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Abstract: This paper explores Input-Output Conformance (IOCO) test generation with Colored Petri Nets (CPN). A test generation
oriented CPN model and CPN based IOCO relation is proposed. Feasible test cases are generated by model simulation with the proof
of its soundness. The method integrates the merits the IOCO testing theory and the CPN modeling synergistically, and is applied as a
nontrivial and competent test case generation approach for practical testing projects. The effectiveness of this test generation approach
is demonstrated by a concrete software system. Since the model simulationbased test generation process is irrespective with the model
size, the effectiveness of the method is enhanced with scalability.
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1 Introduction

The Conformance testing [1] aims at checking whether
the software implementation conforms to its function
specification. To make conformance testing more
effective and efficient, we should consider the test
automation in both test case generation and test execution
phases in practical testing projects [2]. General practice
these days mainly concentrates on the automatic test
execution, such as TTCN-3 based technologies [3].
However, test cases are still generated manually in most
testing projects, which is time-consuming, error-prone
and costly. In this context, Model Based Testing (MBT) is
introduced, which attracts more and more attention of
industry-scale testing projects [4,5,6]. It allows for
generation of test cases with test oracles from a formal
model that specifies software behaviors explicitly. It
improves the low-level efficiency and avoids inaccuracy
of manual test case generation process.

Network based reactive software systems are
ubiquitous, so we treated them as the System Under
Testing (SUT) in our studies. Concerning conformance
testing towards such kind of software systems,
Input-Output COnformance (IOCO) relation based test
case generation approach [6] is well recognized for its
solid theoretical support [9] and high feasibility in testing

practices [10,11] in MBT related studies [5,6,7,8]. It is
quite feasible and applicable to black-box conformance
testing for network based reactive software systems. The
reason is that IOCO relation formally defines what
external output should be observed through practical test
execution and how to determine the conformance based
on these observations.

In this paper, IOCO testing theory is characterized
and implemented with Colored Petri Nets (CPN) [12]
modeling and a novel conformance test generation
approach is proposed consequently. Compared with the
test generation approach based on the Labeled Transition
System (LTS) model in original IOCO testing theory, our
CPN model based test generation approach has several
advantages. First, CPN has better formal capabilities to
specify and analyze complicated and concurrent software
behaviors. They are quite helpful for validating the
accuracy of system models, which are the basis for model
based testing technology. Second, CPN models can
execute dynamically, which is directed by the
data-dependent control flow of system behaviors.
Generating by such model simulation process, test cases
certainly contain actual test data and test oracles, so they
are quite feasible for guiding practical test execution.
Third, since model simulation based test generation is
irrespective with model size, its effectiveness is enhanced
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with scalability. In a word, a CPN model based IOCO test
case generation approach tends to be a promising
approach to validate the correctness of reactive network
software systems more efficiently and more effectively.

The paper is organized as follows. The framework of
our CPN model based IOCO test generation approach is
introduced in Section 3. The Test Generation oriented
CPN (TGCPN) is proposed as the basic formal model for
specifying software functionalities and its implementation
behaviors in Section 4. The pioco relation is defined in
the context of TGCPN models to precisely specify what it
means for an implementation to conform to its
specification in Section 5. Finally, a novel test case
generation algorithm is developed in Section 6 using the
TGCPN model simulation technology to guarantee that
all test cases are feasible for the practical test executions.
Besides, test generation are also proved to be sound for
the conformance determination, that is, as long as the
implementation fails one test case, it will definitely not
conform to its specification. To show the effectiveness
and the feasibility of this test generation approach, we
perform test case generation and test execution
procedures with the simplified file sharing protocol
(SFSP) system as an exemplification.

2 Related Work and Preliminaries

In the original IOCO relation based testing approach [6],
LTS with input and output, as IOLTS, is defined to model
the specification of a software system, and then IOLTS
which is input-enabled, is further defined as IOTS to
specify the behavior model of the system implementation.
Then, a specific IOCO relation is defined to indicate what
actions should be observed during test executions and
what it means for an implementation to conform to its
specification. Finally, test cases are generated recursively
based on the execution paths from a system LTS model.
However, in this paper we aim to integrate the IOCO
testing theory with the CPN model, and finally develop a
CPN model based IOCO test generation approach as our
main contribution. That is, we aim to integrate the merits
the IOCO testing theory and the CPN modeling
synergistically, and apply it as a nontrivial and competent
test case generation approach into testing network based
reactive software systems.

As for the Petri nets model based testing studies in
literatures, most of them are specific application scenarios
oriented, for example, stochastic Petri nets based
performance testing for network protocols [13], workflow
net based distributed testing for service infrastructure
components [14], algebraic Petri nets based functionality
testing for business process [15], and k-safe Petri nets
based conformance testing under several specific fault
model assumptions [16].

As for the related work of test case generation
approaches based on the CPN models, Watanabe and
Kudoh [17] propose a basic test generation algorithm,

which could be considered as the first step in this field.
First, the reachability tree of a CPN model is constructed,
and all input-output sequences from root node to leaf
nodes in this tree are traversed to form test cases, and
then, equivalent markings in that tree are combined to
construct corresponding reachability graph, and FSM
model based test case generation approaches are applied
directly based on this graph. Farooq et al. [18] use
random walk technologies to randomly traverse the model
state space to generate test cases, where several sequential
coverage criteria and concurrent coverage criteria are
proposed to guide test selection. Zhu and He [19] have
proposed four specific testing strategies towards the
high-level Petri nets. For each strategy, they first define a
set of schemes to observe and record testing results, and
they also define a set of coverage criteria to measure test
adequacy. But, no detailed test case generation algorithms
are explicitly presented. We have proposed the
introductory idea of CPN model based IOCO testing
approach in our short paper [20]. While in this paper, we
make better and more complete formal definitions to all
key concepts, and propose a totally revised test generation
approach with its soundness prove for the conformance
determination. Furthermore, we could compare the
computation cost in test generation among above
methods. In context of CPN, the size of a state space of a
system tends to grow exponentially in the number of its
actions and variables, where the base of the
exponentiation depends on the number of enabled
transitions an action has and the number of values a
variable may store. But, model simulation just needs
linear computation cost to produce a feasible trace.
Therefore, state space traversal based test generation
methods proposed in [17,18] definitely cost much more
than simulation based test generation method proposed in
[20] and this paper.

CPN is advantaged for modeling and validation of
systems where concurrency and communication are key
characteristics. Its formal definitions are referred as [12].
Besides, other key definitions concerning the behavior
simulation of CPN models which are used in following
sections are listed as follows.

Definition 1. For aCPN = (P, T, A,Σ , V, C, G, E, I):
(1) pre-setandpost-setof a place:∀p∈ P:
pre(p)={t ∈ T | (t,p) ∈ A }; post(p)={t ∈ T | (p, t) ∈ A }.
pre-setandpost-setof a transition:∀t ∈ T:
pre(t)={p∈ P | (p, t) ∈ A}; post(t)={p∈ P | (t,p) ∈ A}.
(2) M

σ
⇒ =de f ∃Mi : M

σ
⇒ Mi , where

σ = (t0,b0),(t1,b1), . . .(ti−1,bi−1),

M
(t0,b0)
−→ M1

(t1,b1)
−→ . . .

(ti−1,bi−1)
−→ Mi ;

if |σ | = 1, M
σ
→ is used instead.

(3) trace(M) =de f { σ ∈ BE(T)∗ | M
σ
⇒ }.

(4) M fires σ =de f { Mn | M
σ
⇒ Mn, σ ∈ BE(T)∗} .

(5) CPN is Deterministic, if | M fires σ | ≤ 1.
(6) CPN hasFinite Output , if | M fires σ | ≤ n(n∈ N) ;
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(7) CPN hasFinite Behavior, if ∃n∈ N,

∀σ ∈ trace(M0) : |σ |< n .

3 Methodology Overview

We aim to integrate the IOCO testing theory with the
CPN model, and finally develop a CPN model based
IOCO test generation approach as our main contribution.
However, such integration does not just means to simply
replace LTS with CPN. Three specific problems need to
be resolved when concretize the IOCO testing theory with
the CPN model. Each of them plays a significant part in
test generation process, and they work together to form
final test case generation approach, where its framework
is presented in Fig. 1.

Specification

Modeling

TGCPNS

Model

Simulation

Implementation

(TGCPNI)

Test

Execution

conforms

Test Cases

(TGCPNTS)

pioco
Prove

Soundness

Fig. 1: The framework of the CPN model based test generation
approach.

First, we need to propose a new kind of CPN model
that accurately specifies key characteristics and
requirements for the conformance testing scenario. As the
central idea of IOCO testing theory is to compare all
external visible actions between system models and actual
system implementations during test executions, the new
kind of CPN model should explicitly specify such
external visible actions, i.e., to make the most of both
place and transition elements in CPN model to distinguish
visible actions from internal actions. Especially, to deal
with the special output actions, such as the quiescence or
deadlock [9], we should introduce new kind of transitions
to model them accurately. In section 4, TGCPN is
proposed to resolve the preceding problems, and acts as
formal models to specify function behaviors for a
software (TGCPNS) and its implementations (TGCPNI ).

Second, we need to propose a new implementation
relation in the context of TGCPN model to precisely
specify what it means for an implementation to conform
to its functional specification. In original IOCO relation
definition, the inclusion relation of external output actions
is formally specified for determining IOCO conformance.
While in the TGCPN context, system behaviors are
simulated with specific data, and the problem becomes
how to determine the IOCO conformance via comparing
output actions with specific data. In section 5, apioco

relation is proposed to resolve the preceding problems,
where markings produced during model simulation are
used to accurately define such output data comparison.

Third, based on the TGCPN model and thepioco
relation, we need to develop a feasible test case
generation approach with two desired requirements. One
is to make the test generation process scale for dealing
with more complicated system models, and the other one
is to make all test cases feasible for the practical test
executions. In section 6, the model simulation technology
is utilized to generate sound and feasible test cases, which
are modeling as TGCPNTS. It not only satisfies the
preceding two requirements, but also highlights the
advantages of our CPN model based test generation
approach. Furthermore, the generated test cases are also
proved to be sound for the conformance determination,
i.e., as long as an system implementation fails one test
case, it will not conform to its specification.

To sum up, constructing the CPN model based IOCO
test generation approach is challenging but quite
promising and such novel approach has solid foundation
to be used as a competent and effective choice among the
Petri nets model based conformance testing approaches.
Since model simulation based test generation is
irrespective with model size, its effectiveness is enhanced
with scalability, so it is quite suitable for testing reactive
network software systems.

4 TGCPN Modeling

Software specification and its implementation should both
be formal objects in MBT, so TGCPNS is proposed as
formal model for system specifications, and TGCPNI is
proposed as formal model for system implementations.

4.1 Specification modeling

Definition 2. A TGCPNS model is a triple (CPN, PS, TS):
(1) CPN is a a basic colored Petri nets model.
(2) PS= P, PS= PO

S ∪PE
S:

PO
S is the set ofObservable Places; PE

S is the set of
Internal Places; PO

S ∩PE
S = φ .

(3) TS= T, TS= TI
S∪TO

S ∪TE
S:

TI
S is the set ofInput Transitions ; TO

S is the set of
Output Transitions ; TE

S is the set of Internal
Transitions; TI

S∩TO
S = TI

S∩TE
S = TO

S ∩TE
S = φ .

(4) TGCPNS hasFinite Output .
(5) TGCPNS does not have infinite sequences, composed
of internal actions, i.e.,¬∃M : M

σ
⇒ M,σ ∈ BE(TE

S)
∗.

In TGCPNS modeling, token data in the observable
places could present externally observed data, so an
observable place is always the post-set of an input
transition or output transition to display what data should
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be observed after executing those external transitions. The
input transition models input actions where input data is
provided by the testing environment (i.e. tester). The
output transition models output actions which can
produce visible output observations. Thus, observable
places and input/output transitions are used together to
explicitly specify external visible system behaviors.
Besides, internal transitions and internal places could
represent unobservable executions of system behaviors.

In TGCPNS modeling, some conformance testing
oriented modeling constrains should be made. First, given
definite input data, the system must produce finite output
results. Otherwise, within finite test execution steps, we
cannot make a definite decision. Second, the model must
not have the loop of internal transitions, because it will
make system implementation having no response, and we
cannot distinguish this scenario from the deadlock.

The TGCPNS model for the SFSP system is presented
in Fig. 2. In this protocol, file data are downloaded piece
by piece controlled by a packet number. When a
downloader gets a correct data piece, it increases the
packet number, and then sends it to the sender as an
acknowledgement, and requires a new data piece with
that packet number. In this model,A/C/Receivedare
observable places.SendPacketis an input transition and
ReceivePacketis an output transition. The rest are internal
places or internal transitions. IfSendPacketfires, we
could observe which data packet is sent according to the
tokens inA. Furthermore, ifReceivePacketfires, we could
both observe which data packet is downloaded according
to the tokens inReceived, and which packet number
should be sent according to the tokens inC. In this way,
necessary external behaviors of a system for its
conformance testing are modeled accurately. However, in
system modeling practice, the selection of observable
places should consider actual observation points in actual
test execution, such as the Points of Control and
Observation in TTCN based testing method [3].
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Fig. 2: The TGCPNS model for the SFSP system.

4.2 Implementation modeling

Since IOCO relation is a formal conformance relation
between system specification and implementation, they
both need to be formal object for formal reasoning.
However, implementations of a system are real physical
things, which consist of software, hardware, or a hybrid
system, and only testing experiments could be performed
on them. Therefore, the test hypothesis mentioned in [9]
assumes that the formal model of implementation is
available a-priori, but cannot be explicitly modeled.
Therefore, we propose TGCPNI to just formally specify
the system implementation.

Definition 3. A TGCPNI model is a triple (CPN, PI , TI ):
(1) CPN is a a basic colored Petri nets model.
(2) PO

I = PO
S , TI

I = TI
S, TO

I = TO
S .

(3) {δ} ⊂ TI : δ is the suspension transition, and

M
δ
→ M.

For the same system, its implementation model and
related specification model have same observable places
and input/output transitions. Besides, since test outputs
are controlled completely by the implementation, any
possible output may produce, such as real output data,
deadlock or just quiescence. The TGCPNI model should
support specifying these output scenarios. Especially, the
quiescence indicates that an implementation has no
visible output as it is just waiting for an input to proceed.
In TGCPNI , quiescence is defined as:
∃σ ∈ BE(T)∗, ∀(t,b) ∈ BE(t), t ∈ TO∪TE :

¬((M0 fires σ)
(t,b)
→ ).

Producing the quiescence is a kind of a special output
action, modeled as the suspension actionδ . Firing a
suspension action indicates that the implementation stays
in the same state and an input is expected as a trigger to
let system continue execution.

In a word, TGCPNS modeling is very significant for
performing actual software test generation practice,
because a well understandable and accurate model is the
first and crucial step to the success of MBT technologies.

5 PIOCO Relation

As system behaviors are executed with specific data in the
TGCPN context, the conformance relation used in our
testing approach should also be determined according to
specific data. Thus, we propose thepioco relation as
follows.

Definition 4. pioco is a binary relation withss∈ TGCPNS
andii ∈ TGCPNI , where:
ii piocoss =de f ∀σ ∈ SPtrace(MS) :
outtoken( MI fires σ ) = outtoken( MS fires σ )
(1) SPtrace(MS) =de f {σ ∈ (BE(T)∪ δ )∗ | MS

σ
⇒}; it

enumerates all feasible traces of the modelss, including
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suspension transitions.MS andMI are initial markings of
respective models.
(2) outtoken(M) =de f {M(P) | P∈PO

S ∪PO
I }, it represents

the observable output token data. In modelss, it records
token data of observable places under a specific marking.
While in modelii , it shows actual observable output data
produced by system implementation during test execution.

Guided by abovepiocodefinition, the conformance is
determined by comparing token data in observable places
along a specificSPtracewith actually observed output
from system implementation under testing. If they are the
same, we could determine that system implementation
executes as expected. However, if actual output data are
different from what prescribed inssmodel, we conclude
with the non-conformance. The equivalence of above two
outtoken sets indicates that all prescribed observations
should be observed in practical test executions, i.e.
prescribed functionalities must be completely
implemented. Therefore, the implementation that has
valid but partial functionalities will not be determined to
conform to its specification model any more.

Given definiteMS andMI , several feasible traces that
may contain suspension actions are generated to produce
test case models. As a representative,t is one of them. We
put input data in thet to the implementationi and observe
its output. If actual observations are all exactly prescribed
as valid outputs in related observable places in thet, “ i
passt ” is determined. If all test cases inTS that generated
from all possible initial markings are passed, “i piocos ”
is consequently determined, i.e.i pioco s ⇔ i pass TS.
However, in practical conformance testing, generating all
test cases inTS is almost infeasible. In addition,
conformance testing just aims to find non-conformance
faults between an implementation and its specification,
rather than to prove their conformance relation. Hence, a
weaker requirement is usually considered in conformance
testing practice, that is, as long as an implementation does
not pass one test case, it definitely does not conform to its
specification. This weaker requirement corresponds to the
left-to-right implication in “ i piocos⇔ i pass TS ”, and is
referred as thesoundnessof test case generation.

In this paper, under the guidance of thepiocorelation,
a sound test case generation approach based on the
TGCPNS model simulation technology is developed and
demonstrated in the following section.

6 Model Simulation based Test Case
Generation

In Section 3, we mention that developing the test case
generation approach based on a TGCPN model and the
piocorelation should satisfy two significant requirements.
First, the test generation approach should be with high
scalability for dealing with large-scale TGCPN models.
Second, all test cases should be sound and feasible for the
practical test executions. Accordingly, we propose a

model simulation based test case generation approach to
satisfy both requirements.

The intuitive idea of our test case generation approach
is essentially a traversal towards a system TGCPNS
model. This kind of traversal is performed by model
simulation process. That is, a specific initial marking
conducts simulating system TGCPNS model once, and
during simulation, several testing sequences that
composed of external places and transitions are
constructed and related data-dependent test oracles are
added for validating the actual observations with respect
to the prescribed output. When there are no transitions are
enabled, simulation is terminated, and consequently test
case models are generated. To present feasibility and
effectiveness of this approach, we adopt SFSP system to
demonstrate its detailed application procedure.

6.1 TGCPN based test case model

Before presenting our detailed test generation algorithm,
we first formally define how to model a test case as a
TGCPNTS model in the context of TGCPN.

Two kinds of data information should be specified in
the TGCPNTS models explicitly. One is input action with
input data and the other is output action with output data,
i.e. test oracles. Besides, we need some supplementary
places and transitions to record the provisional or final
conformance decisions. Several constrains should also be
fulfilled about test case modeling. First, TGCPNTS should
be deterministic and its every feasible trace should have
finite length, otherwise, test execution based on this
model cannot terminate in finite steps and with definite
testing results. Second, TGCPNTS should have only one
input transition enabled at each step, which is
fundamental constrain for test case specification.

Definition 5. A TGCPNTS model is a triple (CPN, PTS,
TTS):
(1) CPN is a a basic colored Petri nets model.
(2) PTS= P, PTS= PI

TS∪PO
TS∪PTO

TS∪PV
TS:

PI
TS is the set of Input Places; PO

TS is the set of
Observable Places; PTO

TS is the set ofTest Oracle Places;
PV

TS is the set ofTest Verdict Places; each two sets have
no intersections.
(3) TTS= T, TTS= TI

TS∪TO
TS∪Tδ

TS∪TV
TS:

TI
TS is the set ofInput Transitions ; TO

TS is the set of
Output Transitions ; Tδ

TS is the set of Suspension
Transitions; TV

TS is the set ofTest Verdict Transitions;
each two sets have no intersections.
(4) TGCPNTS is Deterministic.
(5) TGCPNTS hasFinite Behavior.
(6) TGCPNTS has at most one input transition enabled in
each step, i.e.

¬∃M : M
(t1,b1)
−→ ∧ M

(t2,b2)
−→ , t1 ∈ TI

TS ∧ t2 ∈ TI
TS.
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TGCPNTS models, which are used as actual test
cases, can facilitate actual test execution for its better
feasibility and readability, because they not only prescribe
specific data based detailed system behavior flows, but
also provide necessary and definite test oracles for
determining the conformance relation.

6.2 Test generation via model simulation

The TGCPN model simulation based test case generation
algorithm is formally specified as following procedure
TestGen.

Given: s∈ TGCPNS, and M0 as its initial marking, for
everySPtraceσ ∈ BE(TS)

∗, i.e.,

M0
(t0,b0)
−→ M1

(t1,b1)
−→ . . .−→Mk, one TGCPNTS model is

generated along with thisSPtrace generation process
guided by the following procedure.

ProcedureTestGen{

[beginning with the first firing transition in an SPtrace]
t ∈ TS : t = t0;M = M0;PRec= φ ;

while (SPtracegeneration is not terminated ){

if t ∈ TI
S {

[insert suspension transition]

Generatets ∈ TI
TS : ts = t;

ForAll pt ∈ PRec pre(ts) = pt ;PRec= φ ;
ForAll p ∈ pre(t) {

Generatepsa∈ PI
TS : psa= p;pre(ts) = psa;

Generatetss∈ Tδ
TS : pre(tss) = post(tss) = psa; }

}

if t ∈ TO
S {

ts ∈ TO
TS;

ForAll pt ∈ PRec pre(ts) = pt ;PRec= φ ;
}

ForAll p ∈ post(t) {

[eliminate inner places]

if p ∈ PE
S and pre(t) == post(t) == p

continue;
[insert test oracle and verdict units]

if p ∈ PO
S{

Generatepsb∈ PO
TS : psb= p;post(ts) = psb;

Generatepsb2 ∈ PTO
TS;

Generatetv ∈ TV
TS,pv ∈ PV

TS:
pre(tv) = psb∪psb2; post(tv) = psb∪pv; }

}

if t ∈ TI
S or t ∈ TO

S {

[fires t to store test oracle data]

Firing t with b that(t,b) ∈ σ : M
(t,b)
−→ M′;

for each pair p∈ PO
S and psb2 ∈ PTO

TS

M′(psb2) = M′(p);
M ⇐ M′; t ⇐ next enabled transition;continue;

}

if t ∈ TE
S {

[eliminate inner transitions]

Firing t with b that(t,b) ∈ σ : M
(t,b)
−→ M′;

for each p∈ pre(t) and p∈ PO
S

PRec = PRec∪ {p};
M ⇐ M′; t ⇐ next enabled transition;

}

} [end of while]

} [end of Procedure]
The input of this algorithm is a validated TGCPNS

model for a specific system andM0 as its initial marking.
Under this initial marking, severalSPtracescould be
produced. Because we suppose that every trace should
have finite length, oneSPtracecould be specified as:

M0
(t0,b0)
−→ M1

(t1,b1)
−→ . . .−→Mk.

Then, along with eachSPtracegeneration by the traversal
of above TGCPNS model, a corresponding TGCPNTS
models is generated. WhenMk is reached, the generation
process is terminated. Therefore, oneSPtraceleads to one
TGCPNTS model.

Th model simulation based test generation process is
essentially driven by transition firing. We should deal
with all kinds of transitions that exist in the TGCPNS
model. According to Definition 2 above, we should deal
with input and output transitions, and internal transitions,
so the test case generation algorithm is mainly composed
of three parts as follows.

Part 1: deal with input and output transition
As for an input transition, every place in its pre-set

becomes an input place in the TGCPNTS, and suspension
transition tss is added to each input place for specifying
the allowance for observing the quiescence. That is, when
a suspension transition is fired, the implementation under
testing remains in the same state without any observable
output and an input from testers is expected as a trigger to
make the implementation proceed. However, if token data
in an input place cannot be controlled externally by
testers, where no quiescence is produced, we should
delete its suspension transition after the test generation.

An input or output transition should definitely be
added into a test case model to specify external behavior
for test execution, and its related input places and
observable places should also be added into that test case
model. Besides, we use a places setPRec to store
observable place that generated in current step, and link
them to the next processing input or output transition to
keep connectivity of model elements.

Part 2: deal with test oracle and verdict unit
Every observable place p in models becomes an

observable place psb in test case model, and its coupled
test oracle place psb2 is inserted. The token data produced
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in p are copied to psb2 by firing the current transition.
When TGCPNTS is applied into test executions, psb stores
the actual output data produced by system
implementation, and token data stored in psb2 previously
will act as its valid test oracles. Besides, we generate a
test verdict transition tv which takes psb and psb2 as its
pre-set and a newly added test verdict place pv and psb as
its post-set. They work coordinately as a verdict unit to
check whether token data in psb and psb2 are consistent.
Specifically, if we do not observe correct output
compared with its test oracles in a TGCPNTS model,
whether it is actual data output or just quiescence, afail
token is produced into the corresponding test verdict
place. Otherwise, apass token is produced to indicate
continuing test execution. If the test execution terminates
with all pass tokens in TGCPNTS, the implementation
under testing passed this test case. If just onefail token is
produced, that implementation has non-conformance
against the system TGCPNS model.

Part 3: deal with internal transition
As internal actions cannot be observed externally via

input and output in real black box testing executions, we
need not to add internal places and internal transitions
into the TGCPNTS model. However, this kind of model
reduction should guarantee no harm to system
functionalities, that is, the data-dependant control flow of
the system behavior should be kept. Therefore, we just let
internal transitions fire, then record makings and use the
PRecset mentioned above to keep behavior connectivity
of the generated TGCPNTS model.

It should be noted that when a valid specific initial
marking is assigned in an actual TGCPNS model, at least
one SPtrace exist definitely, so at least one test case
model are generated. Directed by different initial
markings, several test case models are generated to test
corresponding software behaviors. Based on our test case
generation approach, every feasible trace takesMk as the
final marking, so theSPtracehas finite length, that is, the
generation algorithm are terminated in finite steps, and
produces a TGCPNTS model with finite behaviors.

Three more aspects should be noted concerning above
test generation procedure. First, TGCPN models are not
added new kinds of model elements, and the modeling
constrains are just used to avoid generating infeasible
traces for testing scenarios. So, the semantic rules defined
in [12] are all kept in TGCPN models, that is, we still use
its original enabling rules and occurrence rules to
generate TGCPNTS models from corresponding TGCPNS
model for a specific software system. Second, this
generation approach could be applied into the hierarchical
CPN models without any modifications, because test case
model is generated through the model simulation process,
which is irrelative with hierarchical or non-hierarchical
model characteristic. Third, if initial marking is given,
this test generation procedure could be executed
automatically, so it is indeed a promising approach to
improve the test automation in test generation phase.

6.3 Examplification: SFSP System

Take SFSP system as an example, its TGCPNTS model,
presented in Fig. 3, is generated through simulating
TGCPNS model in Fig. 2 under initial marking:M0(Send)
= {(1,“first”), (2,“second”)} and M0(NextSend) =
M0(NextRec) = {1}. It aims to test whether two specific
data packets are sent sequentially.

Comments about the generation process are noted:
(1) Input placeSendhas a suspension transitionsuspen,
which allows for waiting to send data packet. However,
placeC has no suspension transition, as it is an output
place, and tokens inC cannot be controlled by testers
externally.
(2) Input and output transitions are correspondingly
modeled. As an example, when the binding element
(SendPacket, {n=1, p=“first”}) fires, a new token (1,
“first”) will be produced in placeA. Then, test oracle
placeTO A is generated to store this token; test verdict
transitionverdict1and test verdict placev1 are generated
to validate whether real output data are same to token data
in TO A, i.e. n=1 and p=“first”.
(3) v1, v2, v3are verdict places allowing for onlypassor
fail tokens, which could be modeled as a fusion set.
(4) Internal places and transitions are fired to record
markings, but not included into the TGCPNTS model.

Test cases are generated with different initial
markings, so the test selection issue [6] should be
considered. In this paper, we just select initial markings
randomly, and we will adopt more specific test selection
policies in our further studies.

To further validate the feasibility and effectiveness of
above test case generation procedure, we perform the
practical test execution towards different SFSP system
implementations. As shown in Table 1, three test cases are
generated according to respective initial markings for
different testing scenarios. Also, we program six
implementations of SFSP system with pre-injected errors
to act as system under testing. The detailed description of
implementation errors are listed in Table 1.

We perform actual test execution using three test
cases towards six implementations. As i1 passes all test
cases, it conforms to the specification. As i3∼ i5 have
fatal errors, they do not pass any test case where fail token
appears in test case executions. In testing i2 with tc2, we
do not observe the retransmission packet, though the
suspension is allowed, so i2 does not pass tc2. While in
testing i6 with tc2, a fail token is produced because of
retransmission error, so i6 does not pass tc2 either.
However i2 and i6 pass tc1 and tc3, because these test
cases do not touch retransmission functionality.
According to the soundness definition, i2 and i6 do not
conform to the specification. Compared with basic IOCO
relation based testing approach, i2 does not conform to
the specification under thepioco relation, so partially
correct implementations are no longer determined to
conform to the specification. In a word, generated test
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Fig. 3: An exemplified TGCPNTS model for the SFSP system.

cases have better feasibility and effectiveness for
detecting such deficiency.

Through above practical conformance testing process,
we find that our generated test cases are quite feasible for
guiding the test execution intuitively. More importantly,
TGCPNTS models are also effective for finding various
implementation faults. Based on the final testing results,
conformance relation between an implementation and its
specification model is accurately determined.

Table 1: Protocol Implementations, Test Cases and Testing
Result

Test Cases:
No. testing scenarios initial marking
tc1 one packet without

retransmission
M0(Send)={(1,“first”)},
M0(NextSend)={1},
M0(NextRec)={1}

tc2 one packet with
retransmission

M0(Send)={(2,“second”)},
M0(NextSend)={2},
M0(NextRec)={1}

tc3 two packets without
retransmission

M0(Send)={(1,“first”),
(2,“second”)},
M0(NextSend)={1},
M0(NextRec)={1}

Protocol Implementations:
No. type description
i1 total correct implement all functions correctly
i2 partial correct have no packet retransmission function
i3 faulty packet sending error
i4 faulty packet data verification error
i5 faulty packet number verification error
i6 faulty packet retransmission error
Testing Results:

i1 i2 i3 i4 i5 i6
tc1 pass pass fail fail fail pass
tc2 pass fail fail fail fail fail
tc3 pass pass fail fail fail pass

6.4 Soundness of the test generation

Theorem.Let ss∈ TGCPNS be a specification, and letTS
be the completer set of test cases that generated fromss,
let TestGen: TGCPNS → TGCPNTS be the test case
generation function that satisfiesTestGen(ss) ⊆ TS, then
TestGenis sound forsswith respect topiocorelation.

Proof. Supposingii ∈ TGCPNI and tt ∈ TestGen(ss)
satisfying:not (ii passtt) andii piocoss, then:
not (ii passtt)
⇒∃ e∈ M(p), p∈ PV

TS, e∈ { f ail};
[ a fail token appears in test verdict placep ]
⇒∃ r ∈ PO

TS ∧ ∃ q∈ PTO
TS, M(r) 6= M(q);

[ token data in observable placer and its coupled test
oracle placeq are different ]
⇒∃σ ∈ SPtrace(MS) :
outtoken( MI fires σ) 6= outtoken( MS fires σ), where
M(r)⊆ (MI fires σ) and M(q)⊆ (MS fires σ).
[ there exists a trace that results in unexpected output
observations in the practical test execution ]

Obviously, there exists an obvious contradiction with
the assumptionii piocoss. Then, we conclude that if one
test case does not pass,ii pioco ss does not hold
definitely. So,TestGenis sound forsswith respect to the
piocorelation. �

7 Conclusion

To make the best of advantages of IOCO testing theory
and CPN modeling, we integrate them directly to develop
a non-trivial CPN model based conformance test
generation approach. First, the TGCPN is proposed as
basic formal models for specifying accurately software
functional behaviors. Then, thepioco relation is defined
as a new conformance relation in the context of TGCPN
modeling and as a precise guidance for generating sound
test case. Finally, we develop a model simulation based
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test case generation algorithm and prove its soundness.
Throughout the practical test generation and test
execution for SFSP system, the feasibility and
effectiveness of the preceding test generation approach is
well elaborated.

The advantages of our CPN model based test
generation approach mainly come from three aspects.
First, better formal modeling and analysis capabilities of
the CPN facilitate validating the accuracy of the system
specification models, which are the basis for the MBT
technologies. Second, model simulation essentially
reflects the data-dependent control flow of the system
behaviors, and it executes with visible feedbacks. As test
cases are generated by such model simulation process,
actual test input data and test oracles are contain, and it is
quite feasible for guiding practical test executions. Third,
we do not need to produce the model state space in the
generation process at all, so test case generation is
irrespective with model size, and consequently we do not
face with state explosion problem which is mainly affects
the scalability of test generation. Our method was applied
into a BitTorrent based protocol system [21], which acts
as a representative of large-scale software models, to
illustrate the better scalability of our method in practical
conformance testing projects.
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