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Abstract: This paper addresses the Sharma-Tasso-Olver equation froman integrability perspective. There are three integrationtools
that are applied to extract the solutions to this nonlinear evolution equation. The ansatz method is applied to the generalised equation
with power-law nonlinearity to obtain shock-wave solutions. Subsequently, the traveling-wave hypothesis leads to another set of
solutions in the complex domain. Finally, Lie symmetry analysis leads to a third set of solutions. Several constraint conditions emerge
from the various analyses.

Keywords: Sharmo-Tasso-Olver equation, travelling-wave, shock-wave, Lie point symmetry

1 Introduction

The theory of solitons is a very important area of research
in applied mathematics, information sciences and
theoretical physics [1,2,3,4,5,6,7,9,10,11,13,14,16,19,
20,21,22,23,24,25]. In the context of information
sciences, solitons act as information carrier bits through
optical fibers across transcontinental and transoceanic
distances. The theory of solitons is also studied in several
other forms such as analysing topological solitons, which
are also known as shock-waves, singular solitons that are
also known as rogue waves in oceanography and optical
rogons in nonlinear optics. This paper considers one such
nonlinear evolution equation (NLEE) that leads to
shock-wave solutions or topological soliton solutions.
This is the Sharma-Tasso-Olver (STO) equation. This
NLEE is an odd-ordered hierarchy of the well-known
Burgers equation, that also produces shock-wave
solutions [7]. The STO equation under study appears with
dual nonlinear terms and a single dispersion term.

Several methods of integration will be applied to extract
soliton and other solutions to this equation. The ansatz
approach is firstly applied with power-law nonlinearity. In
this context, it will be proved that the power-law
nonlinearity parameter collapses to unity for this equation
to support shock-waves. The constraint conditions will be
identified for the waves to exist. Traveling-wave will
subsequently be employed with a specialised form of a
solution structure. This will lead to solutions that are valid
in the complex domain. Finally, Lie symmetry analysis
will lead to an additional set of solutions that are
exhibited. Some numerical simulations will support the
analysis developed in this paper.

2 Ansatz approach

The version of the STO equation we consider is given by

ut + a
(

u2n+1)

x + b
(

u2n)

xx + cuxxx = 0, (1)
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whereu(x, t) is the dependent variable and is the profile
of the wave. The independent variables arex andt, while
a, b andc are all real-valued constants. The parametern
dictates power-law nonlinearity.

It must be noted that this approach of integrability was
already studied earlier for the casen = 1 in [10]. In this
paper, we adopt this approach on eq. (1) for a general
value ofn thus keeping it on a more generalised setting
from any previous work.

In order to seek shock-wave solutions to eq. (1), the
starting hypothesis is given by

u(x, t) = A tanhp[B(x− vt)], (2)

whereA andB are free parameters andv represents speed
of the shock-wave. The value of the unknown exponentp
will become evident during the course of derivation of the
shock-wave solution.

The substitution of eq. (2) into eq. (1) leads to

pvA
(

tanhp+1τ − tanhp−1τ
)

+ (2n+1)paA2n+1(tanh2np+p+1τ − tanh2np+p−1τ
)

+ 2npbA2nB
{

(2np−1) tanh2np−2τ −2np tanh2np τ

+ (2np+1) tanh2np+2τ
}

+ cAB2{p(p−1)(p−2) tanhp−3 τ
−
[

p(p−1)(p−2)+2p3] tanhp−1 τ

+
[

p(p+1)(p+2)+2p3] tanhp+1 τ
− p(p+1)(p+2) tanhp+3τ

}

= 0, (3)

where
τ = B(x− vt). (4)

From eq. (3), by the balancing principle, equating the
exponents 2np+ p+1 andp+3 leads to

p =
1
n
. (5)

Again equating the exponents 2np+2 andp+3 gives

p =
1

2n−1
. (6)

Equating the two values ofp from eqs. (5) and (6) imply

n = 1, (7)

and hence from eq. (5)

p = 1. (8)

The same value ofp is obtained upon setting the
coefficient of the stand-alone linearly independent
function tanhp−3 τ to zero. Therefore eq. (1) reduces to

ut + a
(

u3)

x + b
(

u2)

xx + cuxxx = 0. (9)

Now setting the coefficients of the linearly independent
functions tanhj τ for j = 0,2,4 in eq. (3) leads to

v = 2bAB, (10)

v = 3aA2+4bAB−8cB2, (11)

aA2+2bAB−2cB2 = 0. (12)

Equating the two values of shock-wave velocity (v) from
eqs. (10) and (11) leads to

3aA2+2bAB−8cB2= 0. (13)

From eqs. (12) and (13) one easily obtains

A =

√

3c
a

B, (14)

which prompts the constraint condition

ac > 0, (15)

which must hold for shock waves to exist. Finally, the
shock-wave solution to eq. (9) is given by

u(x, t) = A tanh[B(x− vt)], (16)

where the free parametersA andB are connected as given
by eq. (14).

Figure 1 displays a shock-wave solution to eq. (9) with
parameter valuesa = b = c = 1, B = 0.5, with ranges
being−50≤ x ≤ 50 and 0≤ t ≤ 40.

Fig. 1: Topological solution foru(x, t)
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3 Travelling-waves

Assuming a travelling-wave solution in the form given by
(4), eq. (9) reduces to the ordinary differential equation
(ODE)

−ν uτ + a(u3)τ + bB(u2)ττ + cB2 uτττ = 0. (17)

Integrating eq. (17) with respect toτ and keeping the
integration constant zero, we arrive at the ODE

−ν u + au3 + 2bBuu′ + cB2 u′′ = 0, (18)

where(′) denotes differentiation with respect toτ.

We assume a solution of eq. (18) in the form

u(τ) =
l sinhτ

m + n coshτ
. (19)

Substituting foru, u′ and u′′ in eq. (18), we obtain an
algebraic equation in powers of coshτ given by

−ν (m+ ncoshτ)2 + al2(cosh2 τ −1)

+2bB(lmcoshτ + ln)

−cB2(2n2
−m2+mncoshτ) = 0. (20)

Equating the coefficients of different powers of coshτ to
zero, we get

−ν m2
− al2 + 2bBl n − 2cB2 n2 + cB2 m2 = 0, (21)

−2ν mn + 2bBl m − cB2 mn = 0, (22)

−ν n2 + al2 = 0. (23)

From eqs. (22) and (23) we get a constraint relation

4b2 B2 ν = a(cB2 + 2ν)2. (24)

Using eq. (23) and the constraint relation (24), eq. (21)
reduces to

al2 = ν m2. (25)

From eqs. (23) and (25) one can conclude thatm = n.

The solution (19) can be written as

u(τ) = ±

√

ν
a

sinhτ
1+ coshτ

. (26)

Therefore the solution of eq. (9) can be written as

u(x, t) = ±

√

ν
a

sinh[B(x−νt)]
1+ cosh[B(x−νt)]

, (27)

which is a kink-wave. Now we assume a solution of eq.
(18) in the form

u(τ) =
l coshτ

m + n sinhτ
. (28)

Substituting foru, u′ and u′′ in eq. (18), we obtain an
algebraic equation in powers of sinhτ given by

−ν (m+ nsinhτ)2 + al2(1+ sinh2 τ)

+2bB(lmsinhτ − ln)

+cB2(2n2+m2
−mnsinhτ) = 0. (29)

Equating the coefficients of different powers of sinhτ to
zero, we get

−ν m2 + al2
− 2bBl n + 2cB2 n2 + cB2 m2 = 0, (30)

−2ν mn + 2bBl m − cB2 mn = 0, (31)

−ν n2 + al2 = 0. (32)

From eqs. (31) and (32) we get the constraint relation

4b2 B2ν = a(cB2 + 2ν)2, (33)

which is the same as eq. (24). Using eq. (32) and the
constraint relation (33), eq. (30) reduces to

al2 = −ν m2. (34)

From eqs. (32) and (34) one can conclude thatn = ± im.
The solution (28) can be written as

u(τ) = ±

√

ν
a

i coshτ
1 ± i sinhτ

. (35)

Therefore the solution of eq. (9) can be written as

u(x, t) = ±

√

ν
a

i cosh[B(x−νt)]
1± i sinh[B(x−νt)]

. (36)

Eqs. (26), (27), (35) and (36) imply

av > 0. (37)

This shows that the coefficient of the first nonlinear term
and the speed of the wave must carry the same sign.

4 Lie symmetry analysis

The study and analysis of differential equations through
the realm of group theory is associated with the great
mathematician Sophus Lie [12]. The method of
determining the Lie point symmetry generators via the
classical approach for partial differential equations
(PDEs) is well-known [6,9,11,13,15,17]. In this section,
we calculate the Lie point symmetries admitted by eq. (9).

We define

X = ξ
∂
∂x

+ τ
∂
∂ t

+φ
∂

∂u
, (38)
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to be the vector field that leaves eq. (9) invariant, i.e.,

X [3] [ut + a
(

u3)

x + b
(

u2)

xx + cuxxx
]

= 0, (39)

whereξ = ξ (x, t,u), τ = τ(x, t,u), φ = φ(x, t,u) andX [3]

is the third-order prolonged operator ofX defined by

X [3] = X +φ t ∂
∂ut

+φ x ∂
∂ux

+φ xx ∂
∂uxx

+φ xxx ∂
∂uxxx

.

Eq. (39) is the symmetry condition

φ t +2φ(3auux+ buxx)+φ x(3au2+4bux)+2bφ xxu

+ cφ xxx = 0, (40)

whereφ t , φ x, φ xx andφ xxx are given by

φ t = Dtφ − utDtτ − uxDtξ ,

φ x = Dxφ − utDxτ − uxDxξ ,

φ xx = Dxφ x
− uxtDxτ − uxxDxξ ,

φ xxx = Dxφ xx
− uxxtDxτ − uxxxDxξ ,

andDi denotes the differentiation operator with respect to
xi given by

Di =
∂

∂xi + uα
i

∂
∂uα + uα

i j
∂

∂uα
j
+ · · · , i = 1,2,

with (x1,x2) = (x, t).

To determine the governing equations from eq. (40), we
use the package SYM [8] in Mathematica to separate the
monomials in the derivatives ofu, since the coefficient
functionsξ , τ andφ are independent of the derivatives of
u, and replaceut by

ut =−
[

a
(

u3)

x + b
(

u2)

xx + cuxxx
]

.

This process leads to solving the system of PDEs

τx = 0, τu = 0, τ = τ(t), ξu = 0, φuu = 0,

−3ξx + τt = 0, φu −2ξx + τt = 0,

3au2φx +2buφxx+ cφxxx +φt = 0,

2b(φ + uτt −2uξx)+3c(φxu − ξxx) = 0,

6auφ +4bφx −3au2ξx +4buφxu −2buξxx − cξxxx

+ 3au2τt − ξt = 0. (41)

The computation of eq. (41) reveals that

τ = 3m1t +m2, ξ = m1x+m3, φ =−m1u. (42)

Thus the three-dimensional Lie point symmetry algebra is
spanned by the vector fields

X1 =
∂
∂ t

, X2 =
∂
∂x

, X3 = 3t
∂
∂ t

+ x
∂
∂x

− u
∂
∂u

. (43)

We now perform symmetry reductions to determine
solutions for eq. (9) using the Lie point symmetries from
eq. (43). This entails applying the well-known method of
invariance also known as the equation for characteristics.

(I) X2

We solve the characteristic equation

dt
0

=
dx
1

=
du
0
. (44)

The invariants from eq. (44) are given by

y = t, w = u, (45)

wherew = w(y) and

ut = w′, ux = 0, (46)

where(′) denotes the derivative ofw with respect toy.

The substitution of eq. (46) into eq. (9) and then solving
the resulting ODE forw gives

w = A, (47)

whereA is a constant of integration.

Thus the substitution of eq. (47) into eq. (45) gives the
trivial solution for eq. (9) as

u = A. (48)

(II) X1

The characteristic equation is

dt
1

=
dx
0

=
du
0
. (49)

The invariants from eq. (49) are given by

y = x, w = u, (50)

with

ut = 0, ux = w′, uxx = w′′, uxxx = w′′′. (51)

The substitution of eq. (51) into eq. (9) and then integrating
once with respect toy (setting the integration constant to
be zero) results in the ODE

aw3+2b
(

w2)′+ cw′′ = 0. (52)

Since

Y =
∂
∂y

is a Lie point symmetry of eq. (52), we have the zeroth-,
first-order and second-order invariants

p = w, q = w′,
dq
d p

=
w′′

w′
, (53)
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whereq = q(p).

The substitution of eq. (53) into eq. (52) results in the first-
order ODE

dq
d p

=−
1
c

(

ap3

q
+4bp

)

. (54)

We obtain the solution for eq. (54) using Mathematica as

2bα tanh−1
[

α
(

b+
cq
p2

)]

+ ln
[

ap4+4bp2q+2cq2]= A, (55)

whereA is a constant of integration and

α =

√

2
2b2− ac

.

To analyse eq. (55) further, we setA = 0 and apply the
identity

tanh(x) =
ex − e−x

ex + e−x .

This results in

α
(

b+
cq
p2

)

=
1− (ap4+4bp2q+2cq2)

1
bα

1+(ap4+4bp2q+2cq2)
1

bα
, (56)

so that the substitution of eq. (53) into eq. (56) gives

α
(

b+
cw′

w2

)

=
1−
[

aw4+4bw2w′+2c(w′)2
]

1
bα

1+[aw4+4bw2w′+2c(w′)2]
1

bα
. (57)

Remarks: (1) The solution (55) is compatible with the
solution of eq. (9).
(2) Eq. (52) has an additional symmetry

Z =−y
∂
∂y

+w
∂

∂w

for general values ofa, b andc, and altogether has eight
Lie point symmetries when the parameters are related by
a single constraint.

(III) X = X1+ kX2

In this case, a linear combination ofX1 andX2, wherek is
an arbitrary constant leads to travelling-wave solutions of
eq. (9).

The characteristic equation is

dt
1

=
dx
k

=
du
0
. (58)

The invariants from eq. (58) are given by

y = x− kt, w = u, (59)

with

ut =−kw′, ux = w′, uxx = w′′, uxxx = w′′′. (60)

The substitution of eq. (60) into eq. (9) and then
integrating once (setting the integration constant to be
zero) results in eq. (18) (with redefined constants).

(IV) X3

The characteristic equation is

dt
3t

=
dx
x

=
du
−u

. (61)

The invariants from eq. (61) are given by

y =
x3

t
, w = xu, (62)

with

ut =−
yw′

xt
, ux =−

w
x2 +

3xw′

t
, uxx =

2w
x3 +

9x3w′′

t2 ,

uxxx =−
6w
x4 +

6w′

xt
+

27x2

t2

(

w′′+ yw′′′

)

. (63)

The substitution of eq. (63) into eq. (9) and multiplying
both sides byx4 results in the ODE

− y2w′+3aw2(3yw′
−w

)

+6b
[

−2yww′+3y2(ww′′+(w′)2)+w2]

+3c
[

−2(w− yw′)+9y2(w′′+ yw′′′)
]

= 0. (64)

Figure 2 is a typical representative of a numerical
simulation for eq. (64) via Mathematica, where the
parameter values were chosen asa = c = 1

3 andb = 1
6 for

y ∈ [0,200], and the initial conditions were given as
w(1) = 0, w′(1) = w′′(1) =−1.

50 100 150 200

-40

-20

20

40

Fig. 2: Profile of solution forw(y)
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5 Conclusion

This paper addressed the STO equation from an
integration standpoint, where several solutions were
exhibited. The traveling-wave hypothesis, ansatz method
and Lie symmetry analysis lead to exact solutions for this
equation. For the ansatz method, it was established that
the power-law nonlinearity parameter condenses to unity
for shock wave solutions to exist. Some numerical
simulations were also included to support the analysis.
The results of this paper stands on a strong footing for
further research development. In the future, perturbation
terms will be added in order to establish the integrability
aspects of the perturbed STO equation. Numerical
simulations, as well as additional integration tools will be
applied to address this version of the equation. A few of
them to mention are theG′/G-expansion approach,
Kudryashov’s method, variational iteration method,
simplest equation approach, Lie symmetry approach and
several others. These results will ultimately be reported in
the future.
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