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Abstract: A comparative study based on two different asymmetric losgtions presented in this article. Two-parameter Rakleig
model is consider here as the underline model for the presemparative study, that evaluate the properties of Bayi@na@&wrs under
progressive Type-II right censored data.
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1 Introduction

The two (location-scale) parameter Rayleigh distributias the probability density function and cumulative digttion
function, given respectively, by

oy X=0 [ (x=0))
f(x0,0)= 52 ®<p<—7>,x>o>o,e>o, (1)
(x=0)?
F(x,0,0)=1—exp| — 502 ;X>0>0,0>0. 2

The considered model is useful in life testing experimentsch age with time as its failure rate is a linear function of
time. The present distribution also plays an important ilmlEommunication engineering and electro-vacuum device.

The Rayleigh distribution is often used in physics relateltifi to model processes such as sound and light radiation,
wave heights, wind speed, as well as in communication theodgscribe hourly median and instantaneous peak power
of received radio signals. It has been used to model the émyuof different wind speeds over a year at wind turbine
sites and daily average wind speed.

In present paper, our focus is on presenting a comparatidy sif the Bayes estimation under two different asymmetric
loss functions. Both known and unknown cases of scale pdesrage considered here for estimation. For evaluation of
performances of the proposed procedures, a simulatioy sardies out also.

A good deal of literature is available on Rayleigh model urditerent criterions. A little few of them are Sinha (1990)
Bhattacharya & Tyagi (1990), Fernandez (2000), Hisada &iAd (2002), Ali-Mousa & Al-Sagheer (2005), Wu et al.
(2006), Kim & Han (2009), Prakash & Prasad (2010).

Soliman et al. (2010) presents some study about estimatidpeediction of the inverse Rayleigh distribution based on
lower record values. Dey & Maiti (2012) present some Baydsmasion for Rayleigh parameter under extended
Jeffrey?s prior. Some Bayes estimation based on Rayle@grgssive Type-Il censored data with binomial removals was
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discuss by Azimi & Yaghmaei (2013). Recently, Prakash (3Q&8sents some Bayes estimators for inverse Rayleigh
model. Some Bayesian analysis for Rayleigh distributiso discussed recently by Ahmed et al. (2013).

2 The Progressive Type-l1 Right Censoring

The censoring arises when exact lifetimes are only partiailbwn and it is useful in life testing experiments for time
and cost restrictions. The progressive censoring appedrs & great importance in planned duration experiments in
reliability studies. In many industrial experiments inviolg lifetimes of machines or units, experiments have to be
terminated early and the number of failures must be limidvirious reasons. In addition, some life tests require
removal of functioning test specimens to collect degraadatelated information to failure time data. The samples tha
arise from such experiments are called censored samples.

The planning of experiments with the aim of reducing theltdtaation of experiment or the number of failures leads
naturally to the Type-1 & Type-Il censoring scheme. The mdisadvantage of Type-l & Type-Il censoring schemes is
that they do not allow removal of units at points other thantdrmination point of an experiment. Progressively Tyipe-I
censored sampling is an important method of obtaining datdetime studies. Live unties removed early on can be
readily used in others tests, thereby saving cost to expetien and a compromise can be achieved between time
consumption and the observation of some extreme values.

The Progressive Type-Il right censoring scheme is dessdbdollows:

Let us suppose an experiment in whiglindependent and identical unitg, Xo, ..., X, are placed on a life test at the
beginning time and firsin; (1 < m < n) failure times are observed. At the time of each failure odogrprior to the
termination point, one or more surviving units are removedithe test. The experiment is terminated at the timef®f
failure, and all remaining surviving units are removed fritra test.

Let X1) < Xp) < ... <Xy are the lifetimes of completely observed units to fail @RdRy, ..., Rm; (M < n) are the
numbers of units withdrawn at these failure times. H&gRy, ...,Rn; (m < n) all are predefined integers follows the
relation

m
Z Rj+m=n.
=1

At first failure time x;), withdraw Ry items randomly from remaining — 1 surviving units. Immediately after the
second observed failure tim@a, R, items are withdrawn from remaining— 2 — R; surviving units at random, and so

on. The experiments continue until " failure timexm), the remaining item&y =n—m— z'j“:‘f R; are withdrawn.

Here, Xl(?rﬁ:’fz"”’Rm),X2<R1’R2""’Rm> S XgpRe--Rm) he m ordered failure times andRy, Ry, ...,Rm) be the progressive

censoring scheme (B:g:l?alkrishnan & Aggarwala, 2000).

The resultingn ordered values, which are obtained as a consequence ofpki®t censoring, are appropriately referred
to as progressively Type-Il right censored order stasistic

Progressively Type-Il right censoring scheme reducestoaational Type-Il censoring scheme if

R=0Vi=12..m-1=Rp=n-m

and reduces to complete sample case if

R=0Vi=12..m=n=m

Based on progressively Type-ll censoring scheme, the jairdbability density function of order statistic

Xpgne 5 X5 Xt is defined as
= Ri
f(xl:m:mxz:m:nvwxm:m:n) (6’ 0|)—() - Km rlf (X(i); 6’ 0) ' (1 —-F (X(i); 6’ 0)) ; (3)
1=
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heref(.) andF(.) are given respectively by (1) and (2) alig\ is a progressive normalizing constant defined as
m-1
Kn=n(n—Ri—1)(n—R;—R,—2)...({n+1— z Rj—m].
=1
The progressive Type-ll censored sample is denoteg iay(x<1),x(2>,...,x<m>) and (R, Ry, ...,Rm) being progressive
censoring scheme for the considered Rayleigh model.
Substituting (1) and (2) in (3), the joint probability detydunction is obtain as:

To(x,0)Y.
) @

f(xl:m:mxz:m:nvwxmzm:n) (67 0|)—() = Km Hm ()_(7 U) Q—Zmexp <

whereHn (x,0) = 1% (i) — 0) andTp(x,0) = 30 (R +1) (Xi) — 0)2.

It is noted here that when scale parameter is zero §.e=,0) ;(x(2i> (292)—1) Vi=1,2,...,n, is distributed Exponential
with mean two and the distribution gﬂlx(zi) (R +1) is Gamma with shape parameteand scale parameter two.

3 Bayes Estimation when Scale Parameter is Known

Assuming the scale parameteris known and location parametéris a random variable. A conjugate family of prior
density for parameted is considered here as an inverted Gamma with probabilitgitlefunction

01(0) 062 lexp <——> ;a>0,0>0. (5)

There is clearly no way in which one can say that one prior tteeb¢han other. It is more frequently the case that, we
select to restrict attention to a given flexible family ofqes, and we choose one from that family, which seems to match
best with our personal beliefs. The prior (5) has advantayes many other distributions because of its analytical
tractability, richness and easy interpretability.

Based on Bayes theorem, the posterior density is defined as

f(xl:m:nvxz:m:nw~7Xm:m:n) (97 U|)—() 'gl (9)

o) = Jo T XumnXemneXomn) (65 0X) .91 (8)dO” (6)
Using (4) and (5) in (6), the posterior density is obtain as
(Bo) KmHm (x,0) 8~ 2Mexp (_%) .672aflexp(_2_éz) |
X, JoKmHm(x,0) 6—2Mexp (_%;2")) .9‘2"‘1exp(—2—22) 4o
After simplification
Tp(x,0)™

Wheren* = WI and-l:p ()_(7 0) = Tp ()—(7 0) + 1.

The selection of loss function may be crucial in Bayesianlysig It has always been recognized that the most
commonly used loss function, squared error loss functi®@LES is inappropriate in many situations. If SELF is taken as
a measure of inaccuracy then the resulting risk is often @msitive to assumptions about the behavior of tail of the
probability distribution. To overcome this difficulty, aefsl asymmetric loss function based on the squared errer los
function is say as invariant squared error loss functiofe(lS) and defined for any estimate corresponding to the
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parameteb as
L(6,6) = (67%0)°;0=6-6. ®)
The Bayes estimator corresponding to location paranteterder ISELF is obtained as

bi=[E(6 Y] [E(62)

- [/H eln(elx,a)de] [/H ezn(elxaa)d‘?]_l

To(x,0). r(m+a+21)
2

=061=¢1 FmiarD

91 = )

When positive and negative errors have different consemgseithe use of SELF or ISELF in Bayesian estimation may
not be appropriate. In addition, in some estimation proBlererestimation is more serious than the underestimation,
vice-versa. To deal with such cases, a useful and flexibs dhasymmetric loss function (LINEX loss function (LLF))
is given as

L(0") =€ —ad* —1;a#0,0" = (6719).
The shape parameter of LLF is denoted’by Negative (positive) value d&', gives more weight to overestimation
(underestimation) and its magnitude reflect the degreeyohaeetry. It is also seen that, far= 1, the function is quite
asymmetric with overestimation being more costly than weskémation. For small values 0|, the LLF is almost
symmetric and is not far from SELF.

Bayes estimato ; of location paramete) under LLF is obtain by simplifying following equality

E{%exp (—a%) } =€e’E <%)
:>/96*1exp (—a%> n(9|>_<,0)d9:ea/gefln(ep_(,a)de

a9|_1 szgza) } " 2 > (ma+271)

exp ea[_ 2
=>/ 2mratd) =3 (m+a+ )(W

A nice closed form of Bayes estimatér, does not exist. However, a numerical technique is applied fog obtaining
the numerical value of the estimate by solving given equalit

(10)

4 Bayes Estimation when Scale Parameter is Unknown

When location and scale both parameters are consider asmavatiable, the joint probability density function under
progressive Type - |l censoring criterion is given by

f(xl:m:mxz:m:nvwxm:m:n) (e’ G|)—() = Km Hm ()_(7 0) e_zmexp < (11)

262
It is clear from (11) that, the functiodm (x, o) and T, (x, o) both depends upon scale parameteHence, in present

case when both parameters are consider being random \em;idiiné joint prior density for paramet@rando is defined
as

Tp (X, 0)>.

g(6,0) =02(6/0).93(0). (12)
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Hereg, (8|0) andgs (o) are the inverted gamma densities and defined as

g—20—1g—1/26?

92(9|0):W;9>070>0, (13)

and
o2B—1g-1/20%

WJG>O,B>O. (14)

g3(0) =

The joint posterior density function is now obtained as

f(xl:m:n7X2:m:n7~~7Xm:m:n) (e’ G|)—() g (67 0)
fU f9 f(xl:m:nvxz:m:nw~7Xm:m:n) (67 O'|)_() -9 (67 0) dédo

(o 20 152) (3o o)

o el o6 texp (5 ) 4 6207 texp (— BEZ)) dodo

T (6,01%) =

Tp(x,0) Hm(X,0) o5 1
2(g+m)— _'p m 2B-1 _ -
T (6,0) = < < 262 >) <I’(a) 207 ®P\"202) ) (13)
= (M+0o) _ Hm(x,0) -
whereo = o= 1_ando j(, o) (Tp()_(yo);;’mwg 2B 1exp( )do

The marginal posterior density corresponding to the patanfids given as

7 (80,9 = [ 1 (6,00x)do. (16)
g
Now, the Bayes estimator corresponding to location paranfetinder ISELF is obtain by solving following equality

6y — [/9 eln**(e|)_(7o-)d6:| [/9 ezn**(e|>_<,a)de} -1

B — Jo 9*2<m+1)exp( szs,f )fo (Hm<)23 0723—19720exp( 20 )) dod6 an

I 9*2”‘*3exp( szsza )fo(HmXU g-2B-19- ZC’eXp( 1 ))dade

Similarly, the Bayes estimator corresponding to LLF forgmaeterd is obtain by solving following equality

/ee—le—aétz/e 7 (6|, 0) d6 = ea/ge—lﬁ**(ep_g 0)de

b Thx0)\ omiy [ (Hn(X0) o5 1) 20 1
:>/9exp< a6 202 6 /a ,_(0)200 6 ““exp 552 dod6

a o (%, _ Hin(X,0) 25 14 20 1
_ ¢ /eexp(— "2(220)) 6 2<m+1>/0<r(é’§2?o 26-1g-2 exp( » 2)>dod9 (18)

Again, it is clear from equations (17) and (18) that, therraw any possible close forms of the estimators. Hence, for
obtaining the numerical values of the estimates we consieler a numerical technique.
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Table 1: Censoring Scheme for Different Valuesrof

Case | m RVi=12..m
1 10 1210012000
2 10 1003001001
3 201 10200102000100010010

Table 2: Risk Ratio Betweerfy ; and 1 Under ISELF

n=20,a=0.50
m||alo— 0.50 1.00 2.50 5.00 10.00
-0.50 0.9657 | 0.9753| 0.9844 | 0.9934 | 0.9941
1.00 0.9431 | 0.9525| 0.9614 | 0.9702 | 0.9709
10 2.50 0.8889 | 0.8978| 0.9062 | 0.9145| 0.9152
5.00 0.7616 | 0.7692| 0.7764 | 0.7835| 0.7841
10.00 | 0.4788| 0.4836| 0.4881| 0.4926 | 0.4930
-0.50 0.9355| 0.9448| 0.9536 | 0.9623 | 0.9630
1.00 0.9136 | 0.9227| 0.9313| 0.9398 | 0.9405
10 2.50 0.8611 | 0.8697| 0.8778| 0.8858 | 0.8864
5.00 0.7378 | 0.7452| 0.7522| 0.7591 | 0.7596
10.00 | 0.4638| 0.4684 | 0.4728| 0.4771| 0.4774
-0.50 0.9063 | 0.9153| 0.9239| 0.9323| 0.9330
1.00 0.8851 | 0.8939| 0.9023| 0.9106 | 0.9113
20 2.50 0.8342 | 0.8425| 0.8504 | 0.8582 | 0.8588
5.00 0.7147| 0.7218| 0.7285| 0.7352 | 0.7357
10.00 | 0.4493| 0.4538| 0.4580| 0.4622 | 0.4625

Table 3: Risk Ratio Betweerf ; and 6, Under LLF

n=20,a=0.50
m||alo— 0.50 1.00 2.50 5.00 10.00
-0.50 0.9239 | 0.9331| 0.9418| 0.9504 | 0.9511
1.00 0.9023 | 0.9113| 0.9198| 0.9282 | 0.9289
10 2.50 0.8504 | 0.8590| 0.8670| 0.8749 | 0.8756
5.00 0.7287 | 0.7359| 0.7428| 0.7496 | 0.7502
10.00 | 0.4581| 0.4627| 0.467 | 0.4713| 0.4717
-0.50 0.8763 | 0.8850| 0.8933| 0.9014 | 0.9021
1.00 0.8558 | 0.8643| 0.8724| 0.8804 | 0.881
10 2.50 0.8066 | 0.8147| 0.8223 | 0.8298 | 0.8303
5.00 0.6911 | 0.6981| 0.7046 | 0.7111 | 0.7115
10.00 | 0.4345| 0.4388| 0.4429| 0.4469 | 0.4472
-0.50 0.8317| 0.8399| 0.8478| 0.8555 | 0.8562
1.00 0.8122 | 0.8203| 0.828 | 0.8356 | 0.8363
20 2.50 0.7655| 0.7731| 0.7804 | 0.7875| 0.7881
5.00 0.6559 | 0.6624| 0.6685| 0.6747 | 0.6751
10.00 | 0.4123| 0.4164| 0.4203| 0.4241 | 0.4244

5 Numerical Illustration

A simulation is use in order to compare the performance optloposed Bayes estimators in terms of risk ratios under
progressively Type-ll censored sample. According to ktidns of the computer time, we carry out this comparison by
taking the sample sizes as= 20 with three different censoring schemes wiiz= 10,10, 20 (Table 1).
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Table 4: Risk Ratio Betweerf) » and 6, Under ISELF

n=20,a=0.50
m| | alB— 0.50 1.00 2.50 5.00 10.00
-0.50 0.6839 | 0.6908| 0.6973| 0.7036| 0.7042
1.00 0.6680 | 0.6747| 0.6809 | 0.6871| 0.6877
10 2.50 0.6296 | 0.6359| 0.6419 | 0.6478| 0.6482
5.00 0.5395 | 0.5449| 0.5500| 0.5550| 0.5553
10.00 | 0.3392| 0.3425| 0.3457 | 0.3489| 0.3492
-0.50 0.6352 | 0.6414| 0.6475| 0.6534 | 0.6538
1.00 0.6203 | 0.6265| 0.6324 | 0.6382| 0.6386
10 2.50 0.5847 | 0.5906 | 0.5961 | 0.6015| 0.6019
5.00 0.5010| 0.5060| 0.5107 | 0.5154| 0.5157
10.00 | 0.3149| 0.3180| 0.3211| 0.3239| 0.3242
-0.50 0.5906 | 0.5964 | 0.6020| 0.6075| 0.6079
1.00 0.5767 | 0.5825| 0.5880 | 0.5933| 0.5939
20 2.50 0.5436 | 0.5490| 0.5542| 0.5592| 0.5596
5.00 0.4658 | 0.4704| 0.4748| 0.4791| 0.4793
10.00 | 0.2928| 0.2957| 0.2985| 0.3012| 0.3014

Table 5 Risk Ratio Betweerf) » and 6, Under LLF

n=20,a=0.50
ml|alB— 0.50 1.00 2.50 5.00 10.00
-0.50 0.6016 | 0.6077| 0.6134| 0.6189| 0.6195
1.00 0.5876 | 0.5935| 0.5990 | 0.6044 | 0.6049
10 2.50 0.5538 | 0.5594| 0.5647 | 0.5698 | 0.5702
5.00 0.4746 | 0.4793| 0.4838 | 0.4882| 0.4885
10.00 | 0.2984 | 0.3013| 0.3041 | 0.3069| 0.3072
-0.50 0.5588 | 0.5642| 0.5696 | 0.5748| 0.5751
1.00 0.5457 | 0.5511| 0.5563 | 0.5614| 0.5617
10 2.50 0.5143 | 0.5195| 0.5244 | 0.5291| 0.5295
5.00 0.4407 | 0.4451| 0.4492| 0.4534| 0.4536
10.00 | 0.2770| 0.2797 | 0.2825| 0.2849| 0.2852
-0.50 0.5195| 0.5246 | 0.5296 | 0.5344| 0.5347
1.00 0.5073 | 0.5124| 0.5172| 0.5219| 0.5224
20 2.50 0.4782 | 0.4829| 0.4875| 0.4919| 0.4923
5.00 0.4097 | 0.4138| 0.4177| 0.4214| 0.4216
10.00 | 0.2576| 0.2601 | 0.2626 | 0.2650| 0.2651

5.1 When Scale Parameter is Known

The risk ratios between Bayes estimator under LLF and ISBté=pbtained by using following steps:

1.For given values of prior parameter(= —0.50,1.00,2.50,5.00,10.00), a random value of the paramet@ris
generated from prior density given by (5). It is remarkatdestthat the negative value afmakes the natural family
of conjugate prior (5) into the non-conjugate (vague) pridence, all the results are valid for both conjugate and
non-conjugate family of priors.

2.Using the above generated valuesiabbtained in Step (1), we generates a progressively Typersared sample,
of sizemfor given values of censoring schemgi = 1,2,...,m, from the Rayleigh model, according to an algorithm
proposed by Balakrishnan & Aggarwala (2000).

3.The results are based or00, 000 simulation runs. For the selected valuew¢f 0.50,1.00,2.50,5.00,10.00) and
a(=0.50,1.00,1.50), a risk ratio betwee@Ll and é|1 are obtained and presented in Tables 2-3 under the losgamite
ISELF and LLF respectively.

4.1t is seen from both the tables that, the risk ratios ardlsnthan the unity. This shows that the magnitude of riskwit
respect to LLF is smaller than compared to ISELF when othearpaters values are considered to be fixed.
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5.A decreasing trend have been seen for risk ratio whémcreases in both cases. Similar properties also seen when
censoring schemm changed. The opposite trend for risk ratio have noted whercreases.

6.All behaviors of risk ratios based on both loss functioresseeen to be similar. Further, the risk ratios tend to be wide
as the shape parameter of LL&, increases when other parametric values are consider todak fix

5.2 When Scale Parameter is Unknown

When both parameters are considered to be random varibblgsk ratio are obtained as follows:

1.For given values of prior parametgf= 0.50,1.00,2.50,5.00,10.00) a random value of parameteris generated
from prior density given by (14).

2.Using (13) and generated valuesmfobtained the values of parameter A A

3.Following the Steps discuss above and the considerethetiia values, the risk ratio betweépp and6,, are obtained
and presented in Tables 4 and 5, under ISELF and LLF lossioriteespectively.

4.Similar behaviors have been seen for unknown scale paéeammase as compared to known scale parameter case.
Further, it is observed that the magnitude of risk ratiossanaller than compared with previous one. However, the
decrement in magnitude is robust.

6 Conclusion

A comparative study presented in this article for two-pagtanRayleigh model. Under progressive Type-Il right ceado
data, evaluate the properties of Bayes estimators of mta@rameter. Invariant squared error loss function andeEXN
loss function are used for the present comparative studymiilation study has been carrying out for the analysis. It is
observed that the risk ratio between the estimator obtaimelér LLF and ISELF is lesser than unity for all considered
parametric values. This shows that the asymmetric losgitmELF minimizes more risk than compared to ISELF when
other parametric values considered to be fixed. Hence, aalfbatthe risk, one may use LLF instead of ISELF.
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