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Abstract: We study the numerical solution of a Boundary Value problem for secondorder quadratic differential equations which arises
in the numerical prediction of meteorological parameters. In the present work, we use finite differences and focus on the numerical
solution of the resulting nonlinear system. More precisely, we apply classical Newton’s and Quasi-Newton methods paying attention to
the special sparse form of the Jacobian matrix and modify appropriatelythe LU factorization in order to reduce significantly the required
floating point operations. Furthermore, we implement and study in depth the behavior of all the proposed procedures in respect of their
accuracy, stability and complexity, using data from South East Mediterranean Sea. All the methods are tested with a variety of initial
values and their performance is presented and discussed leading to interesting results on the sensitivity of the selected starting point.
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1 The Physical Problem and Information
Geometry

In the recent years, the need of accurate local predictions
of environmental parameters has increased significantly
as a result of the large number of related social and
commercial activities e.g. climate change, renewable
energy production, transportation, marine pollution, ship
safety. This has led to the activation of numerous research
and operational centers that develop high quality scientific
tools able to provide reliable environmental predictions.

In the study of such problems one may use in site or
remote sensing (e.g. satellite) observations or numerical
prediction models that solve the basic equations
governing the atmospheric and wave evolution based on a
numerical analysis approach. Numerical weather and
wave forecasting models have been proved successful for
the simulation of the general environmental conditions on
global or intermediate scale. However, when focusing on
local conditions usually systematic errors appear [1,2,3,

4,5]. Such problems are multi-parametric and several
different issues are involved like the strong dependence
on the initial and lateral conditions, the inability to
capture sub-scale phenomena, the parametrization of
certain atmospheric or wave procedures.

To deal with these difficulties one may increase the
model resolution, but it is still an open question if this
leads to a considerable improvement of the forecast
quality. Even if this is true, it also results to an
considerable increase of the computational costs.

Alternatively, we can improve the initial conditions
based on assimilation systems. Corrected analysis fields
are provided to the numerical models based on available
observations from meteorological stations, satellites or
other sources. Post process algorithms are used for the
improvement of the final results based on statistical
models (MOS methods, Neural networks, Kalman filters).

One of the key issues is the appropriate estimation of
the ”distance” between two distributions or data sets. The
classical treatment of such problems is usually based on
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regression techniques - least squares methods. However,
such an approach carries the assumption that the data
processed belongs to an Euclidian - finite dimensional
space.

For example, in the case of Kalman filters, the
evolution in time of an unknown processxt is described
by the system equation:

xt = Ft ·xt−1+wt .

Here a known processyt is coupled toxt by the observation
equation

yt = Ht ·xt +vt .

The best unbiased linear estimate of the unknown process
at timet is a linear combination of the known process and
the previous time step values

xt = Lt ·xt−1+Kt ·yt .

The filter is based on the minimization of the covariance
matrixE(xtx⊤t ) of xt .

However, the following question need to be addressed:
Is the distance/cost-function correctly estimated by means
of classical Euclidean Geometry tools?

Recently, optimization techniques in the framework of
a relatively new branch of mathematics, the Information
Geometry (IG) [6,7,8], are employed. Methods and
techniques of non-Euclidean geometry to stochastic
processes provide the tools to define a notion of distance
between two probability distributions or two data sets.
This affects crucially the cost function estimation. IG
shows that the use of Eucledian/flat geometry techniques
is false in general, and provides a theoretical recipe to
avoid such simplifications. Families of probability
distributions are recognized as manifolds on which
geometrical entities such as Riemannian metrics,
distances, curvature and affine connections can be
naturally introduced.

More precisely, an-dimensional statistical manifold is
a family of probability distributions

S= {p = p(x;ξ ) | ξ = [ξ1,ξ2, . . . ,ξn] ∈ Ξ} ,

where each element may be parameterized usingn real
valued variables in an open subsetΞ of IRn while the
mapping ξ → pξ is injective and smooth. The
geometrical framework in a statistical manifold is
characterized by the information matrix which at a point
ξ is an×n matrixG(ξ ) = [gi j (ξ )] , with elements

gi j (ξ ) = Ex|ξ [∂iℓ(x;ξ )∂ jℓ(x;ξ )] =

∫
∂iℓ(x;ξ )∂ jℓ(x;ξ ) p(x;ξ )dx,

whereℓ(x;ξ ) = log[p(x;ξ )] and

Ex|ξ [ f ] =
∫

f (x)p(x;ξ )dx

denotes the expectation with respect to the distributionp.
The matrix G(ξ ), called the Fisher information

matrix (see [6,7,8]), is symmetric and positive
semi-definite. If G(ξ ) is positive definite, then a
Riemannian metric can be defined on the statistical
manifold corresponding to the inner product induced on
the natural basis of the coordinate system[ξi ]:

gi j =
〈
∂i
∣∣ ∂ j

〉
.

This Riemannian metric is called the ”Fisher metric” or
the ”information metric”. The corresponding geometric
properties are characterized by the Christoffel symbols(

Γ i
jk

)
of the Levi-Civita connection with respect to the

Fisher metric, which are defined solving :

2

∑
i=1

ghiΓ i
jk = Γjk,h, (h= 1,2),

where

Γjk,h (ξ ) = Eξ

[(
∂ j∂kℓξ +

1
2

∂ jℓξ ∂kℓξ

)(
∂hℓξ

)]
,

j, k = 1,2, . . . ,n.

The minimum distance between two elementsf1 and
f2 of a statistical manifold S is defined by the
correspondinggeodesicω which is the minimum length
curve that connects them. Such a curve

ω = (ωi) : IR → S (1)

satisfies the following system of 2nd order differential
equations:

ω
′′

i (t)+
n

∑
j,k=1

Γ i
jk (t)ω

′

j (t)ω
′

k (t) = 0, i = 1, 2, . . . , n.

(2)
under the conditionsω (0) = f1, ω (1) = f2 .

In particular, it has been proved (seee.g. [9,10]) that
the two parameter Weibull distributions is a good choice
for fitting wind and wave data. These distributions form
a 2-dimensional statistical manifold withξ = [α,β ], Ξ =
{[α,β ] α andβ > 0} (whereα is the shape andβ the scale
parameter) and

p(x) =
α
β

(
x
β

)α−1

e
−
(

x
β

)α

, α, β > 0. (3)

The Fisher information matrix in this case becomes

G(α,β ) =

[
α2β 2 β (1− γ)

β (1− γ) 6(γ−1)2+π2

6α2

]
,

whereγ is the Euler gamma.
Let ξ0=[α0,β0] andξ1=[α1,β1] be two members of the

Weibull statistical manifold. Substituting the values of the
ChristoffelΓ i

jk the previous system becomes:
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ω
′′

1 (t)+
6
(

γα0−α0−
π2

6

)

π2β0

(
ω

′

1 (t)
)2

+

12
(

γ2−2γ + π2

6 +1
)

π2α0
ω

′

1 (t)ω
′

2 (t) −

6(1− γ)β0

(
γ2−2γ + π2

6 +1
)

π2a3

(
ω

′

2 (t)
)2

= 0

ω
′′

2 (t)−
α3

0

π2β 2
0

(
ω

′

1 (t)
)2

+
12α0 (1− γ)

π2β0
ω

′

1 (t)ω
′

2 (t) −

6
(

γ2−2γ + π2

6 +1
)

π2α0

(
ω

′

2 (t)
)2

= 0

with ω (0) =

[
α0
β0

]
, ω (1) =

[
α1
β1

]
where

ω (t) =

[
ω1(t)
ω2(t)

]
.

Our intention is to study the numerical solution of the
above problem for a choice of its parameters obtained
from environmental data sets within the South East
Mediterranean territory.

It is worth noticing that IG techniques have been,
directly or not, tested on different applications. Iguzquiza
and Olmo [11] utilized some of these ideas for
geostatistical simulations for restricted samples. On the
other hand, Cai et al. [12] applied information theoretic
analysis on self-clustering of amino acids along protein
chains. Finally, Resconi [13] based a risk analysis study
on non-Euclidean geometric tools. However, up to the
authors ”knowledge”, applications of this framework on
meteorology/oceanography is still very rare.

2 The Numerical Solution of the BVP

In this section, we study the numerical solution of the BV
problem

ω
′′

1 +a11(ω
′

1)
2+a12ω

′

1ω
′

2+a22(ω
′

2)
2 = 0

ω
′′

2 +b11(ω
′

1)
2+b12ω

′

1ω
′

2+b22(ω
′

2)
2 = 0 (4)

supplied with boundary conditions

ω1 (0) = ω0
1 , ω2 (0) = ω0

2 , ω1 (1) = ωN+1
1 , ω2 (1) = ωN+1

2 .

This second order BVP can be written as

ω̃
′′
= F(ω̃, ω̃

′
),

where

ω̃ =

[
ω1
ω2

]

is defined on the interval[0,1].

2.1 Finite Differences

We divide [0,1] into N + 1 equal subintervals whose
endpoints are atti = 0+ ih, for i = 0,1, . . . ,N,N + 1.
Assuming that the exact solution has a bounded fourth
derivative we discretize and replaceω ′′

1(ti), ω ′′

2(ti), ω ′

1(ti),
ω ′

2(ti) using the following standard finite differences
(FD):

ω
′′

1(ti) =
ω1(ti+1)−2ω1(ti)+ω1(ti−1)

h2 −
h2

12
ω(4)

2 (ξi)

ω
′′

2(ti) =
ω2(ti+1)−2ω2(ti)+ω2(ti−1)

h2 −
h2

12
ω(4)

2 (ξi)

ω
′

1(ti) =
ω1(ti+1)−ω1(ti−1)

2h
−

h2

6
ω(3)

1 (ηi)

ω
′

2(ti) =
ω2(ti+1)−ω2(ti−1)

2h
−

h2

6
ω(3)

2 (ηi)

for someξi ,ηi in the interval(ti−1, ti+1).
The numerical difference method results from

substituting the above FD to the differential equation,
neglecting the error terms and employ the boundary
conditions:

ω1 (0) = ω0
1 , ω2 (0) = ω0

2 , ω1 (1) = ωN+1
1 , ω2 (1) = ωN+1

2 ,

with ω i
1 ≈ ω1(ti), ω i

2 ≈ ω2(ti) for i = 1, . . . ,N.
The result is a nonlinear system of 2N equations with

2N unknowns of the form

F̂(ω̂) = 0

where0= [0, . . . ,0]⊤ andω̂ =
[
ω1

1 , . . . ,ωN
1 ,ω

1
2 , . . . ,ωN

2

]⊤
.

This system can be solved using the Newton’s iteration
which is equivalent to solving in each step a linear system
of the form:

J(ω̂(k−1)) ·X = F̂(ω̂(k−1)).

This can be done using theLU decomposition method and
then update the solution

ω̂(k) = ω̂(k−1)−X.

2.2 The proposal of the LU modification

Amodio1 et al. in [14] outlined the origin of almost block
diagonal linear systems arising for solving boundary
value ordinary differential equations including the case of
finite differences approach. Their work refer to first order
BVPs. Our problem is a system of second order equations
which, when transformed to a system of order one
differential equations, will double the dimension of the
resulted the linear system . In our case, the resulted
Jacobian matrixJ has a specific special sparse form
which we take advantage of when interchange its rows as
follows.
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Then we can apply a Modified LU factorization reducing
significantly the computational cost.

The Modified LU factorization.

1st Step: Make zero only two elements under the main
diagonal.
Update only 5 elements in rows 2 and 3 (the 2nd, 3rd,
(N+1)-th, (N+2)-th, (N+3)-th).
Right here we have a significant reduction of floating
point operations as the classical LU updates the entries of
an(2N−1)× (2N−1) submatrix.

2nd Step: Make zero only 4 elements under the main
diagonal.
Update only 6 elements in rows 3 to 6 (the 3rd,4th,
(N+1)-th, . . . ,(N+4)-th).

3rd Step: Make zero only 5 elements under the main
diagonal.
4rd-8th row: Update only 6 elements in rows 4 to 8 (the
5th,6th,(N+1)-th, . . . , (N+6)-th).

Next Steps Continue similarly until the upper
triangularization ofJ∗.

In every step the number of elements which must be
zeroed is increased by 1 until theN− 2-th step and the
number of elements in every row which must be updated
is increased by 1 until the (N-4)-th step. Then these
numbers are decreased by 1 in every step. The required
floating point operations for triangularizing the 2N× 2N
Jacobian matrix through modified LU factorization are

Table 1: LU vs modified LU factorization
matrix dim. classical LU Modified LU % of gain

200 0.0176 0.0096 45.6654
500 0.3188 0.0753 76.3882
1000 3.8151 0.7283 80.9093
2000 35.2260 8.7771 75.0834

O
(

2N3

3

)
whereas the classical one requiresO

(
8N3

3

)

flops. So, the classical Newton’s method demands
O(k0 · 8N3

3 ) flops when using the classical LU

factorization andO(k0 ·
2N3

3 ) flops when applying the
modified LU to the modified Jacobian matrix, fork0
iterations.

The reduction is achieved in the first half of the
factorization, when we update specific entries and not
whole submatrices. The second half of the procedure
requires the same flops with classical LU. Eventually, the
modified LU is 4 times cheaper than the classical one, and
the execution time is expected to be even more fast, due
to the reduction of number of comparisons due to the zero
entries of the matrixJ∗.

In the next section, we compare the two LU
approaches for matrices which have the form of the
Jacobian J and random elements. We average the
computational time needed for sets 50 matrices. The
results are presented in Table1.

3 Quasi Newton methods

A variety of modifications of the classical Newton
method, substituting the Jacobian matrix with other
quantities, called Quasi Newton methods can be found in
literature [15,16,17,18,19]. Brezinski [20,21] classified
and proposed theoretically new Quasi-Newton methods.
We implemented numerically four of them. Since the
Jacobian matrixJ∗ of our system is of a special form, we
adapt these methods toJ∗ in order to reduce the required
floating point operations.

The general scheme of a Quasi Newton method reads

ω̂(k) = ω̂(k−1)−Λk−1 · F̂(ω̂(k−1)), k= 0,1, . . . . (5)

whereΛk ∈ R
2N×2N.

Brezinski [20] studied the cases that(Λk) is the identity
matrix multiplied by a scalar,(Λk) is a diagonal matrix and
(Λk) is a full matrix.

3.1 Scalar matrix case (SMC)

In this case Λk = λk · I , where
λk = − (J(ω̂(k))·F̂(ω̂(k)),F̂(ω̂(k)))

(J(ω̂(k))·F̂(ω̂(k)),J(ω̂(k))·F̂(ω̂(k))
[20] and I the identity

c© 2014 NSP
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matrix.

Algorithm Scalar Matrix Case (SMC)

f d := J(ω̂(0)) · F̂(ω̂(0))

λ0 =− ( f d,F̂(ω̂(0)))
( f d, f d)

Λ0 = λ0 · I
ω̂(1) = ω̂(0)+Λ0 · F̂(ω̂(0))t

k= 1
while ||ω̂(k)− ω̂(k−1)||> TOL and k< nmax

k= k+1
f d := J(ω̂(k−1)) · F̂(ω̂(k−1))

λk−1 =− ( f d,F̂(ω̂(k−1)))
( f d, f d)

Λk−1 = λk−1 · I
ω̂(k) = ω̂(k−1)+Λk−1 · F̂(ω̂(k−1))⊤

end while

In the previous and the following algorithmsnmax is
the maximum number of iterations andTOL is a tolerance
parameter.

We consider the required time for the computation of
one addition and one multiplication as one flop [22]. In
case that the computation includes a single addition or only
a single multiplication only a12 flop will be added to the
complexity.

Our problem demandsO(k1 · 18N) flops for k1

iterations plus the computation of̂F and J at the point
ω̂(k) at every iteration. In general, SMC requires
O(k1 · (4N2)) flops for solving an 2N × 2N system of
nonlinear equations. The reduction in complexity is due
to the special structure of the matrixJ∗.

3.2 Diagonal Matrix Case 1 (DMC1)

In this caseΛk is diagonal [20]. The initial scheme can
be written in the formω̂(k) = ω̂(k−1)− F̃(ω̂(k−1)) · Λ̃k−1,
where

F̃(ω̂(k)) = diag(F̃1(ω̂(k)), F̃2(ω̂(k)), . . . , F̃2N(ω̂(k))),

Λ̃k = (λ 1
k ,λ

2
k , . . . ,λ

2N
k )⊤ anddiag(x) is a diagonal matrix

with diagonal entries the elements of vectorx. Thus, this
formula can be considered as Newton method with a
diagonal preconditioner (see [20] for more details).

Algorithm Diagonal Matrix Case(DMC1)

λ1 =−diag( 1
F̃1(ω̂(0))

, 1
F̃2(ω̂(0))

, . . . , 1
F̃2N(ω̂(0))

) ·J(ω̂(0))−1·

F̂(ω̂(0))
Λ1 = diag(λ1)

ω̂(1) = ω̂(0)+Λ0 · (F̂(ω̂(0)))⊤

while ||ω̂(k+1)− ω̂(k)||> TOL and k< nmax
k= k+1
λk−1 =−diag( 1

F̃1(ω̂(k−1))
, 1

F̃2(ω̂(k−1))
, . . . , 1

F̃2N(ω̂(k−1))
)·

J(ω̂(k−1))−1 · F̂(ω̂(k−1))
Λk−1 = diag(λk−1)

ω̂(k) = ω̂(k−1)+Λk−1 · F̂(ω̂(k−1))⊤

end while

We use the modified LU factorization in order to
computeJ(ω̂(k−1))−1 · F̂(ω̂(k−1)) reducing significantly
the required flops. The required flops are
O(k2 ·

2N3

3 ) flops fork2 iterations plus the computation of

F̂ andJ at the pointω̂(k) at every iteration. In general, the
complexity for solving an 2N × 2N system is of order
O(k2 · (

8N3

3 )).

3.3 Diagonal Matrix Case 2 (DMC2)

This is a modification of the previous case,

ω̂(k) = ω̂(k−1)− F̃(ω̂(k−1)) · Λ̃k−1,

where Λ̃k is computed using forward differences. Thus,
Λ̃k = ∆ F̃(ω̂(k−1))−1 ·∆ω̂(k−1).

The DMC2 algorithm requires significant less flops
than DMC1. More precisely, DMC2 demandsO(k2 · 8N)

flops for k2 iterations plus the computation of̂F andJ at
the pointω̂(k) at every iteration.

3.4 Full matrix case (FMC)

Now, the matrix Λk is a full matrix with

Λk = − F̂(ω̂(k)·(F̂(ω̂(k))⊤·(J(ω̂(k))⊤

(J(ω̂(k))·F̂(ω̂(k)),J(ω̂(k))·F̂(ω̂(k))
. It follows the FMC

algorithm.

Algorithm Full Matrix Case(FMC)

f d := J(ω̂(0)) · F̂(ω̂(0))

Λ0 =
−F̂(ω̂(0))· f d⊤

( f d, f d)

ω̂(1) = ω̂(0)+Λ0 · (F̂(ω̂(0)))⊤

while ||ω̂(k+1)− ω̂(k)||> TOL and k< nmax
k= k+1
f d := J(ω̂(k−1))−1 · F̂(ω̂(k−1))

Λk−1 =
−F̂(ω̂(k−1))· f d⊤

( f d, f d)

ω̂(k) = ω̂(k−1)+Λk−1 · F̂(ω̂(k−1))⊤

end while

The FMC algorithm demandsO(k3 · 9N2) flops at
every iteration fork3 iterations plus the computation of̂F
andJ at the pointω̂(k) at every iteration. In general, FMC
requires O(k3 · (13N2)) flops for solving an 2N × 2N
system of nonlinear equations.
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Table 2: Levantine problems parameters
model data model data satellite
no current with current data

Weibull shapeα0 scaleβ0 shapeα0 scaleβ0 shapeα1 scaleβ1
Jan 1.600 1.010 1.726 1.095 2.523 1.441
Feb 1.500 1.400 1.571 1.464 2.450 1.762
Mar 1.462 1.132 1.578 1.225 2.560 1.509
Apr 1.564 0.695 1.719 0.754 2.140 1.012
May 1.533 0.608 1.608 0.661 1.576 0.780
Jun 2.333 0.633 2.542 0.680 3.759 0.759
Jul 2.557 0.837 2.688 0.876 3.515 0.960
Aug 3.099 0.716 3.341 0.759 4.938 0.889
Sep 2.418 0.754 2.580 0.800 3.491 0.968
Oct 1.629 0.551 1.850 0.609 2.204 0.665
Nov 1.446 0.892 1.499 0.919 1.911 1.224
Dec 1.435 1.216 1.512 1.283 2.208 1.442

4 Numerical Tests and Observations

For our numerical tests we choose data from the area of
Levantive in the eastern Mediterranean Sea. For every
month of year 2009 we have modeled wind speed and
wave height data following two approaches. The former
includes in the simulation the impact of sea currents,
while the latter does not. Second source of data is the
available corresponding satellite data. The data are fitted
by a 2-parameter Weibull distribution and their
corresponding shape and scale parameters are given in
Table 2. When we consider the minimum length curve
which connects the modeled and corresponding satellite
data we conclude in 24 BV problems. For instance for the
month January we have two problems, one for the curve
connecting the modeled data with the presence of current
with the satellite data, which we call “problem Jan with
current”, and one for the modeled data without current to
the satellite data, which we call “problem Jan with no
current”.

To get reference solutions we use NDSolve of
Mathematica to solve the 24 test problems. Mathematica
uses the shooting method and one can set appropriate
accuracy options (Working Precision, Accuracy Goal,
Accuracy Goal) to get an considerably accurate solution
which is in a “continuous” interpolating form. The
computed solution can be substituted in the test
differential equations for an abscissae on[0,1] of a
desired width (e.g. 10−5) and record the maximum
residual error, the maximum defect, as it is usually called.
The size of the defect gives a different measure of the
suitability of the approximate solution; it is the amount by
which the computed solution fails to satisfy the system of
differential equations. It has been suggested that
monitoring the defect may be appropriate in situations
where difficulties arise in estimating the global error [23].

Such solutions can be used as highly accurate
reference solutions for the comparison to the other
numerical methods which attain a significantly lower
precision. In Figure 1, the reference solution of the
problem Jun with current is presented and in Figure2,
the defect for the reference solution of the same problem

which attains maximum value 1.11×10−15. Moreover in
Figure 3, the reference solution of the problem Aug with
current is shown and in Figure4, the defect for the
reference solution of the same problem which attains a
maximum value 6.25× 10−13. For this problem (along
with a few other) the numerical integrator suggests
elements of stiffness in the solution.
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Fig. 1: The reference solution̂ω1 and ω̂2 for the problem Jun
with current.
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Fig. 2: The defect for the reference solution̂ω1 andω̂2 for the
problem Jun with current.
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Fig. 3: The reference solution̂ω1 and ω̂2 for the problem Aug
with current.
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Fig. 4: The defect for the reference solution̂ω1 andω̂2 for the
problem Aug with current.

For our numerical tests we calculate and program the
analytical form ofF and JacobianJ. We chooseN = 100
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and get a system of 200 equations. For the 24 problems
we produce a reference solution and for an initial guess
we use a perturbation of the initial data with random
numbers. Then, we solve numerically the 24 test
problems using the proposed methods for tolerances
10−3,10−4, . . . ,10−13 to compare efficiency and
computational costs. We use two error measures at the
grid points. The first one is‖F̂(ω̂sol)‖∞ the maximum
absolute value that the numerical solution fails to satisfy
the nonlinear problem resulting from the finite difference
method. The second one is the‖ω̂so− ω̂re f‖∞ maximum
absolute value of the difference of the numerical solution
and the reference solution. We investigate the sensitivity
in the choice of the initial guess for tolerances
10−3,10−4, . . . ,10−13 with respect to its distance from the
reference solution, in order to evaluate the range of
convergence for each method.

We first solve the 24 problems using Newton’s
Method with both the classical implementation of the LU
factorization and the proposed modification and average
the various measures. In Table3, it is shown that both
Newton’s method with classical LU and Newton’s
method with modified LU have the same iterations and
similar error measures at the grid points for all 24
problems. In some problems the iteration diverges for
both approaches (e.g. problem Aug with current). The
superiority of the proposed modified LU algorithm is
obvious in Table 4, where we compare the average time
to solve each of the 24 problem for 50 different choices of
initial conditions using Newton’s method with classical
LU and Newton’s method with modified LU.

Table 3: Comparing the Classical LU and the proposed modified
LU factorization.

Average
no of iter. time in secs ‖F̂(ω̂sol)‖∞ ‖ω̂sol− ω̂re f‖∞

TOL clas. mod. clas. mod. clas. mod. clas. mod.
10−8 8.33 8.04 0.1529 0.099 0.355e-10 0.176e-10 0.605e-5 0.605e-5
10−10 8.7 8.67 0.1731 0.1196 0.080e-12 0.173e-12 0.123e-4 0.123e-4

In the following some remarks for the comparison of
mod-NR, SMC, DMC1, DMC2, FMC are discussed. We
solve for tolerances 10−3, . . . ,10−12 the 24 problems for a
common initial condition each time and compare the
average values of the results. It seems that DMC1 fails as
the preconditioning matrix is singular. DMC2 succeeds
only for TOL= 10−3,10−4. For smaller tolerances it fails
as in Λ̃k = ∆ F̃(ω̂(k−1))−1 · ∆ω̂(k−1) the denominator
becomes less than than unit round of (machine accuracy
ε). SMC and FMC algorithms work for
TOL= 10−3, . . . ,10−8. For smaller tolerances, even if the
methods do not seem to diverge, the iteration stops as the
denominator of

#

(J(ω̂(k)) · F̂(ω̂(k)),J(ω̂(k)) · F̂(ω̂(k))
(6)

Table 4: Time comparisons for the Classical LU and the
proposed modified LU.

Average time in secs
TOL clas. mod. % of gain
10−8 0.199 0.135 32.70
10−9 0.209 0.143 31.53
10−10 0.217 0.147 32.05
10−11 0.224 0.151 32.57
10−12 0.362 0.169 40.44
10−13 0.952 0.088 56.41

Table 5: Mean number of iterations for problems with
convergence.

average number of iterations
TOL Newton’s method SMC FMC
10−3 7.4 485 95
10−4 7.6 3460 835
10−5 8.4 6853 2959
10−6 8.6 10057 7363
10−7 9.2 13429 10596
10−8 9.6 16296 13632

Table 6: Mean time in secs for problems which converge.

average time in secs
TOL Newton’s method SMC FMC
10−3 0.098 0.166 0.443
10−4 0.098 4.062 1.070
10−5 0.112 14.684 8.063
10−6 0.117 35.450 24.140
10−7 0.126 56.277 44.580
10−8 0.123 85.410 71.087

becomes less than machine accuracyε.
In Tables 5 and 6, the modified Newton, SMC and

FMC methods are compared for various tolerances in
respect of the number of iterations and and the required
running time. No mater the theoretical complexity cost,
the time needed for the solution using Newton’s method
is considerably smaller. SMC takes the longer time over
the three methods. In Tables7 and 8 the average
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Table 7: Mean‖F̂(ω̂sol)‖∞ for problems which converge.

Average‖F̂(ω̂sol)‖∞
TOL Newton’s method SMC FMC
10−3 1.55e-6 1.83e-3 9.92e-3
10−4 6.77e-8 1.45e-4 1.09e-3
10−5 7.29e-9 1.53e-5 1.13e-4
10−6 1.93e-9 1.48e-6 1.11e-5
10−7 8.24e-11 1.62e-7 1.19e-6
10−8 2.82e-11 1.71e-8 1.20e-7

Table 8: Mean‖ω̂sol− ω̂re f‖∞ for problems which converge.

Average‖ω̂sol− ω̂re f‖∞
TOL Newton’s method SMC FMC
10−3 2.87e-6 2.53e-1 4.17e-1
10−4 1.59e-5 3.77e-2 2.05e-1
10−5 3.49e-6 3.96e-3 2.96e-2
10−6 1.56e-5 3.94e-4 2.88e-3
10−7 2.53e-5 6.61e-5 3.29e-4
10−8 3.57e-6 7.14e-6 3.45e-5

Table 9: Newton’s method sensitivity in initial condition choice.
Number of convergent solution of problems (out of 24).

‖ω̂0− ω̂re f‖∞ ≤
TOL 0.05 0.10 0.2 0.5
10−3 24 24 21 3
10−4 24 24 22 1
10−5 24 24 23 2
10−6 24 24 21 2
10−7 24 24 23 2
10−8 24 24 21 1
10−9 24 24 21 1
10−10 24 24 19 2
10−11 24 24 23 3
10−12 24 24 23 3
10−13 24 22 19 3

Table 10:SMC sensitivity in initial condition choice. Number of
convergent solution of problems (out of 24).

‖ω̂0− ω̂re f‖∞ ≤
TOL 0.05 0.10 0.2 0.5
10−3 24 24 24 24
10−4 24 24 24 24
10−5 24 24 24 24
10−6 24 24 24 24
10−7 24 24 24 24
10−8 24 24 24 24
10−9 12 13 13 14

Table 11:FMC sensitivity in initial condition choice. Number of
convergent solution of problems (out of 24).

‖ω̂0− ω̂re f‖∞ ≤
TOL 0.05 0.10 0.2 0.5
10−3 24 24 24 24
10−4 24 24 24 24
10−5 24 24 24 24
10−6 24 24 24 24
10−7 24 24 24 24
10−8 24 24 24 24
10−8 15 14 10 14

Table 12:SMC average‖F̂(ω̂sol)‖∞ for all 24 problems.

‖ω̂0− ω̂re f‖∞ ≤
TOL 0.05 0.10 0.2 0.5
10−3 1.78e-3 1.61e-3 1.32e-3 9.40e-3
10−4 1.00e-4 1.00e-4 1.08e-4 1.11e-4
10−5 1.10e-5 1.10e-5 1.10e-5 1.11e-5
10−6 1.20e-6 1.19e-6 1.22e-6 1.21e-6
10−7 1.27e-7 1.07e-7 1.27e-6 1.26e-7
10−8 1.40e-8 1.40e-8 1.41e-8 1.34e-8
10−9 1.32e-8 1.20e-8 1.30e-8 1.25e-8
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Table 13:FMC average‖F̂(ω̂sol)‖∞ for all 24 problems.

‖ω̂0− ω̂re f‖∞ ≤
TOL 0.05 0.10 0.2 0.5
10−3 7.14e-3 7.80e-3 8.16e-3 8.27e-3
10−4 8.46e-4 8.31e-4 8.46e-4 8.78e-4
10−5 8.99e-5 9.49e-5 9.62e-5 9.51e-5
10−6 1.02e-5 1.03e-5 1.04e-5 1.04e-5
10−7 1.08e-6 1.07e-6 1.09e-6 1.08e-6
10−8 1.09e-7 1.11e-7 1.56e-7 1.15e-7
10−9 1.30e-8 1.34e-8 1.42e-8 1.31e-8

Table 14:SMC and FMC as starting procedures.

TOL= 10−11

no of iter. ‖F̂(ω̂sol)‖∞ ‖ω̂sol− ω̂re f‖∞
Newton’s methodR 182 4.38e+177 9.03e+88

SMC 9219 1.75e-6 7.51e-4
Newton’s methodR 7 4.78e-14 3.74e-4

FMC 5602 1.39e-5 3.40e-3
Newton’s methodR 7 5.59e-14 3.74e-4

recorded error measures for the modified Newton, SMC
and FMC methods are presented. Newtons method attains
a better convergence (with respect to the reference
solution) and has a smaller defect for the nonlinear
system compared to its competitors.

An interesting remark is that Newton’s method with
either classical and modified LU factorization seem to be
very sensitive in the choice of initial guess and so they
have shorter interval of convergence compare to both
SMC, FMC. This can be tested by solving the problems
taking initial guesses further away from the reference
solution (see Tables9, 10, 11). It must be noted that
SMC and FMC do not diverge forTOL = 10−9 and
smaller (see Tables ,12, 13). The algorithms stop as the
denominator of (6) becomes less than machine accuracy
ε. Even though, as Newton’s method is more accurate
SMC and FMC can be used as starting procedures. For
problems such as Aug with current, where Newtons
method diverges, we can use either SMC or FMC to get
an initial point and then continue with Newton’s iteration
(see Table14).

5 Conclusions

In this paper we study the numerical solution of a special
boundary value problem, arising in meteorological
parameters prediction. The construction and study of the
cost functions that estimate the discrepancies between
modeled and observed data is based on techniques

developed within the framework of Information
Geometry. In this way, we adopt an approach that avoids
simplifications connected with the a priori acceptance of
Euclidean distances for the data under study as in the
least square based methods. More precisely, Weibull
probability distribution functions are fitted to the data
under study and treated as elements of statistical
manifolds on which Riemannian metrics are defined and
the distances between the different sets of data are
measured by means of the corresponding geodesics (i.e.
minimum length curves).

These curves are obtained as numerical solutions of
second order boundary value problems using finite
differences. For the numerical solution of the resulting
system of nonlinear equations, we apply Newton and
Quasi Newton methods in which we take into account the
special form of the Jacobian matrix and modify
appropriately the LU algorithm in order to reduce the
computational complexity.

More precisely, the Newton method using the
modified LU factorization demands the same iterations
and has an absolute error of the same order with the
classical one but it requires significantly less floating
point operations. The error measures for Newton’s
method (classical or modified) are considerable smaller
and the method converges for smaller tolerances
compared to the SMC and FMC.

The DMC methods are not proposed for our problem,
since the preconditioning matrix is almost singular.

The Newton’s method using either classical or
modified LU factorization is more sensitive in the
selection of the initial point compared to SMC and FMC
since, for some problems, it demands the initial values to
be closer to the final solution than the other two methods.

The use of SMC or FMC as an initial procedure
improves the behavior of Newtons method in the cases
that diverges. These methods can be used as starting
procedures that compute initial points for the Newton’s
iteration within the interval of convergence, while the
modified LU factorization reduces significantly the
required floating point operations resulting to an effective
algorithm for solving efficiently the system of non linear
equations.
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