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Abstract: A comparative study based on two different asymmetric loss functions presented in this article. Two-parameter Rayleigh
model is consider here as the underline model for the presentcomparative study, that evaluate the properties of Bayes estimators under
progressive Type-II right censored data.
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1 Introduction

The two (location-scale) parameter Rayleigh distributionhas the probability density function and cumulative distribution
function, given respectively, by

f (x;θ ,σ) =
x−σ

θ 2 exp

(

−
(x−σ)2

2θ 2

)

; x > σ > 0,θ > 0, (1)

F (x;θ ,σ) = 1− exp

(

−
(x−σ)2

2θ 2

)

; x > σ > 0,θ > 0. (2)

The considered model is useful in life testing experiments,which age with time as its failure rate is a linear function of
time. The present distribution also plays an important rolein communication engineering and electro-vacuum device.

The Rayleigh distribution is often used in physics related fields to model processes such as sound and light radiation,
wave heights, wind speed, as well as in communication theoryto describe hourly median and instantaneous peak power
of received radio signals. It has been used to model the frequency of different wind speeds over a year at wind turbine
sites and daily average wind speed.

In present paper, our focus is on presenting a comparative study of the Bayes estimation under two different asymmetric
loss functions. Both known and unknown cases of scale parameter are considered here for estimation. For evaluation of
performances of the proposed procedures, a simulation study carries out also.

A good deal of literature is available on Rayleigh model under different criterions. A little few of them are Sinha (1990),
Bhattacharya & Tyagi (1990), Fernandez (2000), Hisada & Arizino (2002), Ali-Mousa & Al-Sagheer (2005), Wu et al.
(2006), Kim & Han (2009), Prakash & Prasad (2010).

Soliman et al. (2010) presents some study about estimation and prediction of the inverse Rayleigh distribution based on
lower record values. Dey & Maiti (2012) present some Bayes estimation for Rayleigh parameter under extended
Jeffrey?s prior. Some Bayes estimation based on Rayleigh progressive Type-II censored data with binomial removals was
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discuss by Azimi & Yaghmaei (2013). Recently, Prakash (2013) presents some Bayes estimators for inverse Rayleigh
model. Some Bayesian analysis for Rayleigh distribution also discussed recently by Ahmed et al. (2013).

2 The Progressive Type-II Right Censoring

The censoring arises when exact lifetimes are only partially known and it is useful in life testing experiments for time
and cost restrictions. The progressive censoring appears to be a great importance in planned duration experiments in
reliability studies. In many industrial experiments involving lifetimes of machines or units, experiments have to be
terminated early and the number of failures must be limited for various reasons. In addition, some life tests require
removal of functioning test specimens to collect degradation related information to failure time data. The samples that
arise from such experiments are called censored samples.

The planning of experiments with the aim of reducing the total duration of experiment or the number of failures leads
naturally to the Type-I & Type-II censoring scheme. The maindisadvantage of Type-I & Type-II censoring schemes is
that they do not allow removal of units at points other than the termination point of an experiment. Progressively Type-II
censored sampling is an important method of obtaining data in lifetime studies. Live unties removed early on can be
readily used in others tests, thereby saving cost to experimenter and a compromise can be achieved between time
consumption and the observation of some extreme values.

The Progressive Type-II right censoring scheme is describes as follows:

Let us suppose an experiment in whichn independent and identical unitsX1,X2, ...,Xn are placed on a life test at the
beginning time and firstm;(1 ≤ m ≤ n) failure times are observed. At the time of each failure occurring prior to the
termination point, one or more surviving units are removed from the test. The experiment is terminated at the time ofmth

failure, and all remaining surviving units are removed fromthe test.

Let x(1) ≤ x(2) ≤ ... ≤ x(m) are the lifetimes of completely observed units to fail andR1,R2, ...,Rm;(m ≤ n) are the
numbers of units withdrawn at these failure times. Here,R1,R2, ...,Rm;(m ≤ n) all are predefined integers follows the
relation

m

∑
j=1

R j +m = n.

At first failure time x(1), withdraw R1 items randomly from remainingn − 1 surviving units. Immediately after the
second observed failure timex(2),R2 items are withdrawn from remainingn−2−R1 surviving units at random, and so

on. The experiments continue until atmth failure timex(m), the remaining itemsRm = n−m−∑m−1
j=1 R j are withdrawn.

Here, X (R1,R2,...,Rm)
1:m:n ,X (R1,R2,...,Rm)

2:m:n , ...,X (R1,R2,...,Rm)
m:m:n be m ordered failure times and(R1,R2, ...,Rm) be the progressive

censoring scheme (Balakrishnan & Aggarwala, 2000).

The resultingm ordered values, which are obtained as a consequence of this type of censoring, are appropriately referred
to as progressively Type-II right censored order statistics.

Progressively Type-II right censoring scheme reduces to conventional Type-II censoring scheme if

Ri = 0∀ i = 1,2, ...,m−1 ⇒ Rm = n−m

and reduces to complete sample case if

Ri = 0∀ i = 1,2, ...,m ⇒ n = m.

Based on progressively Type-II censoring scheme, the jointprobability density function of order statistic

X (R1,R2,...,Rm)
1:m:n ,X (R1,R2,...,Rm)

2:m:n , ...,X (R1,R2,...,Rm)
m:m:n is defined as

f(X1:m:n,X2:m:n,...,Xm:m:n) (θ ,σ |x) = Km

m

∏
i=1

f
(

x(i);θ ,σ
)

.
(

1−F
(

x(i);θ ,σ
))Ri ; (3)
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here f (.) andF(.) are given respectively by (1) and (2) andKm is a progressive normalizing constant defined as

Km = n(n−R1−1)(n−R1−R2−2) ...

(

n+1−
m−1

∑
j=1

R j −m

)

.

The progressive Type-II censored sample is denoted byx ≡
(

x(1),x(2), ...,x(m)

)

and (R1,R2, ...,Rm) being progressive
censoring scheme for the considered Rayleigh model.

Substituting (1) and (2) in (3), the joint probability density function is obtain as:

f(X1:m:n,X2:m:n,...,Xm:m:n) (θ ,σ |x) = Km Hm (x,σ) θ−2m exp

(

−
Tp (x,σ)

2θ 2

)

; (4)

whereHm (x,σ) = ∏m
i=1

(

x(i)−σ
)

andTp (x,σ) = ∑m
i=1 (Ri +1)

(

x(i)−σ
)2
.

It is noted here that when scale parameter is zero (i.e.,σ = 0) ;
(

x2
(i)

(

2θ 2
)−1
)

∀ i = 1,2, ...,n, is distributed Exponential

with mean two and the distribution of∑m
i=1 x2

(i) (Ri +1) is Gamma with shape parameterm and scale parameter two.

3 Bayes Estimation when Scale Parameter is Known

Assuming the scale parameterσ is known and location parameterθ is a random variable. A conjugate family of prior
density for parameterθ is considered here as an inverted Gamma with probability density function

g1 (θ ) ∝ θ−2α−1exp

(

−
1

2θ 2

)

; α > 0,θ > 0. (5)

There is clearly no way in which one can say that one prior is better than other. It is more frequently the case that, we
select to restrict attention to a given flexible family of priors, and we choose one from that family, which seems to match
best with our personal beliefs. The prior (5) has advantagesover many other distributions because of its analytical
tractability, richness and easy interpretability.

Based on Bayes theorem, the posterior density is defined as

π (θ |x,σ) =
f(X1:m:n,X2:m:n,...,Xm:m:n) (θ ,σ |x) .g1 (θ )

∫

θ f(X1:m:n,X2:m:n,...,Xm:m:n) (θ ,σ |x) .g1 (θ )dθ
. (6)

Using (4) and (5) in (6), the posterior density is obtain as

π (θ |x,σ) =
Km Hm (x,σ)θ−2m exp

(

−
Tp(x,σ)

2θ2

)

.θ−2α−1exp
(

− 1
2θ2

)

∫

θ Km Hm (x,σ)θ−2m exp
(

−
Tp(x,σ)

2θ2

)

.θ−2α−1exp
(

− 1
2θ2

)

dθ
.

After simplification

π (θ |x,σ) = η∗ exp

(

−
T̂p (x,σ)

2θ 2

)

θ−2(m+α)−1 (7)

whereη∗ =
T̂p(x,σ)m+α

Γ (m+α)2m+α−1 andT̂p (x,σ) = Tp (x,σ)+1.

The selection of loss function may be crucial in Bayesian analysis. It has always been recognized that the most
commonly used loss function, squared error loss function (SELF) is inappropriate in many situations. If SELF is taken as
a measure of inaccuracy then the resulting risk is often too sensitive to assumptions about the behavior of tail of the
probability distribution. To overcome this difficulty, a useful asymmetric loss function based on the squared error loss
function is say as invariant squared error loss function (ISELF) and defined for any estimatêθ corresponding to the
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parameterθ as

L
(

θ̂ ,θ
)

=
(

θ−1∂
)2

; ∂ = θ̂ −θ . (8)

The Bayes estimator corresponding to location parameterθ under ISELF is obtained as

θ̂I1 =
[

E
(

θ−1)][E
(

θ−2)]−1

=

[

∫

θ
θ−1π (θ |x,σ)dθ

][

∫

θ
θ−2π (θ |x,σ)dθ

]−1

⇒ θ̂I1 = ϕ1

√

T̂p (x,σ)

2
; ϕ1 =

Γ
(

m+α +2−1
)

Γ (m+α +1)
. (9)

When positive and negative errors have different consequences, the use of SELF or ISELF in Bayesian estimation may
not be appropriate. In addition, in some estimation problems overestimation is more serious than the underestimation,or
vice-versa. To deal with such cases, a useful and flexible class of asymmetric loss function (LINEX loss function (LLF))
is given as

L(∂ ∗) = ea∂ ∗
− a∂ ∗−1;a 6= 0,∂ ∗ =

(

θ−1∂
)

.

The shape parameter of LLF is denoted by′a′. Negative (positive) value of′a′, gives more weight to overestimation
(underestimation) and its magnitude reflect the degree of asymmetry. It is also seen that, fora = 1, the function is quite
asymmetric with overestimation being more costly than underestimation. For small values of|a|, the LLF is almost
symmetric and is not far from SELF.

Bayes estimator̂θL1 of location parameterθ under LLF is obtain by simplifying following equality

E

{

1
θ

exp

(

−a
θ̂L1

θ

)}

= eaE

(

1
θ

)

⇒

∫

θ
θ−1exp

(

−a
θ̂L1

θ

)

π (θ |x,σ)dθ = ea
∫

θ
θ−1π (θ |x,σ)dθ

⇒

∫

θ

exp
{

−a θ̂L1
θ −

T̂p(x,σ)

2θ2

}

θ 2(m+α+1)
dθ =

ea

2
Γ (m+α +2−1)

(

2

T̂p (x,σ)

)(m+α+2−1)

. (10)

A nice closed form of Bayes estimatorθ̂L1 does not exist. However, a numerical technique is applied here for obtaining
the numerical value of the estimate by solving given equality.

4 Bayes Estimation when Scale Parameter is Unknown

When location and scale both parameters are consider as random variable, the joint probability density function under
progressive Type - II censoring criterion is given by

f(X1:m:n,X2:m:n,...,Xm:m:n) (θ ,σ |x) = Km Hm (x,σ)θ−2mexp

(

−
Tp (x,σ)

2θ 2

)

. (11)

It is clear from (11) that, the functionHm (x,σ) andTp (x,σ) both depends upon scale parameterσ . Hence, in present
case when both parameters are consider being random variables, the joint prior density for parameterθ andσ is defined
as

g(θ ,σ) = g2 (θ |σ) .g3 (σ) . (12)
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Hereg2 (θ |σ) andg3 (σ) are the inverted gamma densities and defined as

g2(θ |σ) =
θ−2σ−1e−1/2θ2

Γ (σ)2σ−1 ;θ > 0,σ > 0, (13)

and

g3 (σ) =
σ−2β−1e−1/2σ2

Γ (β )2β−1
;σ > 0,β > 0. (14)

The joint posterior density function is now obtained as

π∗ (θ ,σ |x) =
f(X1:m:n,X2:m:n,...,Xm:m:n) (θ ,σ |x) .g(θ ,σ)

∫

σ
∫

θ f(X1:m:n,X2:m:n,...,Xm:m:n) (θ ,σ |x) .g(θ ,σ)dθdσ

=

(

θ−2(σ+m)−1exp
(

−
T̂p(x,σ)

2θ2

))(

Hm(x,σ)
Γ (σ)2σ σ−2β−1exp

(

− 1
2σ2

))

∫

σ
Hm(x,σ)
Γ (σ)2σ σ−2β−1exp

(

− 1
2σ2

)

∫

θ θ−2(σ+m)−1exp
(

−
T̂p(x,σ)

2θ2

)

dθdσ

π∗ (θ ,σ |x) = ¯̄σ
(

θ−2(σ+m)−1exp

(

−
T̂p (x,σ)

2θ 2

))(

Hm (x,σ)

Γ (σ)2σ σ−2β−1exp

(

−
1

2σ2

))

; (15)

where ¯̄σ = 1
2m−1σ̄ andσ̄ =

∫

σ
Γ (m+σ)

Γ (σ)
Hm(x,σ)

(T̂p(x,σ))
m+σ σ−2β−1exp

(

− 1
2σ2

)

dσ .

The marginal posterior density corresponding to the parameterθ is given as

π∗∗ (θ |σ ,x) =
∫

σ
π∗ (θ ,σ |x)dσ . (16)

Now, the Bayes estimator corresponding to location parameterθ under ISELF is obtain by solving following equality

θ̂I2 =

[

∫

θ
θ−1π∗∗ (θ |x,σ)dθ

][

∫

θ
θ−2π∗∗ (θ |x,σ)dθ

]−1

θ̂I2 =

∫

θ θ−2(m+1)exp
(

−
T̂p(x,σ)

2θ2

)

∫

σ

(

Hm(x,σ)
Γ (σ)2σ σ−2β−1θ−2σ exp

(

− 1
2σ2

))

dσdθ
∫

θ θ−2m−3exp
(

−
T̂p(x,σ)

2θ2

)

∫

σ

(

Hm(x,σ)
Γ (σ)2σ σ−2β−1θ−2σ exp

(

− 1
2σ2

))

dσdθ
(17)

Similarly, the Bayes estimator corresponding to LLF for parameterθ is obtain by solving following equality
∫

θ
θ−1e−aθ̂L2/θ π∗∗ (θ |x,σ)dθ = ea

∫

θ
θ−1 π∗∗ (θ |x,σ)dθ

⇒
∫

θ
exp

(

−a
θ̂L2

θ
−

T̂p (x,σ)

2θ 2

)

θ−2(m+1)
∫

σ

(

Hm (x,σ)

Γ (σ)2σ σ−2β−1θ−2σ exp

(

−
1

2σ2

))

dσdθ

= ea
∫

θ
exp

(

−
T̂p (x,σ)

2θ 2

)

θ−2(m+1)
∫

σ

(

Hm (x,σ)

Γ (σ)2σ σ−2β−1θ−2σ exp

(

−
1

2σ2

))

dσdθ . (18)

Again, it is clear from equations (17) and (18) that, there are no any possible close forms of the estimators. Hence, for
obtaining the numerical values of the estimates we considerhere a numerical technique.
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Table 1: Censoring Scheme for Different Values ofm

Case m Ri ∀ i = 1,2, ...,m
1 10 1 2 1 0 0 1 2 0 0 0
2 10 1 0 0 3 0 0 1 0 0 1
3 20 1 0 2 0 0 1 0 2 0 0 0 1 0 0 0 1 0 0 1 0

Table 2: Risk Ratio Between̂θL1 andθ̂I1 Under ISELF

n = 20,a = 0.50
m ↓ α ↓ σ → 0.50 1.00 2.50 5.00 10.00

-0.50 0.9657 0.9753 0.9844 0.9934 0.9941
1.00 0.9431 0.9525 0.9614 0.9702 0.9709

10 2.50 0.8889 0.8978 0.9062 0.9145 0.9152
5.00 0.7616 0.7692 0.7764 0.7835 0.7841
10.00 0.4788 0.4836 0.4881 0.4926 0.4930
-0.50 0.9355 0.9448 0.9536 0.9623 0.9630
1.00 0.9136 0.9227 0.9313 0.9398 0.9405

10 2.50 0.8611 0.8697 0.8778 0.8858 0.8864
5.00 0.7378 0.7452 0.7522 0.7591 0.7596
10.00 0.4638 0.4684 0.4728 0.4771 0.4774
-0.50 0.9063 0.9153 0.9239 0.9323 0.9330
1.00 0.8851 0.8939 0.9023 0.9106 0.9113

20 2.50 0.8342 0.8425 0.8504 0.8582 0.8588
5.00 0.7147 0.7218 0.7285 0.7352 0.7357
10.00 0.4493 0.4538 0.4580 0.4622 0.4625

Table 3: Risk Ratio Between̂θL1 andθ̂I1 Under LLF

n = 20,a = 0.50
m ↓ α ↓ σ → 0.50 1.00 2.50 5.00 10.00

-0.50 0.9239 0.9331 0.9418 0.9504 0.9511
1.00 0.9023 0.9113 0.9198 0.9282 0.9289

10 2.50 0.8504 0.8590 0.8670 0.8749 0.8756
5.00 0.7287 0.7359 0.7428 0.7496 0.7502
10.00 0.4581 0.4627 0.467 0.4713 0.4717
-0.50 0.8763 0.8850 0.8933 0.9014 0.9021
1.00 0.8558 0.8643 0.8724 0.8804 0.881

10 2.50 0.8066 0.8147 0.8223 0.8298 0.8303
5.00 0.6911 0.6981 0.7046 0.7111 0.7115
10.00 0.4345 0.4388 0.4429 0.4469 0.4472
-0.50 0.8317 0.8399 0.8478 0.8555 0.8562
1.00 0.8122 0.8203 0.828 0.8356 0.8363

20 2.50 0.7655 0.7731 0.7804 0.7875 0.7881
5.00 0.6559 0.6624 0.6685 0.6747 0.6751
10.00 0.4123 0.4164 0.4203 0.4241 0.4244

5 Numerical Illustration

A simulation is use in order to compare the performance of theproposed Bayes estimators in terms of risk ratios under
progressively Type-II censored sample. According to limitations of the computer time, we carry out this comparison by
taking the sample sizes asn = 20 with three different censoring schemes wiz,m = 10,10,20 (Table 1).
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Table 4: Risk Ratio Between̂θL2 andθ̂I2 Under ISELF

n = 20,a = 0.50
m ↓ α ↓ β → 0.50 1.00 2.50 5.00 10.00

-0.50 0.6839 0.6908 0.6973 0.7036 0.7042
1.00 0.6680 0.6747 0.6809 0.6871 0.6877

10 2.50 0.6296 0.6359 0.6419 0.6478 0.6482
5.00 0.5395 0.5449 0.5500 0.5550 0.5553
10.00 0.3392 0.3425 0.3457 0.3489 0.3492
-0.50 0.6352 0.6414 0.6475 0.6534 0.6538
1.00 0.6203 0.6265 0.6324 0.6382 0.6386

10 2.50 0.5847 0.5906 0.5961 0.6015 0.6019
5.00 0.5010 0.5060 0.5107 0.5154 0.5157
10.00 0.3149 0.3180 0.3211 0.3239 0.3242
-0.50 0.5906 0.5964 0.6020 0.6075 0.6079
1.00 0.5767 0.5825 0.5880 0.5933 0.5939

20 2.50 0.5436 0.5490 0.5542 0.5592 0.5596
5.00 0.4658 0.4704 0.4748 0.4791 0.4793
10.00 0.2928 0.2957 0.2985 0.3012 0.3014

Table 5: Risk Ratio Between̂θL2 and ˆθI2 Under LLF

n = 20,a = 0.50
m ↓ α ↓ β → 0.50 1.00 2.50 5.00 10.00

-0.50 0.6016 0.6077 0.6134 0.6189 0.6195
1.00 0.5876 0.5935 0.5990 0.6044 0.6049

10 2.50 0.5538 0.5594 0.5647 0.5698 0.5702
5.00 0.4746 0.4793 0.4838 0.4882 0.4885
10.00 0.2984 0.3013 0.3041 0.3069 0.3072
-0.50 0.5588 0.5642 0.5696 0.5748 0.5751
1.00 0.5457 0.5511 0.5563 0.5614 0.5617

10 2.50 0.5143 0.5195 0.5244 0.5291 0.5295
5.00 0.4407 0.4451 0.4492 0.4534 0.4536
10.00 0.2770 0.2797 0.2825 0.2849 0.2852
-0.50 0.5195 0.5246 0.5296 0.5344 0.5347
1.00 0.5073 0.5124 0.5172 0.5219 0.5224

20 2.50 0.4782 0.4829 0.4875 0.4919 0.4923
5.00 0.4097 0.4138 0.4177 0.4214 0.4216
10.00 0.2576 0.2601 0.2626 0.2650 0.2651

5.1 When Scale Parameter is Known

The risk ratios between Bayes estimator under LLF and ISELF,are obtained by using following steps:

1.For given values of prior parameterα(= −0.50,1.00,2.50,5.00,10.00), a random value of the parameterθ is
generated from prior density given by (5). It is remarkable here that the negative value ofα makes the natural family
of conjugate prior (5) into the non-conjugate (vague) prior. Hence, all the results are valid for both conjugate and
non-conjugate family of priors.

2.Using the above generated values ofθ obtained in Step (1), we generates a progressively Type-II censored sample,
of sizem for given values of censoring schemeRi; i = 1,2, ...,m, from the Rayleigh model, according to an algorithm
proposed by Balakrishnan & Aggarwala (2000).

3.The results are based on 1,00,000 simulation runs. For the selected values ofσ(= 0.50,1.00,2.50,5.00,10.00) and
a(= 0.50,1.00,1.50), a risk ratio between̂θL1 andθ̂I1 are obtained and presented in Tables 2-3 under the loss criterion
ISELF and LLF respectively.

4.It is seen from both the tables that, the risk ratios are smaller than the unity. This shows that the magnitude of risk with
respect to LLF is smaller than compared to ISELF when other parameters values are considered to be fixed.
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5.A decreasing trend have been seen for risk ratio whenα increases in both cases. Similar properties also seen when
censoring schemem changed. The opposite trend for risk ratio have noted whenσ increases.

6.All behaviors of risk ratios based on both loss functions are seen to be similar. Further, the risk ratios tend to be wider
as the shape parameter of LLF,′a′ increases when other parametric values are consider to be fixed.

5.2 When Scale Parameter is Unknown

When both parameters are considered to be random variable, the risk ratio are obtained as follows:

1.For given values of prior parameterβ (= 0.50,1.00,2.50,5.00,10.00) a random value of parameterσ is generated
from prior density given by (14).

2.Using (13) and generated values ofσ , obtained the values of parameterθ .
3.Following the Steps discuss above and the considered parametric values, the risk ratio betweenθ̂L2 andθ̂I2 are obtained

and presented in Tables 4 and 5, under ISELF and LLF loss criterion respectively.
4.Similar behaviors have been seen for unknown scale parameter case as compared to known scale parameter case.

Further, it is observed that the magnitude of risk ratios aresmaller than compared with previous one. However, the
decrement in magnitude is robust.

6 Conclusion

A comparative study presented in this article for two-parameter Rayleigh model. Under progressive Type-II right censored
data, evaluate the properties of Bayes estimators of location parameter. Invariant squared error loss function and LINEX
loss function are used for the present comparative study. A simulation study has been carrying out for the analysis. It is
observed that the risk ratio between the estimator obtainedunder LLF and ISELF is lesser than unity for all considered
parametric values. This shows that the asymmetric loss function LLF minimizes more risk than compared to ISELF when
other parametric values considered to be fixed. Hence, on behalf of the risk, one may use LLF instead of ISELF.
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