classes of functions. We refer the readers to
Section 2 for the detail of these results. In the same spirit,
we present bounds form-time differentiable functions in
this paper (cf. Sections 3 and 4). Lastly, we apply these
bounds for elementary functions in Section 5.

2. Definitions, notation and previous results

In this section, we provide some definitions and notation
that are used in the text, and also provide some previous
results related to the Jensen divergence. Throughout the
paper, we denotep′ to be the Ḧolder conjugate of a real
number1 < p < ∞, that is, whenp′ satisfies1/p+1/p′ =
1.

We use the following notation for Lebesgue integrable
functions. Leta, b, u, v ∈ R and without loss of generality,
let us assume thata ≤ u ≤ v < b. We denote

‖g‖[u,v],p :=

(
∫ v

u

|g (s)|
p
ds

)1/p

if p ≥ 1, u, v ∈ [a, b] andg ∈ Lp [a, b]. Forg ∈ L∞ [a, b]
we denote

‖g‖[u,v],∞ := ess sup
s∈[u,v]

|g (s)| .
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If p1, ..., pk ≥ 0 (k ≥ 2) denote the probability
distribution satisfying the usual constraints

∑k
j=1 pj = 1,

then the Jensen divergence of the probability distributions
is defined by [1]

J p
n,Φ(y

1, ..., yk) :=

n
∑

i=1





k
∑

j=1

pjΦ(y
j
i )− Φ

( k
∑

j=1

pjy
j
i

)





for all (y1, ..., yk) ∈ In × ...× In with yj = (yj1, . . . , y
j
n)

for j = 1, . . . , k. In information theory,J p
n defines the

measure of information onk-input channel for input
distributionp = p1, ..., pk. It also expresses the amount of
information supplied by the data for discrimination of
these distributions. The divergenceJn,1, written as

Jn,1(x, y) :=
1

2

n
∑

i=1

[xi log xi + yi log yi

−(xi + yi) log

(

xi + yi
2

)]

,

is also known as theJensen-Shannon divergence[9].

Considering the Jensen divergence defined above, we
state the following well-known theorem for convex and
concave functions.

Theorem 1(Burbea and Rao [1]). Let Φ be a C2

function defined on intervalI of real numbers. ThenJn,Φ
is convex (concave) onIn × In if and only ifΦ is convex
(concave) and1/Φ′′ is concave (convex) onI. Further, in
this caseJp

n,Φ is also convex (concave) onInk for any
given probability distributionp.

Definition 1.A function f : [a, b] → R is absolutely
continuous on[a, b] if and only if f is differentiable
almost everywhere on[a, b], the derivativef ′ is Lebesgue
integrable on[a, b] andf (v) − f (u) =

∫ v

u
f ′ (t) dt for

anyu, v ∈ [a, b] .

Theorem 2(Dragomir, Dragomir, and Sherwell [10]).
Assume thatΦ : [a, b] → R is absolutely continuous on

[a, b] . Then we have the bounds

|Jn,Φ (x, y)| (1)

≤
1

2
×























































































n
∑

i=1

|yi − xi| ‖Φ
′‖[xi,yi],∞

,

if Φ′ ∈ L∞ [a, b]

n
∑

i=1

|yi − xi|
p−1

p ‖Φ′‖[xi,yi],p
,

if Φ′ ∈ Lp [a, b] , p > 1;

n
∑

i=1

‖Φ′‖[xi,yi],1
,

≤
1

2
×











































































‖Φ′‖[a,b],∞

n
∑

i=1

|yi − xi|,

if Φ′ ∈ L∞ [a, b];

‖Φ′‖[a,b],p

n
∑

i=1

|yi − xi|
p−1

p ,

if Φ′ ∈ Lp [a, b] , p > 1;

n ‖Φ′‖[a,b],1 ,

for anyx = (x1, ..., xn) , y = (y1, ..., yn) ∈ [a, b]
n
. The

constant1/4 is best possible in both inequalities.

For two vectorsx = (x1, ..., xn) , y = (y1, ..., yn) ∈
In we say thatx ≤ y if for all i ∈ {1, ..., n} we have that
xi ≤ yi. Forx ≤ y, we call the set,

[x, y] := {g = (g1, ..., gn) | xi ≤ gi ≤ yi, i ∈ {1, ..., n}} ,

the generalised interval generated byx andy.

Theorem 3(Dragomir, Dragomir, and Sherwell [10]).
Let Φ : I → R be a convex function on the intervalI of
real numbersR.

(i)If x, y, z ∈ In are so thatx ≤ y ≤ z, then

0 ≤ Jn,Φ (x, y) + Jn,Φ (y, z) ≤ Jn,Φ (x, z) , (2)

i.e., Jn,Φ is super-additive as a functional of the
generalised interval;

(ii)If x, y, z, u ∈ In are so thatx ≤ y ≤ z ≤ u, then

0 ≤ Jn,Φ (y, z) ≤ Jn,Φ (x, u) , (3)

i.e.,Jn,Φ is monotonic nondecreasing as a functional
of the generalised interval.

When more information about the derivative of the
function Φ is available, then we can state the following
result as well

c© 2014 NSP
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Theorem 4(Dragomir, Dragomir, and Sherwell [10]).
Let Φ : [a, b] → R be a differentiable function on the
interval [a, b] of real numbersR.

(i)If the derivativeΦ′ is of bounded variation on[a, b] ,
then

|Jn,Φ (x, y)| ≤
1

4

n
∑

i=1

|yi − xi|

∣

∣

∣

∣

∣

yi
∨

xi

(Φ′)

∣

∣

∣

∣

∣

(4)

≤
1

4

b
∨

a

(Φ′)
n
∑

i=1

|yi − xi| (5)

for anyx = (x1, ..., xn) , y = (y1, ..., yn) ∈ [a, b]
n
.

The constant1/4 is best possible in both inequalities
(4) and (5).

(ii)If the derivativeΦ′ is L-Lipschitzian on[a, b] with the
constantL > 0, then

|Jn,Φ (x, y)| ≤
1

8
L

n
∑

i=1

(yi − xi)
2 (6)

=
1

2
L Jn,2 (x, y)

for anyx = (x1, ..., xn) , y = (y1, ..., yn) ∈ [a, b]
n
.

The constant1/8 is best possible in (6).

3. Approximations of Jensen divergence

In this section, we provide some approximations for the
following Jensen divergence

J1,f (a, b) =
f(a) + f(b)

2
− f

(

a+ b

2

)

for some classes off which will be used to approximate
the generalised Jensen divergence in the later section. We
first consider the above Jensen divergence for absolutely
continuous functions, and ‘weaken’ the condition to the
case of functions of bounded variation. The results in this
section will be used to approximate the Jensen divergence
for Jn,Φ (as defined in Section 1), which we will describe
in Section 4.

The following integral identity will be used to obtain
an approximation of Jensen divergence. We refer to
Cerone, Dragomir and Roumeliotis [11, Lemma 2.1., p.
54].

Lemma 1(Cerone, Dragomir and Roumeliotis [11]).
Let f : [a, b] → R be a mapping such thatf (m−1) is
absolutely continuous on[a, b] we have the identity

∫ b

a

f(t)dt

=

m−1
∑

k=0

[

(b− x)k+1 + (−1)k(x− a)k+1

(k + 1)!
f (k)(x)

]

+
(−1)m

m!

∫ b

a

Km(x, t)f (m)(t)dt

(7)

where the kernelKm : [a, b]2 → R is given by

Km(x, t) :=

{

(t− a)m, if t ∈ [a, x]
(t− b)m, if t ∈ (x, b]

, x ∈ [a, b] (8)

andm is a natural number,m ≥ 1.

Corollary 1.Under the assumptions of Lemma1, we have
the following estimate for the error term in(7)
∣

∣

∣

∣

∣

(−1)m

m!

∫ b

a

Km(x, t)f (m)(t)dt

∣

∣

∣

∣

∣

≤
1

m!
×















































(x− a)m+1 + (b− x)m+1

m+ 1
‖f (m)‖[a,b],∞,

if f (m) ∈ L∞[a, b];

(x− a)m+ 1
p + (b− x)m+ 1

p

(pm+ 1)
1
p

‖f (m)‖[a,b],p′

if f (m) ∈ Lp′ [a, b], p > 1;

[(x− a)m + (b− x)m]‖f (m)‖[a,b],1,
if f (m) ∈ L1[a, b],

(9)

for all x ∈ [a, b].

Proof.By Hölder’s inequality, we have
∣

∣

∣

∣

∣

(−1)m

m!

∫ b

a

Km(x, t)f (m)(t)dt

∣

∣

∣

∣

∣

≤
1

m!
×











































∫ b

a

|Km(x, t)|dt ‖f (m)‖[a,b],∞
(

∫ b

a

|Km(x, t)|pdt

)1/p

‖f (m)‖[a,b],p′ ,

p > 1

sup
t∈[a,b]

|Km(x, t)| ‖f (m)‖[a,b],1.

(10)

We evaluate
∫ b

a

|Km(x, t)|dt =

∫ x

a

(t− a)mdt+

∫ b

x

(b− t)mdt

=
(t− a)m+1

m+ 1

∣

∣

∣

∣

x

a

−
(b− t)m+1

m+ 1

∣

∣

∣

∣

b

x

=
(x− a)m+1 + (b− x)m+1

m+ 1

which proves the first part of (9). Now,
(

∫ b

a

|Km(x, t)|pdt

)1/p

≤

(
∫ x

a

(t− a)pmdt

)1/p

+

(

∫ b

x

(b− t)pmdt

)1/p

=

[

(t− a)pm+1

pm+ 1

∣

∣

∣

∣

x

a

]1/p

+

[

−
(b− t)pm+1

pm+ 1

∣

∣

∣

∣

b

x

]1/p

=
(x− a)m+1/p + (b− x)m+1/p

(pm+ 1)1/p
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which proves the second part of (9). Finally,

sup
t∈[a,b]

|Km(x, t)| = sup
t∈[a,x]

(t− a)m + sup
t∈(x,b]

(b− t)m

= (x− a)m + (b− x)m

which completes the proof.

Theorem 5.Let f : [a, b] → R be a mapping such that
f (m−1) is absolutely continuous on[a, b]. We have the
following representation:

f(a) + f(b)

2
− f

(

a+ b

2

)

(11)

=

m−1
∑

k=1

(b− a)k

2(k + 1)!

[(

1 + (−1)k

2k

)

f (k)

(

a+ b

2

)

−f (k)(a)− (−1)kf (k)(b)
]

(12)

+
(−1)m

2m!(b− a)

∫ b

a

Cm(t)f (m)(t)dt,

where

Cm(t) :=

{

(t− a)m − (t− b)m, if t ∈ [a, (a+ b)/2];
(t− b)m − (t− a)m, if t ∈ ((a+ b)/2, b].

Proof.By Lemma1 we have

∫ b

a

f(t)dt

= (b− a)f(x)

+

m−1
∑

k=1

[

(b− x)k+1 + (−1)k(x− a)k+1

(k + 1)!
f (k)(x)

]

+
(−1)m

m!

∫ b

a

Km(x, t)f (m)(t)dt.

(13)
Choosex = a in (13) to obtain

∫ b

a

f(t)dt = (b− a)f(a) +

m−1
∑

k=1

[

(b− a)k+1

(k + 1)!
f (k)(a)

]

+
(−1)m

m!

∫ b

a

(t− b)mf (m)(t)dt;

(14)
and choosex = b in (13) to obtain

∫ b

a

f(t)dt = (b− a)f(b)

+

m−1
∑

k=1

[

(−1)k(b− a)k+1

(k + 1)!
f (k)(b)

]

+
(−1)m

m!

∫ b

a

(t− a)mf (m)(t)dt.

(15)

Adding (14) and (15), and divide the sum by 2, we obtain

∫ b

a

f(t)dt

= (b− a)
f(a) + f(b)

2

+
1

2

m−1
∑

k=1

[

(b− a)k+1

(k + 1)!
[f (k)(a) + (−1)kf (k)(b)]

]

+
(−1)m

2m!

∫ b

a

[(t− a)m + (t− b)m] f (m)(t)dt.

(16)
We also have the following by choosingx = (a+ b)/2 in
(13)

∫ b

a

f(t)dt

= (b− a)f

(

a+ b

2

)

+
m−1
∑

k=1

(

[1 + (−1)k] (b− a)k+1

2k+1(k + 1)!

)

f (k)

(

a+ b

2

)

+
(−1)m

m!

∫ b

a

Mm(t)f (m)(t)dt, (17)

where

Mm(t) :=

{

(t− a)m, if t ∈ [a, (a+ b)/2]
(t− b)m, if t ∈ ((a+ b)/2, b].

Equating (16) and (17) yields

f(a) + f(b)

2
− f

(

a+ b

2

)

=
1

b− a

[

−

m−1
∑

k=1

[

(b− a)k+1

2(k + 1)!
[f (k)(a) + (−1)kf (k)(b)]

]

+

m−1
∑

k=1

(

[1 + (−1)k] (b− a)k+1

2k+1(k + 1)!

)

f (k)

(

a+ b

2

)

−
(−1)m

2m!

∫ b

a

[(t− a)m + (t− b)m] f (m)(t)dt

+
(−1)m

m!

∫ b

a

Mm(t)f (m)(t)dt

]

=
m−1
∑

k=1

(b− a)k

2(k + 1)!

[(

1 + (−1)k

2k

)

f (k)

(

a+ b

2

)

−f (k)(a)− (−1)kf (k)(b)
]

+
(−1)m

2m!(b− a)

∫ b

a

Cm(t)f (m)(t)dt,

as required.
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Corollary 2.Under the assumptions of Theorem5, we
have the following estimate for the error term in(11):
∣

∣

∣

∣

∣

(−1)m

2m!(b− a)

∫ b

a

Cm(x, t)f (m)(t)dt

∣

∣

∣

∣

∣

≤
1

2m!















































2(b− a)m

m+ 1
‖f (m)‖[a,b],∞,

if f (m) ∈ L∞[a, b];
2(b− a)m+1/p−1

(pm+ 1)1/p
‖f (m)‖[a,b],p′ ,

if f (m) ∈ Lp′ [a, b];

2(b− a)m−1‖f (m)‖[a,b],1,
if f (m) ∈ L1[a, b].

Proof.Similarly to the proof of Corollary1, we use
Hölder’s inequality to estimate the error term (cf. (10)).
So, we want to quantify:

∫ b

a

|Cm(t)|dt =

∫ b

a

|(t− a)m − (t− b)m|dt

≤

∫ b

a

(t− a)mdt+

∫ b

a

(b− t)mdt

=
(t− a)m+1

m+ 1

∣

∣

∣

∣

b

a

−
(b− t)m+1

m+ 1

∣

∣

∣

∣

b

a

=
2(b− a)m+1

m+ 1
.

We also quantify

(

∫ b

a

|Cm(t)|pdt

)1/p

=

(

∫ b

a

|(t− a)m − (t− b)m|pdt

)1/p

≤

(

∫ b

a

(t− a)pmdt

)1/p

+

(

∫ b

a

(b− t)pmdt

)1/p

=

[

(t− a)pm+1

pm+ 1

∣

∣

∣

∣

b

a

]1/p

+

[

−
(b− t)pm+1

pm+ 1

∣

∣

∣

∣

b

a

]1/p

= 2
(b− a)m+1/p

(pm+ 1)1/p
.

And finally,

sup
t∈[a,b]

|Cm(t)| = sup |(t− a)m − (t− b)m|

≤ sup
t∈[a,b]

(t− a)m + sup
t∈[a,b]

(b− t)m

= 2(b− a)m

which completes the proof.

Remark.For the case ofm = 1, we have the following

f(a) + f(b)

2
− f

(

a+ b

2

)

= −
1

2(b− a)

∫ b

a

C1(t)f
′(t)dt

=
1

2(b− a)

[

∫
a+b
2

a

(a− b)f ′(t)dt+

∫ b

a+b
2

(b− a)f ′(t)dt

]

= −
1

2

∫
a+b
2

a

f ′(t)dt+
1

2

∫ b

a+b
2

f ′(t)dt

and thus
∣

∣

∣

∣

f(a) + f(b)

2
− f

(

a+ b

2

)
∣

∣

∣

∣

=

∣

∣

∣

∣

∣

−
1

2

∫
a+b
2

a

f ′(t)dt+
1

2

∫ b

a+b
2

f ′(t)dt

∣

∣

∣

∣

∣

≤
1

2

∣

∣

∣

∣

∣

∫
a+b
2

a

f ′(t)dt

∣

∣

∣

∣

∣

+
1

2

∣

∣

∣

∣

∣

∫ b

a+b
2

f ′(t)dt

∣

∣

∣

∣

∣

≤
1

2

∫
a+b
2

a

|f ′(t)|dt+
1

2

∫ b

a+b
2

|f ′(t)|dt

=
1

2

∫ b

a

|f ′(t)|dt =
1

2
‖f ′‖L1[a,b].

This recaptures the last case in Theorem2 for n = 1.

Theorem 6.Let f : [a, b] → R be a function whosemth

derivativesf (m) are of locally bounded variation on[a, b].
Then,

f(a) + f(b)

2
−

(

a+ b

2

)

=
m
∑

k=1

[

(−1)k + 1

2k+1k!

]

(b− a)kf (k)

(

a+ b

2

)

+
1

2m!
(−1)m+1

∫
a+b
2

a

(s− a)m d(f (m)(s))

+
1

2m!

∫ b

a+b
2

(b− s)m d(f (m)(s)) (18)

Proof.We utilise the following Taylor’s representation for
m-timedifferentiable functionsf : [a, b] → R whosemth

derivativesf (m) are of locally bounded variation on[a, b]
(see [8]).

f(t) =

m
∑

k=0

1

k!
(t−c)kf (k)(c)+

1

m!

∫ t

c

(t−s)m d(f (m)(s))

(19)
wheret andc are in[a, b] and the integral in the remainder
is taken in the Riemann-Stieltjes sense.
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If we choose in(19), c = (a + b)/2 andt = a, then
we get,

f(a) =

m
∑

k=0

1

k!

(

a− b

2

)k

f (k)

(

a+ b

2

)

+
1

m!

∫ a

a+b
2

(a− s)m d(f (m)(s))

=
m
∑

k=0

(−1)k

2kk!
(b− a)kf (k)

(

a+ b

2

)

+
(−1)m+1

m!

∫
a+b
2

a

(s− a)m d(f (m)(s))

= f

(

a+ b

2

)

+

m
∑

k=1

(−1)k

2kk!
(b− a)kf (k)

(

a+ b

2

)

+
(−1)m+1

m!

∫
a+b
2

a

(s− a)m d(f (m)(s)).

(20)
If we choose in(19), c = (a + b)/2 andt = b, then we
also get,

f(b) =

m
∑

k=0

1

2kk!
(b− a)kf (k)

(

a+ b

2

)

+
1

m!

∫ b

a+b
2

(b− s)m d(f (m)(s))

= f

(

a+ b

2

)

+

m
∑

k=1

1

2kk!
(b− a)kf (k)

(

a+ b

2

)

+
1

m!

∫ b

a+b
2

(b− s)m d(f (m)(s)).

(21)
If we add the equality(20) with (21) and divide the sum
by 2, then we get,

f(a) + f(b)

2
= f

(

a+ b

2

)

+
m
∑

k=1

[

(−1)k + 1

2k+1k!

]

(b− a)kf (k)

(

a+ b

2

)

+
1

2m!
(−1)m+1

∫ a+b
2

a

(s− a)m d(f (m)(s))

+
1

2m!

∫ b

a+b
2

(b− s)m d(f (m)(s))

which completes the proof.

Corollary 3.Under the assumptions of Theorem6, we
have the following estimate for the error term in(18)

1

2m!

∣

∣

∣

∣

∣

(−1)m+1

∫
a+b
2

a

(s− a)m d(f (m)(s))

+

∫ b

a+b
2

(b− s)m d(f (m)(s))

∣

∣

∣

∣

∣

≤
(b− a)m

2m+1m!

b
∨

a

(f (m)).

(22)

Proof.Note that for any continuous functionp : [α, β] →
R andv : [α, β] → R is of bounded variation, then the
Riemann-Stieltjes integral

∫ β

α
p(t)dv(t) exists and

∣

∣

∣

∣

∣

∫ β

α

p(t)dv(t)

∣

∣

∣

∣

∣

≤ max
t∈[α,β]

|p(t)|

β
∨

α

(v). (23)

Using (23) we have the following
∣

∣

∣

∣

∣

1

2m!
(−1)m+1

∫
a+b
2

a

(s− a)m d(f (m)(s))

+
1

2m!

∫ b

a+b
2

(b− s)m d(f (m)(s))

∣

∣

∣

∣

∣

≤
1

2m!



 max
t∈[a,(a+b)/2]

(s− a)m

a+b
2
∨

a

(f (m))

+ max
t∈[(a+b)/2,b]

(b− s)m
b
∨

a+b
2

(f (m))





=
1

2m!





(b− a)m

2m

a+b
2
∨

a

(f (m)) +
(b− a)m

2m

b
∨

a+b
2

(f (m))





=
1

2m!

[

(b− a)m

2m

b
∨

a

(f (m))

]

=
(b− a)m

2m+1m!

b
∨

a

(f (m))

which completes the proof.

Theorem 7(Dragomir [12]). Let f : [a, b] → R be a
function whosemth derivatives f (m) are of locally
bounded variation on[a, b].

f

(

a+ b

2

)

=
f(a) + f(b)

2

+

m
∑

k=1

(b− a)k

2k+1k!

[

f (k)(a) + (−1)kf (k)(b)
]

+

∫ b

a

Mm(t)d
(

f (m)(t)
)

, (24)

where

Mm(t) =
1

2m!
×















(

a+ b

2
− t

)m

, if t ∈ [a, a+b
2

]

(−1)m
(

t−
a+ b

2

)m

, if t ∈ (a+b
2

, b]

(25)

We refer to [12, Corollary 2] for the proof of this theorem.

Remark.By utilising (23) we have the following bound for
the error term in (24)
∣

∣

∣

∣

∣

∫ b

a

Mm(t)d
(

f (m)(t)
)

∣

∣

∣

∣

∣

≤
(b− a)m

2m+1m!

b
∨

a

(f (m)). (26)

We refer to [12, Corollary 3] for the proof.
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4. Approximations of the generalised Jensen
divergence

We consider a functionΦ : I → R that is m-time
differentiable (m ≥ 1) and the derivativeΦ(m−1) is
locally absolutely continuous onI, this means that it is
absolutely continuous on any closed subinterval [a,b] of
I. Fork = 1, 2, . . . ,m, we define

Pn,Φ,k(x, y) :=
n
∑

i=1

(yi − xi)
kΦ(k)

(

xi + yi
2

)

Qn,Φ,k(x, y) :=
n
∑

i=1

(yi − xi)
k
[

Φ(k)(xi) + (−1)kΦ(k)(yi)
]

En,Φ,m(x, y) :=
(−1)m

2m!
×

n
∑

i=1

[

1

yi − xi

∫

xi+yi
2

xi

[(t− xi)
m − (t− yi)

m]Φ(m)dt

+
1

yi − xi

∫ yi

xi+yi
2

[(t− yi)
m − (t− xi)

m]Φ(m)dt

]

wherex = (x1, ..., xn), y = (y1, ..., yn) ∈ In and the
integral above is taken in the sense of a Riemann-Stieltjes.
The following representation for theJ -divergence can be
stated.

Theorem 8.LetΦ : I → R be a function onI such that the
derivativeΦ(m−1) be absolutely continuous onI. Then,
Then,

Jn,Φ(x, y) :=

m−1
∑

k=1

1

2(k + 1)!

[

(−1)k + 1

2k
Pn,Φ,k(x, y)

−Qn,Φ,k(x, y)

]

+ En,Φ,k(x, y)

for any vectorx, y ∈ In.

Proof.We employ the result of Theorem5 for f ≡ Φ, a =
xi andb = yi, i ∈ {1, ..., n} and sum overi from 1 ton,
then we deduce the desired representation; and the proof
is completed.

Corollary 4.Under the assumptions of Theorem8, we
have the following estimate:

|En,Φ,m(x, y)|

≤
1

2m!















































n
∑

i=1

2|yi − xi|
m

m+ 1
max

i∈{1,...,n}
‖Φ(m)‖[xi,yi],∞,

n
∑

i=1

2|yi − xi|
m+1/p−1

(pm+ 1)1/p
max

i∈{1,...,n}
‖Φ(m)‖[xi,yi],p′ ,

p > 1,
n
∑

i=1

2|yi − xi|
m−1 max

i∈{1,...,n}
‖Φ(m)‖[xi,yi],1.

The proof follows by Corollary2.
We consider now, a functionΦ : I → R that is m-

timedifferentiable(m ≥ 1) and themth derivativeΦ(m)

is of locally bounded variation onI, this means that it is
of bounded variation on any closed subinterval [a,b] ofI.
For k = 1, 2, ...,m, we recall

Pn,Φ,k(x, y) :=

n
∑

i=1

(yi − xi)
kΦ(k)

(

xi + yi
2

)

and define

Rn,Φ,m(x, y)

:=
1

2m!

n
∑

i=1

[

(−1)m+1

∫

xi+yi
2

xi

(t− xi)
md(Φ(m)(t))

+

∫ yi

xi+yi
2

(yi − t)md(Φ(m)(t))

]

wherex = (x1, ..., xn), y = (y1, ..., yn) ∈ In and the
integral above is taken in the sense of a Riemann-Stieltjes.

The following representation for theJ -divergence can
be stated.

Theorem 9.Let Φ : I → R be a m-time differentiable
function onI and themth derivativeΦ(m) be of locally
bounded variation onI. Then,

Jn,Φ(x, y) :=
m
∑

k=1

[

(−1)k + 1

2k+1k!

]

Pn,Φ,k(x, y)+Rn,Φ,m(x, y)

(27)
for any vectorx, y ∈ In.

Proof.We employ the result of Theorem6 for f ≡ Φ, a =
xi and b = yi, i ∈ {1, ..., n} and sum overi from 1 to
n, then we deduce the desired representation(27); and the
proof is completed.

Corollary 5.Under the assumptions of Theorem9, we
have the error estimate:

|Rn,Φ,m(x, y)|

≤
1

2m+1m!

n
∑

i=1

|yi − xi|
m

∣

∣

∣

∣

yi
∨

xi

(Φ(m))

∣

∣

∣

∣

≤
1

2m+1m!
max

i∈{1,...n}

∣

∣

∣

∣

yi
∨

xi

(Φ(m))

∣

∣

∣

∣

n
∑

i=1

|yi − xi|
m, (28)

for anyx, y ∈ Im.
In particular if x, y ∈ [a, b]n ⊂ In, then we have the

simpler bound:

|Rn,Φ,m(x, y)| ≤
1

2m+1m!

b
∨

a

(Φ(m))

( n
∑

i=1

|yi − xi|
m

)

.

(29)

The proof follows by Corollary3.
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Corollary 6.Under the assumptions of Theorem9 and if
themth derivativeΦ(m) is Lipschitzian with the constant
Lm ≥ 0 onI, then we have the error estimate:

|Rn,Φ,m(x, y)| ≤
Lm

2m+1(m+ 1)!

n
∑

i=1

|yi − xi|
m+1, (30)

for anyx, y ∈ In.

Proof.It is well known that ifp : [c, d] → R is a Riemann
integrable function andv : [c, d] → R is Lipschitzian with
constant L, then the Riemann-Stieltjes integral
∫ d

c
p(t) dv(t) exists and,

∣

∣

∣

∣

∫ d

c

p(t) dv(t)

∣

∣

∣

∣

≤ L

∫ d

c

|p(t)| dt.

Therefore,

|Rn,Φ,m(x, y)|

≤
1

2m!

{

n
∑

i=1

[
∣

∣

∣

∣

∫

xi+yi
2

xi

(t− xi)
m d(Φ(m)(t))

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ yi

xi+yi
2

(yi − t)m d(Φ(m)(t))

∣

∣

∣

∣

]

}

≤
Lm

2m!

{

n
∑

i=1

[∣

∣

∣

∣

∫

xi+yi
2

xi

(t− xi)
m dt

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ yi

xi+yi
2

(yi − t)m dt

∣

∣

∣

∣

]

}

=
Lm

2m!

n
∑

i=1

[

|yi − xi|
m+1

(m+ 1)2m+1
+

|yi − xi|
m+1

(m+ 1)2m+1

]

=
Lm

2m+1(m+ 1)!

n
∑

i=1

|yi − xi|
m+1, for anyx, y ∈ In.

This proves the desired inequality(30).

Fork = 1, 2, . . . ,m, we now define

Yn,Φ,k(x, y)

:= −
1

2m!

n
∑

i=1

∫

xi+yi
2

xi

(

xi + yi
2

− t

)

d
(

Φ(m)(t)
)

−
1

2m!

n
∑

i=1

∫ yi

xi+yi
2

(−1)m
(

t−
xi + yi

2

)

d
(

Φ(m)(t)
)

wherex = (x1, ..., xn), y = (y1, ..., yn) ∈ In and the
integral above is taken in the sense of a Riemann-Stieltjes.
The following representation for theJ -divergence can be
stated.

Theorem 10.Let Φ : I → R be a m-time differentiable
function onI and themth derivativeΦ(m) be of locally

bounded variation onI. Then,

Jn,Φ(x, y) := −

n
∑

i=1

m
∑

k=1

(yi − xi)
k

2k+1k!

[

Φ(k)(xi)

+(−1)kΦ(k)(yi)
]

+ Yn,Φ,m(x, y),

for any vectorx, y ∈ In.

The proof follows by Theorem7.

Corollary 7.We have the following error estimates

|Yn,Φ,m(x, y)| ≤

n
∑

i=1

|yi − xi|
m

2m+1m!
max

i{1,...,n}

[

yi
∨

xi

(Φ(m))

]

.

The proof follows by Remark3.

5. Application to some elementary functions

In this section, we consider the approximation of Jensen
divergence for some elementary functions.

1.First, we consider the exponential function, i.e.Φ(t) =
et. We have, from Theorem8

Jn,et(x, y) ≈
n
∑

i=1

m
∑

k=1

(yi − xi)
k

2(k + 1)!

×

[

1 + (−1)k

2k
e

xi+yi
2 − exi − (−1)keyi

]

with the remainderEn,et,m (x, y) satisfies the bound,

|En,et,m|

≤
1

2m!
×































































n
∑

i=1

2|yi − xi|
m

m+ 1
max

i∈{1,...,n}
eyi ,

n
∑

i=1

2|yi − xi|
m+1/p−1

(pm+ 1)1/p

× max
i∈{1,...,n}

(

ep
′yi − ep

′xi

p′

)1/p′

, p > 1,

n
∑

i=1

2|yi − xi|
m−1 max

i∈{1,...,n}
(eyi − exi) .

Theorem9 gives us

Jn,et(x, y) ≈
n
∑

i=1

m
∑

k=1

(−1)k + 1

2k+1k!
(yi − xi)

ke
xi+yi

2

where the remainder,Rn,et,m (x, y) satisfies the
bound,

|Rn,et,m(x, y)|

≤
1

2m+1m!
max

i∈{1,...n}
(eyi − exi)

n
∑

i=1

|yi − xi|
m

≤
1

2m+1m!
max

i∈{1,...n}
(eyi − exi)

(

n
∑

i=1

|yi − xi|

)m

.
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Finally, Theorem10gives us

Jn,et(x, y) ≈ −

n
∑

i=1

m
∑

k=1

(yi − xi)
k

2k+1k!

[

exi + (−1)keyi
]

with the remainderYn,et,m (x, y) satisfies the bound,
|Yn,et,m(x, y)|

≤
1

2m+1m!
max

i∈{1,...n}
(eyi − exi)

n
∑

i=1

|yi − xi|
m.

2.We now consider the functionΦ(t) = tp, wherep >
m. We have, from Theorem8

Jn,tp(x, y)

≈
n
∑

i=1

m
∑

k=1

(yi − xi)
k

2(k + 1)!

[

1 + (−1)k

2k
p!

(p− k)!

(xi + yi
2

)p−k

−
p!

(p− k)!
xi

p−k −
p!(−1)k

(p− k)!
yi

p−k

]

with the remainderEn,et,m (x, y) satisfies the bound,
|En,tp,m|

≤
p!

2m!(p−m)!

×















































n
∑

i=1

2|yi − xi|
m

m+ 1
max

i∈{1,...,n}
‖tp−m‖[xi,yi],∞,

n
∑

i=1

2|yi − xi|
m+1/p−1

(pm+ 1)1/p
max

i∈{1,...,n}
‖tp−m‖[xi,yi],p′ ,

p > 1,
n
∑

i=1

2|yi − xi|
m−1 max

i∈{1,...,n}
‖tp−m‖[xi,yi],1.

Theorem9 gives us
Jn,tp(x, y)

≈
n
∑

i=1

m
∑

k=1

(−1)k + 1

2k+1k!
(xi − yi)

k p!

(p− k)!

(xi + yi
2

)p−k

where the remainder,Rn,tp,m (x, y) satisfies the
bound,

|Rn,et,m(x, y)|

≤
p!

2m+1m!(p−m− 1)!

× max
i∈{1,...n}

‖tp−m−1‖[xi,y+i,1]

n
∑

i=1

|yi − xi|
m.

Finally, Theorem10gives us
Jn,et(x, y)

≈ −
n
∑

i=1

m
∑

k=1

(yi − xi)
k

2k+1k!

p!

(p− k)!

[

xi
p−k + (−1)kyi

p−k
]

with the remainderYn,et,m (x, y) satisfies the bound,
|Yn,et,m(x, y)|

≤
p!

2m+1m!(p−m− 1)!

× max
i∈{1,...n}

‖tp−m−1‖[xi,y+i,1]

n
∑

i=1

|yi − xi|
m.

3.We consider the functionΦ(t) = − log(t), wheret ≥
1. We have, from Theorem8

Jn,tp(x, y) ≈

n
∑

i=1

m
∑

k=1

(yi − xi)
k

2k(k + 1)

×

[

(−1)k + 1

2k

(

xi + yi
2

)−k

−(−1)kx−k
i − y−k

i

]

with the remainderEn,et,m (x, y) satisfies the bound,

|En,tp,m|

≤
1

2m
×















































n
∑

i=1

2|yi − xi|
m

m+ 1
max

i∈{1,...,n}
‖t−m‖[xi,yi],∞,

n
∑

i=1

2|yi − xi|
m+1/p−1

(pm+ 1)1/p
max

i∈{1,...,n}
‖t−m‖[xi,yi],p′ ,

p > 1,
n
∑

i=1

2|yi − xi|
m−1 max

i∈{1,...,n}
‖t−m‖[xi,yi],1.

Theorem9 gives us

Jn,tp(x, y) ≈

n
∑

i=1

m
∑

k=1

1 + (−1)k

2k

(

xi − yi
xi + yi

)k

where the remainder,Rn,tp,m (x, y) satisfies the
bound,
|Rn,et,m(x, y)| ≤ 1

2m+1 max
i∈{1,...n}

‖t−m−1‖[xi,y+i,1]

∑n
i=1 |yi − xi|

m.

Finally, Theorem10gives us

Jn,et(x, y) ≈ −
n
∑

i=1

m
∑

k=1

(yi − xi)
k

2k+1k

[

(−1)kxi
−k + yi

−k
]

with the remainderYn,et,m (x, y) satisfies the bound,
|Yn,et,m(x, y)| ≤ 1

2m+1 max
i∈{1,...n}

‖t−m−1‖[xi,y+i,1]

∑n
i=1 |yi − xi|

m.

In the following figures, choosen = 20, m = 2, 4, 6
for Φ(t) = − log(t), I = [10, 20]. We observe that the
approximation in Theorem9 converges faster than the
other two, whilst the approximation in Theorem8 is
the slowest.
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Figure 1: Jensen divergence and its approximation
(m = 2)
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Figure 2: Jensen divergence and its approximation
(m = 4)
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