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Abstract: This paper attempts to present an expository summary on the numerical non-robustness issues in geometric computation.
We try to give the answers to two questions: (1) why numerical non-robustness issues occur in geometric computing, and (2) how to
deal with them in practice. We first describe the theoretical causes of the problematic robustness behaviors, and then present several
popular and practical solutions to the non-robustness problem. Note that these algorithm-specific or general solutions are only part of
the existing efforts to attack the numerical robustness problem, but are quite useful in practical applications. Additionally, geometric
examples and sample codes are included for illustrations.
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1 Introduction

In geometric computations, non-robustness issues always
occur due to the numerical and the geometrical nature of
involved algorithms; see reference [1] for several classic
non-robustness examples. The causes of non-robustness
behaviours can be mainly classified into two categories:
numeric precision and geometrical degeneracy; thus, the
robustness problems can also be divided correspondingly
into two types according to the causes, i.e. the numerical
robustness and the geometrical robustness [2].

Numeric precision (numeric stability) problems arise
due to the inexact computer arithmetic: when carrying out
various computations on computers, the numbers adopted
are normally the fixed-precision floating-point numbers or
even integers, rather than the expected exact real numbers
that have arbitrary precisions in theory. Degeneracy refers
to the special cases that are usually not considered during
the generic implementations of algorithms and have to be
treated in problem-specific ways. Both of the above two
kinds of causes lead to incorrect answers.

There are many approaches presented in the literature
that focus on the non-robustness problems in geometric
computing; see [3–8] for the surveys. Those methods can
be divided into two categories: the arithmetic and the
geometric [9].

The arithmetic methods seek to address the problem
of non-robustness in geometric computations by dealing
with the numerical errors occurring due to fixed-precision
arithmetic, which can be realized, for example, by using
multi-precision arithmetic [10]. Within such methods, all
the arithmetic operations are generally carried out on the
algebraic quantities. Noticeably, the use of multi-precision
arithmetic methods results in a high memory and running
time overhead, as compared to the widely used IEEE-754
floating-point standard.

The geometric methods try to make an assurance that
some geometric properties are preserved by the adopted
algorithms. For instance, it is needed to guarantee that the
output is a planar graph when calculating the Voronoi
diagram of a set of points in two dimensions. Some of this
kind of methods are the topology oriented approach [11],
the consistency and topological approaches [12], the finite
resolution geometry [13], and the approximate predicates
and fat geometry [14].

Yap [8] gives an excellent survey on techniques for
achieving robust geometric computation. Kettner et al. [1]
provides graphic evidence of the troubles that arise when
employing real arithmetic in geometric algorithms such as
convex hull. Controlled perturbation [15] is a new method
for implementing robust computation that has been drawn
considerable attention.
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Aiming at the problems of when to use the arbitrary-
precision arithmetic and how to maintain the reasonable
efficiency, Shewchuk [16], and Fortune and van Wyk [17]
present excellent studies on the costs of using arbitrary-
precision arithmetic while achieving complete robustness
for geometric computation. A mathematical description of
the arbitrary precision arithmetic is presented in [18].

Several software packages that are capable of robustly
implementing geometric computations or dealing with the
non-robustness problems in geometric computation have
been developed, including CGAL [19], LEDA [20], CORE
[21], and predicate.c [16]. Robust geometric computation
can be achieved by simply using these packages.

CGAL and LEDA both provide very complete sets of
robust geometric computations. LEDA is easier to learn
and to work with, but CGAL is more comprehensive and
publicly available. The CORE Library provides an API,
which supports the Exact Geometric Computation (EGC)
principle [22]to implement numerically robust algorithms;
with small changes, any C/C++ program can use CORE
to readily support four levels of accuracy. The small piece
of C++ code, predicate.c, is developed by Shewchuk [16],
which includes the robust implementation of four kinds
of basic geometric tests (i.e., the 2D and 3D orientation,
inCircle, and inSphere predicates).

As mentioned above, a very easily-used package is the
CORE library. A newer version of this library, the CORE
2, is reported recently [23]. The common C++ code can
be transferred into robust ones by simply using CORE
library. However, when supporting the EGC principle by
using the CORE library for robust geometric computation
in the entire procedure of computing, the speed would be
very slow. This is because geometric computations based
on multi-precisions are much slower than those based on
the IEEE-754 format floating-point numbers.

An effective solution to improve the efficiency when
supporting the EGC paradigm is to accept the so-called
“Lazy principle” [24], i.e., to carry out the most important
geometric computations using multi-precisions arithmetic
while performing the less important computations using
standard-precision arithmetic. The basic idea behind the
“Lazy principle” is that it is only needed to carry out the
expensive multi-precisions computations when they are
quite important and also need to be very accurate.

The objective of this paper is to (1) give an expository
explanation to the origins of numerical non-robustness in
geometric computation, and (2) present several practical
approaches of dealing with the above problem. The main
content will focus on answering two questions: the first
is why numerical non-robustness occurs and the second
is how to deal with the problematic robustness issues in
geometric computation.

This paper is organized as follows. The theoretical
causes of numerical non-robustness issues in geometric
computation are described in Section 2. Several practical
solutions of the numerical non-robustness problems are
presented in Section 3. And finally in Section 4, several
concluding remarks are given.

2 Theoretical Causes of Non-robustness

The algorithms of geometric computations are designed
under an assumption that all computations are performed
using exact real arithmetic. However, when implementing
these algorithms on computers, inexact limited-precision
arithmetic such as floating-point arithmetic is normally
used in place of the exact arithmetic. And, floating point
arithmetic is by nature inaccurate due to numerical errors;
these numerical errors may lead to non-robust behaviours
in the geometric computations. This section will describe
the theoretical origins of the numerical non-robustness.

2.1 Floating-point Arithmetic

2.1.1 Real Numbers and Machine Numbers

In mathematics, the definition of real numbers is given as:
a real number can be thought as a value that represents a
quantity along an infinitely long line (i.e., the number line
or the real line). The real numbers include all the rational
numbers (such as integers and fractions) and the irrational
numbers (such as

√
3 and π).

The set of all real numbers is infinite; however, only
part of real numbers can be exactly represented in binary
format on computers while carrying out computations.
Those real numbers that cannot be directly represented
are approximated by the nearest representable numbers.
The real numbers that are directly and exactly represented
on computers are called machine representable numbers.

The formal definition of representable numbers is as
follows: Representable numbers are numbers capable of
being represented exactly in a given binary number format
[27]. The format could be either an integer or floating point
numbers.

2.1.2 Fixed- and Floating-point Numbers

Generally, real numbers can be represented on computers
with two representations: the fixed-point numbers and the
floating-point numbers.

Fixed-point number representation is a data type for
expressing a number that has a fixed number of digits
after the radix point. The fixed-point numbers are equally
spaced on the number line. Unlike fixed-point numbers,
the decimal point of a floating-point number is not “fixed”
but “float”. The term floating point means the fact that the
radix point can “float” and be placed in any position with
respect to the significant digits of the real number. The
floating of the decimal point is represented by expressing
numbers in a format similar to scientific notation.

Compared to fixed-point numbers, for floating-point
numbers the density of representable numbers spaced on
the number line is no longer even: the space distance
between representable numbers increases the farther away
from zero a number is located.
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Floating-point numbers allow a much larger range of
values to be represented. The property of having larger
range can make floating-point numbers more useful in
computing than fixed-point numbers, especially in the
case that the number become larger than can be expressed
with a fixed-size exponent (this exactly means overflow).
Similarly, larger range is quite useful when the number
becomes smaller than can be represented with a fixed-size
exponent (i.e., underflow).

It is clear that the data type, floating-point numbers,
and its arithmetic do not have the same properties as that
of real numbers and the exact arithmetic using real
numbers. So far, there are many types of floating-point
representations used on computers; but the most widely
used floating-point representation format is that defined
by the IEEE-754 standard [28].

2.1.3 The IEEE-754 Floating-point Formats

The IEEE-754 floating-point format introduced in 1985 is
nowadays the most widely used floating-point standard. A
new version was revised in 2008 [28], which specifies two
basic and two extended binary floating-point formats. An
excellent description of IEEE-754 floating-point numbers
and arithmetic can be found in the literature [29].

The IEEE-754 standard floating-point numbers are
composed of three basic fields: i.e., the sign bit, the
exponent component, and the mantissa field. The sign has
only one bit. The exponent base does not need to be
stored for that it is implicit. The mantissa consists of the
fraction and a hidden leading digit. There are 32 and 64
bits for the IEEE-754 single-precision numbers and the
double-precision numbers, respectively.

The IEEE-754 single-precision numbers can represent
numbers of absolute value in the range of approximately
10−38 to 1038, with a precision of 6 to 9 decimal digits.
The double-precision format can represent numbers of
absolute value between approximately 10−308 and 10308,
with a precision of 15 to 17 decimal digits.

2.1.4 Round-off Error in Floating-point Arithmetic

Several types of computational errors inherently exist in
floating-point arithmetic, including the conversion errors,
overflow and underflow errors, round-off errors, digit-
cancellation errors, and input errors [2]. These errors may
produce incorrect results in both numeric and geometric
computations. One of them is caused by the operation of
rounding-off; and this kind of error source is the main one
of all types of error causes.

Remark The errors in floating-point arithmetic are
mainly due to “rounding-off”.

When using floating-point numbers, “rounding” needs
to be carried out in almost all arithmetic operations. The
following are the most common three cases:

(1) For the representable numbers with a quite accurate
precision, when taking this type of data into binary
calculation on computers, they need to be represented
with limited-precision (such as 32-bits or 64-bits)
numbers, rather than arbitrary precision numbers, and
thus have to be rounded to their corresponding nearest
machine representable numbers.

(2) For the numbers that cannot be represented exactly by
binary numbers, such as the irrational numbers π and√

3, they need to be rounded off and represented by
their nearest machine numbers. The error will certainly
occur between the original numbers and their inexact
approximated counterparts.

(3) For the intermediate data obtained during computing,
they are expected to be more accurate than the input
data, but this is impractical since that the precision for
representing numbers is limited and the intermediate
data must be also represented with the specific limited-
precision.

The first and second cases state that some kinds of
decimal numbers cannot be exactly represented in binary
format on computers. For instance, in the decimal floating
-point representation form, the number 0.1 can be exactly
represented using a fixed number of digits; but, when this
number is normalized and rounded off to the IEEE-754
single-precision format (24 bits), the representation of 0.1
is a little bigger than 0.1 [2].

The third case states that the intermediate data cannot
be represented with precisions larger than that is allowed
on computers. In alternative words, the intermediate data
which supposed to be more accurate but in fact it cannot
be more accurate. Consider multiplying two real numbers
that represented with n bits, e.g., c=ab, in theory the result
c needs higher precision to be represented than both a and
b, but in practice, c must be rounded to n bits and thus will
be inaccurate.

The first and the second cases are the situations for the
input data during calculations; the third one is the type for
the intermediate data. All the above three cases (perhaps
include other cases that have not described here) are due
to the requirement of representing data on computers.

2.2 Summary on the Causes of Non-robustness

a) The algorithms of various geometric computations are
designed under the assumption that all computations
are performed in exact real numbers and arithmetic.

b) Real numbers are exact but need to be represented on
computers with machine representable numbers such
as floating-point numbers.

c) Floating-point numbers and arithmetic are by nature
inexact due to numeric errors such the round-off error.

d) Using inexact fixed-precision floating point arithmetic
for the assumed exact real arithmetic leads to the non-
robustness problem in geometric computation.
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3 Practical Solutions of Non-robustness

The section will introduce several practical solutions of
the numerical non-robustness. These algorithm-specific or
general approaches are only part of the existing efforts to
attack the numerical robustness problem, but quite useful
in practical applications.

3.1 Comparing Floating-point Numbers

In computing, usually there are many situations that need
to compare two floating-point numbers. And in geometric
computations, comparison of floating-point values is also
quite essential; for example, in some geometric predicates,
it needs to check whether two vertices are the same, and
thus the coordinates of target points have to be compared.
The comparison seems to be very easy, but in fact it is not
as easy as it may be thought.

In integer arithmetic, it is possible and reasonable to
compare two values directly using the following routine
if(a == b) then {do something}. This is the
exact way people usually consider and expect. However,
unlike the integers, floating-point numbers by nature are
inexact or not accurate, and cannot be directly compared
with equality.

Giving an exact real number, and after converting and
representing it with a specific format of floating-point
representation, e.g., the IEEE-754 double-precision, the
represented corresponding floating-point number is not
exactly identical to the original number in general cases,
but will be slightly bigger or smaller. This is due to the
rounding-off error explained in the previous section.

The following C++ code simply demonstrates that the
floating-point numbers cannot be compared directly. In
order to create values that are mathematical equivalent,
the number b is directly specified, and the other number a
is obtained according to b via a simple formula.

#include <iostream>
using namespace std;

int main(void)
{

double a = 1.80 * (1.0 + 1.0 / 10.0);
double b = 1.98;

cout << "a = " << a << endl;
cout << "b = " << b << endl;

if(a < b) cout << "a < b" << endl;
else if(a > b) cout << "a > b" << endl;
else cout << "a == b" << endl;

return 0;
}

In above code, the floating-point numbers a and b are
expected to be exactly identical. But in fact, they are not.

The running results under compiler GCC and VC++ 2010
are both as follows:

a = 1.98
b = 1.98
a > b

There are several methods of comparing the floating-
point numbers; and the most commonly used is perhaps
the epsilon approach which is based on a very small
number names epsilon ε . In the epsilon approach, two
floating-point numbers are thought to be almost equal if
the absolute value of their difference is less than a given
tiny range (also called tolerance or error). A paradigm
called “epsilon geometry” which analyses the usage of
epsilon in geometric computation can be found in [14].

The tolerance is calculated via some formulas based
on the epsilon or directly be set as same as the epsilon.
According to the methods of how to compute the tolerance
/ error, there are three types of comparisons in the epsilon
approach: the absolute, relative, and combinational.

Note that the comparisons based on epsilon cannot be
used as a complete solution of this problem of comparing
floating-point numbers, but can be just used as a relatively
simple and efficient solution. An excellent description of
how to compare floating-point numbers can be available
via a web page [30].

3.1.1 Absolute Tolerance Comparison

The comparison with an absolute error is very easy to
understand: if the absolute value of the difference of a
pair of floating-point numbers is less than (or not greater
than) a specific tolerance, then the two floating-point
numbers can be roughly thought as being equivalent. The
implementation can be as:

if(fabs(a-b) <= epsilon) { do something }

This is may be the simplest way to compare floating-
point numbers, although it does not work correctly in many
cases.

In this type of comparison, the tolerance is directly as
the same as the epsilon value. When implementing the
comparison in practice, a careful attention must be drawn
to the consideration of how to determine the epsilon value
properly. In theory, the epsilon can be as small as it can
be, and also can be very large; but in practice, it is not.
The selection of the epsilon will be introduced later.

3.1.2 Relative Tolerance Comparison

In the comparison with absolute errors, the tolerance is
fixed and will never change no matter the numbers being
compared is very large or very small; in other words, the
numbers for comparing may have dramatic magnitudes,
and in this case, using a permanent tolerance with a fixed
magnitude seems to be improper.
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For the reason mentioned above, the comparison with
a relative error which considers the magnitudes of the
target numbers is much more reasonable. This type of
comparison was first described in the famous book The
Art of Computer Programming authored by Donald E.
Knuth. Several useful relations for comparing floating-
point numbers are presented in the subsection 4.2.2 of the
volume 2, Seminumerical Algorithms [31].

For two floating-point numbers, the absolute value of
their difference must be calculated first; this is the same
as that of the comparison with absolute error. However,
the tolerance is no longer as same as the epsilon, but the
multiplication with the minimum or maximum value of the
two target numbers. This can be simply represented using
the following code:

if(fabs(a-b) <= epsilon * min(a, b)) {
do something

}
if(fabs(a-b) <= epsilon * max(a, b)) {

do something
}

The first one can be thought strict equality, while the
second is the approximate equality. Usually, the second
one is adopted since that its condition is much easier to be
met, and can work better in more cases.

3.1.3 Combinational Tolerance Comparison

Although the comparison with relative errors looks much
better than the comparison with absolute errors, it still has
drawbacks: if the numbers for comparing is less than 1.0,
then the tolerance value epsilon * max(a, b) will
certainly less than epsilon itself; furthermore, if the value
max(a, b) is small, then epsilon * max(a, b)
would be much smaller, and in this case, the comparison
cannot work correctly in most cases because its condition
is too strict to be met.

For the problem described above, the comparison with
absolute errors is considered again: if the value max(a,
b)< 1.0, then adopt the comparison with absolute error;
otherwise, use the comparison with relative errors. Thus,
the comparison with combinational errors is in fact the
combination of the above two comparisons that are based
on the absolute or relative errors. The following code
illustrates the comparison with combinational errors.

if(fabs(a-b) <= epsilon *
max(max(a, b), 1.0)) {
do something

}

3.1.4 Considerations for Selecting epsilon

Theoretically, the epsilon can be any number as the users
would like to choose. But obviously, a too large epsilon is

not meaningful. Also, a too small one is not suggested to
be used because it is possibly less than the machine
epsilon.

It is recommended to determine the epsilon according
to the following formula:

u 6 epsilon 6 2n ∗u (1)

, in which u is the machine epsilon, and n is a given
unsigned exponent (n > 0).

Note that the epsilon cannot be less than the machine
epsilon due to the inherent property of machine epsilon.
This property comes from its definition and will be
explained in the closing later content. The upper bound of
epsilon is 2n ∗ u, which is a magnification of the machine
epsilon. Why not magnify the u directly with n times, like
this formula epsilon 6 n∗u ? This is because the machine
epsilon is actually an index number with a base 2: for
IEEE-754 single precision, the machine epsilon is 2−23,
and for double precision it is 2−52. Thus, the relation to
determine the range of epsilon (Equation.1) for single-
and double- precision can be updated as:

2−23 6 epsilon 6 2n−23 (2)

2−52 6 epsilon 6 2n−52 (3)

In practical applications, the epsilon can be implemented
in C++ as follows:

unsigned int n = ;
#define floatEpsilon pow(2.0, n-23)
#define doubleEpsilon pow(2.0, n-52)

Machine epsilon An easily-understood definition of
machine epsilon is described in [32]. Let the notation fl(x)
denote the floating-point machine representable number
that corresponds to the real number x, the machine epsilon
is the smallest positive machine numbers ε such that

fl(1+ ε)> 1

In other word, machine epsilon ε is the distance from
1 to the next larger floating-point number. On computers
that support the IEEE-754 floating-point arithmetic, the
machine epsilon ε is 2−23 for single-precision, and 2−52

for double-precision.
Remark When comparing floating-point numbers, it

is preferable that the relative test should be less-equal (6)
rather than less-than (<). The relative test fails when both
compared numbers are exactly zero. Thus, the following
three checking procedures are not recommended.

// Absolute Tolerance Comparison
if(fabs(a-b) < epsilon)

// Relative Tolerance Comparison
if(fabs(a-b) < epsilon * max(a,b))

// Combinational Tolerance Comparison
if(fabs(a-b) < epsilon * max(max(a,b),1.0))
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3.2 Several Geometric Predicates

Many geometric algorithms in computational geometry
make decisions based on predicates (i.e., geometric tests).
These predicates may produce incorrect answers because
of the round-off errors in floating-point arithmetic. Robust
implementations of the geometric predicates are essential
for complex algorithms.

3.2.1 Coincidence

The coincidence predicate is to test whether various basic
geometric primitives, e.g., points, segments, or polygons,
coincide (or are identical to each other). The simplest and
most commonly used coincidence predicate is to check
whether two points are the same. In many algorithms of
geometric computation, coincident points are not allowed:
for example, the adjacent vertices of a polygon cannot be
coincident when triangulating the simple polygons; and
similar case appears when calculating the convex hull of a
set of points.

In applications, there are two quite simple methods to
compare a pair of points (p and q): the first is to calculate
the distance between p and q, and if the distance is less
than or equal to a very small positive value – epsilon, then
p and q can be thought to be approximately coincident.
This simple method can be represented by the following
formula:

dist =
√

(px−qx)2 +(py−qy)2 +(pz−qz)2 6 epsilon
(4)

Another simple approach is to directly compare the
corresponding coordinates of two points. In this method,
coordinates of points are tested separately by comparing
the absolute value of the coordinates’ difference with a
specified tolerance – epsilon:

|px−qx|6 epsilon
|py−qy|6 epsilon
|pz−qz|6 epsilon

(5)

epsilon
q

p

epsilon

p

q

Fig. 1: Coincidence predicate for two points. Left: by
difference. Right: by distance

Assuming one of the points, for example p, to be the
centre point of a cube or a sphere (shown in Figure.1), the
predicate of determining whether p and q coincide can be
considered to check whether q locates inside of the cube
or sphere. Three regions can be divided in Cartesian space
by the cube and sphere, as shown in Figure.2.

Region 1: This region is exactly the space occupied by
the sphere with radius = epsilon. Points that locate in this
region can be considered to be definitely coincident.

Region 2: This region is the subtraction of the cube
with the sphere. Points that locate outside the sphere but
inside the cube can be considered to be approximately
coincident.

Region 3: This region is the space that has not been
occupied by the cube. Points that locate in this region can
be considered to be NOT coincident.

epsilon

Region 1

Region 2

Region 3

Fig. 2: Space regions divided by a cube and a sphere

Theoretically, the cases of point q locating in Region 1
or Region 3 usually appear since the volume of the first and
the third regions are larger than that of the second region.
This means that points locate inside the cube but outside
the sphere is not so often as that in Region 1 or 3.

Obviously, the coincidence predicate represented by
the Equation.5 has a little looser condition than that
represented by the Equation.4. Points that are tested to be
coincident according to the Equation.4 must be also
coincident when using the Equation.5, but the opposite
situation of above statement perhaps is no longer true. For
example, set the coordinates of point q based on p:

qx = px+ epsilon
qy = py+ epsilon
qz = pz+ epsilon

Then,

dist =
√

epsilon2 + epsilon2 + epsilon2 > epsilon.

Therefore, in this case, p and q are not coincident
according to the Equation.4, but would be coincident
according to Equation.5. This example and conclusion
seem to be meaningless. Since that the points p and q are
actually not coincident, and the predicate represented by
the Equation.4 gives the correct answer. However, in
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practice, those two points, p and q, are usually considered
to be the same in order to avoid geometric degeneracy in
the further computations, although the points p and q are
exactly distinct.

This is because p and q are too close, and thus are
difficult to be distinguished. Probably during a step of
geometric computation, they are exactly tested to be NOT
coincident according to a very strict condition such as that
in the Equation.4, but in later geometric computations,
very close points may cause geometric degeneracy; and
thus this case should be avoided at the beginning of the
entire procedure of geometric computation.

Remark In order to avoid the potential geometric
degeneracy, very close, exactly distinct points should be
considered to be coincident, and then must be merged to
have the same and shared coordinates.

As a summary, the approach of testing whether two
points coincide is recommended to use the way expressed
in the Equation.5. And the effective C++ code is listed in
the following Listing.1.

#include <cmath>
#include <limits>
#include <algorithm>

#define eps
numeric_limits<double>::epsilon()

bool isEqual(double a, double b)
{

if(fabs(a-b) <= eps*max(max(a,b),1.0))
return true;

else return false;
}

bool isSame(double p[3], double q[3])
{

return isEqual(p[0], q[0], eps) &&
isEqual(p[1], q[1], eps) &&
isEqual(p[2], q[2], eps) ;

}

Listing 1: Coincidence predicate for points

3.2.2 Orientation

In 2D, the orientation predicate is to test whether a point
locates in the left or right side of a line, or on the line
(Figure.3(a)); normally, the directed line is defined by two
points. In 3D, this predicate is extended to determine the
position of a point with relative to an orientated plane
defined by three points (see Figure.3(b)), i.e., to find out
whether a point is above, on, or below a plane.

The orientation predicate is commonly used and quite
useful since many important geometric algorithms, e.g.,
finding convex hulls, Delaunay triangulating, and polygon
/ polyhedron intersecting, have to call this predicate.

The orientation predicates (denoted as the procedures
orient2D and orient3D) can be mathematically interpreted
by the following formulas:

orient2D(a,b,c) =

∣∣∣∣∣∣
ax ay 1
bx by 1
cx cy 1

∣∣∣∣∣∣ (6)

orient3D(a,b,c,d) =

∣∣∣∣∣∣∣
ax ay az 1
bx by bz 1
cx cy cz 1
dx dy dz 1

∣∣∣∣∣∣∣ (7)

Determination of the position of point c with respect
to the directed line ab can be directly obtained according
to the calculation result of the determinant in Equation.6.
However, there is no need to calculate the magnitude of the
determinant but only to know the sign: if return a positive
value, it means the point c locates in the left side of the
directed line ab, while zero and the negative indicate c is
exactly on and in the right side of ab, respectively.

Similar to the predicate orient2D, the extended version
– orient3D, can give the position of point d with relative to
the orientated plane defined by a, b and c according to the
sign of determinant in Equation.7. The positive, negative,
and zero values indicate the point d lie above, below and
on the plane, respectively.

a

b

c

(a) 2D

a b

c

d

(b) 3D

Fig. 3: The orientation predicates in 2D and 3D

The idea behind the orientation predicates is easy to
understand. However, these predicates may give incorrect
answers in geometric computation when adopting floating
-point arithmetic, and lead the entire geometric algorithm
crashing or producing strange results. The above problem
certainly needs to be avoided.

Shewchuk [16, 33] has developed quite robust and fast
four geometric predicates, i.e., the orientation (described
here) and the inCircle (described later) tests in 2D and 3D,
based on adaptive precision floating-point arithmetic. The
C implementation of above four predicates is available at
http://www.cs.cmu.edu/∼quake/robust.html.
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3.2.3 InCircle / InSphere

Given three non-linear points, a circle can be defined by
them while all points are required to locate on the circle.
In other words, the circle is the circumcircle of a triangle
whose vertices are the given three points. Similarly, a
sphere can be formed based on four non-planar points of
which no pair of points coincides.

The inCircle predicate is to test whether a point is
inside, outside or on the above mentioned circle (shown in
Figure.4(a)), while the inSphere predicate, which can be
thought as the extended version of the inCircle predicate,
is to determine whether a point locate inside the sphere
defined by four points, as shown in Figure.4(b).

a

c

d

b

(a) inCircle

e

a

b

c

d

(b) inSphere

Fig. 4: The inCircle and inSphere predicates

Also, the inCircle / inSphere predicate (denoted as the
procedure inCircle and inSphere) can be fully interpreted
by mathematical equations. Relative position of points
with respect to the circle or sphere can be determined
according to sign: the positive, negative, and zero values
indicate the point d or e lie inside, on, and outside the
circle or sphere, respectively.

inCircle(a,b,c,d) =

∣∣∣∣∣∣∣∣
ax ay a2

x +a2
y 1

bx by b2
x +b2

y 1
cx cy c2

x + c2
y 1

dx dy d2
x +d2

y 1

∣∣∣∣∣∣∣∣ (8)

inSphere(a,b,c,d,e) =

∣∣∣∣∣∣∣∣∣∣

ax ay az a2
x +a2

y +a2
z 1

bx by bz b2
x +b2

y +b2
z 1

cx cy cz c2
x + c2

y + c2
z 1

dx dy dz d2
x +d2

y +d2
z 1

ex ey ez e2
x + e2

y + e2
z 1

∣∣∣∣∣∣∣∣∣∣
(9)

Similar to the two orientation predicates described in
previous section, the inCircle and inSphere predicates
may also give incorrect answers due to numeric errors
such as the rounding-off error in floating-point arithmetic.
For these predicates, Shewchuk [16, 33] also developed
the fast and robust implementations based on adaptive
precision floating-point arithmetic.

3.3 Exact Geometric Computation (EGC)

Since about 1990, an approach named Exact Geometric
Computation (EGC) has emerged [22], and soon become
one of the most successful options for achieving robust
geometric computation. Major geometric computation
libraries such as CGAL [19, 25] and LEDA [20, 26] are
designed on the basis of supporting the EGC principle.

3.3.1 What is EGC and why EGC ?

The term “Exact Geometric Computation (EGC)” firstly
advocated by Yap [22] is the preferred name for the
general method of “exact computation”, which identifies
the goal of determining geometric relations exactly [8].
In [34], the prescription of the EGC approach is stated as:
it is to ensure that all branches for a computation path
are correct. Several key techniques of the EGC approach
were introduced in Li’s thesis [35]. Li also presents a
survey on the recent developments in EGC research in
three key aspects: constructive zero bounds, approximate
expression evaluation and numerical filters [36].

Geometric computation not only involves numerical
computation but also includes combinatorial computation.
This can be represented with the following formulation:

Geometric = Numeric + Combinatorial.

The numeric part is exactly the numerical formats
(rational, irrational, fixed- or arbitrary- precision floating
point numbers) to represent various geometric primitives,
e.g., the parameters of a line or plane, the coordinates of a
point. The combinatorial (sometimes also called discrete
or topological) part characterizes the discrete relations
between geometric objects, e.g., whether a point is inside
a polyhedron, the incident triangular elements of a node
in a triangulated mesh.

Geometric algorithms focus on the combinatorial part
by determining the discrete relations among geometric
objects based on various geometric predicates such as
orientation or intersection tests. Non-robustness issues
appear because of incorrect determinations that due to
numerical errors in the computation.

As introduced above, the prescription of the EGC is to
ensure that all branches for a computation path are correct
[34]. If all geometric predicates can be evaluated correctly,
then the correctness of the combinatorial part of geometric
algorithms will be guaranteed, and finally the robustness
of the algorithms can be ensured.

Under the EGC paradigm, the input is assumed to be
numerically exact. Exact geometry cannot be guaranteed
if the input is not exact. For the inexact input, it can be
processed by either “cleaning-up” or “formulating” [8].
Calculating based on the actual or assumed valid and
exact inputs, the EGC approach can effectively ensure the
correctness of the combinatorial part of various geometric
algorithms.
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EGC numbers. The term EGC numbers are accepted
to refer to any number type that used to support the EGC
calculations [36]. The arithmetic operations based on EGC
numbers can ensure any specified precision. Users of EGC
libraries can simply develop their robust implementations
via building the codes on these EGC numbers.

The EGC numbers in CORE Library are named Expr
which derives from the package Real/Expr [37]. The EGC
numbers in LEDA [20] are LEDA real [38, 39], while
in CGAL [19], rational EGC numbers are provided, but it
also adopts either the numbers from the CORE Library or
LEDA real.

To sum up, the EGC approach can be applied directly
to many geometric problems without requiring special
treatments specific to individual algorithms. EGC is a
general framework to solve the numerical non-exactness
problems in geometric computing. The drawback of the
EGC approach is that the running cost on exact arithmetic
under the EGC paradigm is much higher than that of the
standard floating-point arithmetic.

3.3.2 How to support EGC ?

As described above, implementing geometric algorithms
under the EGC paradigm is so far the best option to solve
the robustness problem in geometric computation. By
supporting the EGC principle, computational geometers
can concentrate on developing good algorithms, and do
not need to worry about non-robustness issues caused by
numerical error. However, the geometric degeneracy, e.g.,
collinear three points, still exist under the EGC paradigm,
and need to be treated specifically.

How to support the EGC principle? The easiest way
to take advantage of existing package or library such as
CGAL [19], LEDA [20] or CORE [21]. A short summary
about the EGC mechanism in above libraries can be
found in [39]; and the so-called lazy principle specially
developed in CGAL is described in [24].

CGAL and LEDA are large libraries for almost all
issues involved in geometric computation, which are both
designed according to the EGC principle. Users can
implement their robust geometric applications within the
framework of CGAL or LEDA. The CORE library is an
API developed to convert conventional C/C++ codes to
robust ones by supporting the EGC principle.

The following example presents a test to demonstrate
the effectiveness of the EGC principle. The centre of
gravity of a triangle can be easily calculated according the
coordinates of three vertices. The three results calculated
according to different sequence of vertices, i.e., abc, bca
or cab, are definitely the same in theory. However, this is
not true in practice because of the numerical errors in
floating-point arithmetic. The expected unique centre of
gravity of a triangle is in fact a set of random points that
locate closely around the expected position, as shown in
Figure.5.

a
b

c

p

p

Fig. 5: Centre of gravity of a triangle

In the code Listing.2, centres calculated according to
different sequences of vertices are tested whether they are
coincident: without supporting the EGC, about 4300 tests
fail when calculating 10000 times; in contrast, all tests are
correct when supporting the EGC. This test illustrates the
effectiveness of the EGC principle.

4 Concluding Remarks

The objective of this paper is to present an expository
summary on the numerical non-robustness behaviours in
geometric computation. Focusing on two questions (i.e.,
why numerical robustness problems arise and how to deal
with them), we have given an expository explanation to
the theoretical origins of numerical non-robustness, and
presented several practical algorithm-specific or general
approaches of dealing with those numerical robustness
problems. Several geometric examples and sample codes
are included for illustrations.

It is clearly stated that the numerical non-robustness
issues arise mainly due to the round-off errors in the fixed
precisions floating-point arithmetic. The numerical errors
occur due to replacing the assumed exact real arithmetic
with adopted inexact floating-point arithmetic, and thus
lead most problematic robustness behaviours in geometric
computations.

A general solution, the Exact Geometric Computation
(EGC) approach, can very successfully deal with the issue
of non-robustness in geometric computations. The EGC
approach guarantees that all the geometric predicates are
determined correctly thereby ensuring the correctness of
the computed combinatorial structure and hence the
robustness of the algorithm.

Although the EGC approach can be used to handle the
numerical non-robustness issues effectively, an obvious
drawback is its inefficiency. Another potential problem is
the effectiveness of the EGC approach in the case that
parallel geometric computations are performed on GPUs
under heterogeneous models such as CUDA or OpenCL.
More efforts besides the Lazy principle need to be made
in order to improve the efficiency and effectiveness of the
EGC approach.
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#ifndef CORE_LEVEL
# define CORE_LEVEL 3
// define CORE_LEVEL 1
#endif
#include "CORE/CORE.h"

bool isSame(double p[2], double q[2])
{

double dist = sqrt(pow(p[0]-q[0], 2.0)
+ pow(p[1]-q[1], 2.0));

if(dist < 1.0e-15) return true;
else return false;

}

double center(double a, double b, double c)
{

double t = (a + b) / 2.0;
return (c - t) / 3.0 + t;

}

int main(void)
{

int i, j, Correct = 0;
double a[2], b[2], c[2]; // Vertices
double pa[2], pb[2], pc[2]; // Centers

// Seed for rand()
srand((unsigned)time(NULL));

for(i = 0; i < 10000; i++) {
for(j = 0; j < 2; j++) {

a[j] = rand();
b[j] = rand();
c[j] = rand();

}

for(j = 0; j < 2; j++) {
pa[j] = center(a[j],b[j],c[j]);
pb[j] = center(b[j],c[j],a[j]);
pc[j] = center(c[j],a[j],b[j]);

}

if(isSame(pa, pb) &&
isSame(pb, pc) &&
isSame(pc, pa) ){
// Number of correct tests
Correct++;

}
}

std::cout <<"Correct = " << Correct;

return 0;
}

Listing 2: A sample code of supporting EGC
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