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Shell model is a conventional tool for nuclear structure studies. Some states obtained
in such studies belong to the continuum nuclear spectrum, i.e. their energies are above
nuclear dissociation thresholds. These energies are conventionally associated with the
energies of resonances in respective nuclear systems that is justified only in the case
of narrow resonances. In this contribution, we develop a J-matrix inverse scattering
approach which can be used for the analysis of scattering phase shifts and generating
eigenenergies in the continuum directly related to the ones obtained in shell model
applications in a given model model space and with a given value of the oscillator basis
parameter ~Ω. This relationship is of a particular interest in the cases when a nuclear
many-body system does not have a resonant state or the resonance is broad and its
energy can differ significantly from the shell model eigenstate. After discussing the J-
matrix inverse scattering technique, we apply it to the analysis of nα and pα scattering.
The results are compared with the No-core Shell Model calculations of 5He and 5Li.

1 Introduction

An essential progress was achieved recently in ab initio studies of nuclear structure.
This progress is supported by the development of the supercomputer hardware as well as
by the design of new adequate many-body approaches and respective parallel computing
codes. The No-core Shell Model (NCSM) [1–3] is one of the most promising modern ab
initio approaches in nuclear physics. NCSM is able to provide accurate predictions for
nuclei with the mass number A up through approximately A ≈ 20 [4–7]. This approach
utilizes a traditional many-body oscillator basis, the available respective computer codes [3]
are scalable and well-adjusted to modern supercomputer facilities. For example, a recent
NCSM calculation [7] of 14F, an exotic neutron-deficient nucleus, required a diagonaliza-
tion of a 2 · 109× 2 · 109 matrix which was performed using approximately 32,000 parallel
compute nodes.
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The NCSM is well-suited for the studies of discrete spectrum states in light nuclei.
However, the NCSM predictions regarding the continuum spectrum states, is less definite.
The eigenstates above reaction thresholds obtained in NCSM and other many-body nuclear
structure theories based on the oscillator basis expansion (e.g., in the resonating group
model), are conventionally associated with the energies of experimentally observed reso-
nances. This is well-justified for narrow resonances, however these eigenenergies can differ
significantly from the resonance energies in the case of wide enough resonances. Note also
that NCSM generates continuum eigenstates with quantum numbers associated with non-
resonant scattering in respective nuclear systems. An interpretation of such eigenstates is
dubious. One needs a theory able to relate NCSM continuum states with experimentally
observed scattering phase shifts.

The NCSM eigenenergies can be put in correspondence with scattering phase shifts by
means of J-matrix formalism in scattering theory. The J-matrix formalism was introduced
in atomic physics [8,9]. Later this approach was independently rediscovered [10] in nuclear
physics and was heavily used in various nuclear applications mostly within cluster models
(see, e.g., [11]). For analysis of scattering data and relating them to shell model results, we
use here the inverse scattering oscillator-basis J-matrix formalism. The initial version of
this formalism was suggested in [12]. It was further developed in [13] where some useful
analytical formulas exploited in this paper, were derived. The J-matrix parameterization of
scattering phase shifts was shown in [13] to be very accurate in describing NN scattering
data. This parameterization was used to construct high-quality non-local J-matrix inverse
scattering NN potentials JISP6 [14] and JISP16 [4].

In what follows, after presenting the J-matrix inverse scattering formalism, we demon-
strate that it can be used for a high-quality parameterization of scattering phase shifts in
elastic scattering of nuclear systems using nα as an example. The resonance parameters,
its energy and width, can be easily extracted from the J-matrix parameterization. Probably
J-matrix will become competitive with the R-matrix [15] which is conventionally used
now in the analysis of scattering data,

The J-matrix parameterization naturally provides eigenstates that should be obtained
in the shell model or any other many-body nuclear structure theory based on the oscillator
basis expansion to support the experimental nucleon-nucleus scattering phase shifts in any
given model space and with any given oscillator spacing ~Ω. The shell model eigenstates
are provided by the J-matrix phase shift parameterization not only in the case of reso-
nances, narrow and wide ones, but also in the case of non-resonant scattering as well, for
example, in the case of nα scattering in the 1

2

+ partial wave. We will explore these corre-
spondences between the J-matrix properties and results from nuclear structure calculations
in some detail below.

Next, we extend the oscillator-basis J-matrix inverse scattering approach of [13] to the
case of charged particles using the formalism developed in [16]. This extended formalism
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is shown to work well in the description of pα scattering and the extraction of pα reso-
nance energies and widths. The shell model eigenstates desired for the description of the
experimental phase shifts, are also provided by the Coulomb-extended J-matrix inverse
scattering formalism.

We also carry out NCSM calculations of 5He and 5Li nuclei and compare the obtained
eigenstates with the ones derived from the J-matrix parameterizations of nα and pα scat-
tering.

2 J -Matrix Direct and Inverse Scattering Formalism

The J-matrix formalism [9] utilizes either the oscillator basis or the so-called Laguerre
basis of a Sturmian type. The oscillator basis is of a particular interest for nuclear appli-
cations. Here we present a sketch of the oscillator-basis J-matrix formalism (more details
can be found in [9, 16, 17]) and some details of the inverse scattering J-matrix approach
of [13]. The extension of J-matrix inverse scattering formalism to the case of charged
particles is suggested in subsection 2.2 while subsection 2.3 describes how to relate the
J-matrix inverse scattering results to those of the shell model.

2.1 Scattering of uncharged particles

Scattering in the partial wave with orbital angular momentum l is governed by a radial
Schrödinger equation

H l ul(E, r) = E ul(E, r). (2.1)

Here r = |r|, r = r1 − r2 is the relative coordinate of colliding particles and E is the
energy of their relative motion. Within the J-matrix formalism, the radial wave function
ul(E, r) is expanded in the oscillator function series

ul(E, r) =
∞∑

n=0

anl(E)Rnl(r), (2.2)

where the oscillator functions

Rnl(r) = (−1)n

√
2n!

r3
0 Γ(n + l + 3/2)

(
r

r0

)l

exp
(
− r2

2r2
0

)
Ll+1/2

n

(
r2

r2
0

)
, (2.3)

Lα
n(x) is the associated Laguerre polynomial, the oscillator radius r0 =

√
~/mΩ, and

m = m1m2/(m1 + m2) is the reduced mass of the particles with masses m1 and m2.
The wave function in the oscillator representation anl(E) is a solution of an infinite set of
algebraic equations

∞∑

n′=0

(H l
nn′ − δnn′E) an′l(E) = 0, (2.4)
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where the Hamiltonian matrix elements H l
nn′ = T l

nn′ + V l
nn′ , the nonzero kinetic energy

matrix elements

T l
nn =

~Ω
2

(2n + l + 3/2),

T l
n+1,n = T l

n,n+1 = − ~Ω
2

√
(n + 1)(n + l + 3/2),

(2.5)

and the potential energy V l within the J-matrix formalism is a finite-rank matrix with
elements

Ṽ l
nn′ =

{
V l

nn′ if n and n′ ≤ N ;
0 if n or n′ > N .

(2.6)

The potential energy matrix truncation (2.6) is the only approximation of the J-matrix
approach. The kinetic energy matrix is not truncated, the wave functions are eigenvectors
of the infinite Hamiltonian matrix H l

nn′ which is a superposition of the truncated potential
energy matrix Ṽ l

nn′ and the infinite tridiagonal kinetic energy matrix T l
nn′ . Note that the

Hamiltonian matrix, i.e. both the kinetic and potential energy matrices, are truncated in
conventional oscillator-basis approaches like the shell model. Hence the J-matrix formal-
ism can be used for a natural extension of the shell model. Note also that within the inverse
scattering J-matrix approach, when the potential energy is represented by the finite matrix
(2.6), one obtains the exact scattering solutions, phase shifts and other observables in the
continuum spectrum (see [13] for more details).

The phase shift δl and the S-matrix are expressed in the J-matrix formalism as

tan δl = − SN l(E)− GNN (E)T l
N ,N+1 SN+1, l(E)

CN l(E)− GNN (E)T l
N ,N+1 CN+1, l(E)

, (2.7)

S =
C

(−)
N l (E) − GNN (E)T l

N ,N+1 C
(−)
N+1, l(E)

C
(+)
N l (E) − GNN (E)T l

N ,N+1 C
(+)
N+1, l(E)

, (2.8)

where N + 1 is the rank of the potential energy matrix (2.6), the kinetic energy matrix
elements T l

nn′ are given by Eqs. (2.5), regular Snl(E) and irregular Cnl(E) eigenvectors
of the infinite kinetic energy matrix are

Snl(E) =

√
π r0 n!

Γ(n + l + 3/2)
ql+1 exp

(
−q2

2

)
Ll+1/2

n (q2), (2.9)

Cnl(E) = (−1)l

√
π r0 n!

Γ(n + l + 3/2)
q−l exp

(−q2/2
)

Γ(−l + 1/2)
Φ(−n− l − 1/2, −l + 1/2; q2),

(2.10)
C

(±)
nl (E) = Cnl(E) ± iSnl(E), Φ(a, b; z) is a confluent hypergeometric function, the

dimensionless momentum q =
√

2E/(~Ω). The matrix elements,

Gnn′(E) = −
N∑

λ=0

〈n|λ〉〈λ|n′〉
Eλ − E

, (2.11)
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are expressed through the eigenvalues Eλ and eigenvectors 〈n|λ〉 of the truncated Hamil-
tonian matrix, i.e. Eλ and 〈n|λ〉 are obtained by solving the algebraic problem

N∑

n′=0

H l
nn′〈n′|λ〉 = Eλ〈n|λ〉, n ≤ N . (2.12)

Only one diagonal matrix element GNN (E),

GNN (E) = −
N∑

λ=0

〈N |λ〉2
Eλ − E

, (2.13)

is responsible for the phase shifts and the S-matrix.
The J-matrix wave function is given by Eq. (2.2) where

anl(E) = cos δl Snl(E) + sin δl Cnl(E) (2.14)

in the ‘asymptotic region’ of the oscillator model space, n ≥ N . Asymptotic behavior
[9, 16, 17] of functions S (E, r) and C (E, r) defined as infinite series,

S (E, r) ≡
∞∑

n=0

Snl(E) Rnl(r) = k jl(kr) −→
r→∞

1
r

sin(kr − πl/2) (2.15)

and

C (E, r) ≡
∞∑

n=0

Cnl(E)Rnl(r) −→
r→∞

−k nl(kr) −→
r→∞

1
r

cos(kr − πl/2) (2.16)

[here jl(x) and nl(x) are spherical Bessel and Neumann functions, and momentum k =
q/r0], assures the correct asymptotics of the wave function (2.2) at positive energies E,

ul(E, r) −→
r→∞

k [cos δl jl(kr)− sin δl nl(kr)] −→
r→∞

1
r

sin[kr + δl − πl/2]. (2.17)

In the ‘interaction region’, n < N , anl(E) are expressed through matrix elements GnN (E)
(see [9, 16, 17] for more details). However a limited number of rapidly decreasing with
r terms with n < N in expansion (2.2) does not affect asymptotics of the continuum
spectrum wave function.

A similarity between the J-matrix and R-matrix approaches was discussed in detail
in [16]. Note that the oscillator function Rnl(r) tends to a δ-function in the limit of large
n [10, 17],

Rnl(r) −→
n→∞

√
2r0 r−3/2 δ(r − rcl

n ), (2.18)

where

rcl
n = 2r0

√
n + l/2 + 3/4 (2.19)
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is the classical turning point of the harmonic oscillator eigenstate described by the function
Rnl(r). Therefore expansion (2.2) describes the wave function ul(E, r) at large distances
from the origin in a very simple manner: each term with large enough n gives the amplitude
of ul(E, r) at the respective point r = rcl

n . Within the J-matrix approach, the oscillator
representation wave functions anl(E) in the ‘asymptotic region’ of n ≥ N and in the
‘interaction region’ of n ≤ N are matched at n = N [9, 16, 17]. This is equivalent to
the R-matrix matching condition at the channel radius r = b — the J-matrix formalism
reduces to those of the R-matrix with channel radius b = rcl

N if N is asymptotically large.
In particular, the function GNN (E) [see (2.13)] was shown in [16] to be proportional to the
P -matrix (that is the inverse R-matrix) in the limit of N →∞.

At small enough values of n, oscillator functions Rnl(r) differ essentially from the
δ-function. Therefore the J-matrix with realistic values of truncation boundary N differs
essentially from the R-matrix approach with realistic channel radius values b. It appears
that the J-matrix formalism with its matching condition in the oscillator model space, is
somewhat better suited to traditional nuclear structure models like the shell model.

In the inverse scattering J-matrix approach, the phase shifts δl are supposed to be
known at any energy E and we are parameterizing them by Eqs. (2.7), (2.9), (2.10), and
(2.13), i.e. one should find the eigenvalues Eλ and the eigenvector components 〈N |λ〉 pro-
viding a good description of the phase shifts. If the set of Eλ and 〈N |λ〉 values is known,
i.e. the function GNN (E) is completely defined, the S-matrix poles are obtained by solving
numerically an obvious equation,

C
(+)
N l (E) − GNN (E)T l

N ,N+1 C
(+)
N+1, l(E) = 0, (2.20)

where solutions for q (or E = q2~Ω/2) should be searched for in the desired domain of the
complex plane.

Knowing the phase shifts δl in a large enough energy interval 0 ≤ E < Emax, one gets
the set of eigenenergies Eλ, λ = 0, 1, . . . , N by solving numerically the equation

aN+1,l(E) = 0, (2.21)

where aN+1,l(E) is given by Eq. (2.14). The equation (2.21) has exactly N + 1 solutions.
The last components 〈N |λ〉 of the eigenvectors 〈n|λ〉 responsible for the phase shifts and
the S-matrix, are obtained as

|〈N |λ〉|2 =
aN l(Eλ)

αλ
l T l

N ,N+1

, (2.22)

where

αλ
l =

d aN+1, l(E)
dE

∣∣∣∣
E=Eλ

. (2.23)

The physical meaning of the Eqs. (2.21), (2.22) is the following. The equation (2.21)
guarantees that the phase shifts δl exactly reproduce the experimental phase shifts at the
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energies E = Eλ. The equation (2.22) fixes the derivatives of the phase shifts dδl/dE at
the energies E = Eλ fitting them exactly to the derivatives of the experimental phase shifts
at the same energies.

The solutions Eλ and 〈N |λ〉, λ = 0, 1, . . . , N depend strongly on the values of the
oscillator spacing ~Ω and N , the size of the inverse scattering potential matrix. Larger
values of N and/or ~Ω, imply a larger energy interval 0 ≤ E < Emax where the phase
shifts are reproduced by the J-matrix parameterization (2.7).

A Hermitian Hamiltonian generates a set of normalized eigenvectors 〈n|λ〉 fitting the
completeness relation,

N∑

λ=0

|〈N |λ〉|2 = 1. (2.24)

Experimental phase shifts generate a set of 〈N |λ〉, λ = 0, 1, . . . , N that usually does
not fit Eq. (2.24). It is likely that the interval of energy values used to find the sets of
Eλ and 〈N |λ〉, spreads beyond the thresholds where new channels are opened. Thus in-
elastic channels are present in the system suggesting the Hamiltonian should become non-
Hermitian. The approach proposed in [13], suggests to fit Eq. (2.24) by changing the value
of the component 〈N |λ = N〉 corresponding to the largest among the energies Eλ with
λ = N . This energy Eλ=N is usually larger than Emax, the maximal energy in the interval
0 ≤ E < Emax where the experimental phase shifts are available. Therefore changing
〈N |λ = N〉 should not spoil the phase shift description in the desired interval of energies
below Emax; more over, one can also vary subsequently the energy Eλ=N to improve the
description of the phase shifts in the interval 0 ≤ E < Emax.

We are not discussing here the construction of the inverse scattering potential but point
the interested reader to [13]. We note only that if the construction of the J-matrix inverse
scattering potential is desired, one should definitely fit Eq. (2.24), otherwise the construc-
tion of the Hermitian interaction is impossible. In our applications to nα and pα scattering
we are interested only in the J-matrix parameterization of scattering phase shifts; hence
we can avoid renormalization of the component 〈N |λ = N〉. Nevertheless, we found out
that this renormalization improves the phase shifts description at energies E not close to
Eλ values. All the results presented below were obtained with the help of Eq. (2.24).

2.2 Charged particle scattering

In the case of a charged projectile scattered by a charged target, the interaction between
them is a superposition of a short-range nuclear interaction, V Nucl, and the Coulomb in-
teraction, V C :

V = V Nucl + V C . (2.25)
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The Coulomb interaction between proton and nucleus is conventionally described as (see,
e.g., [18])

V C = Ze2 erf(r/x0)
r

. (2.26)

In the case of pα scattering discussed below, Z = 2 and x0 = 1.64 fm [18].
The long-range Coulomb interaction (2.26) requires some modification of the

oscillator-basis J-matrix formalism described in the previous subsection. In the case of
charged particle scattering, the wave function ul(E, r) at asymptotically large distances
takes a form:

ul(E, r) = k [cos δl fl(ζ, kr)− sin δl gl(ζ, kr)], (2.27)

where

fl(ζ, kr) =
1
kr

Fl(ζ, kr), (2.28)

gl(ζ, kr) = − 1
kr

Gl(ζ, kr), (2.29)

Fl(ζ, kr) and Gl(ζ, kr) are regular and irregular Coulomb functions respectively, and Som-
merfeld parameter ζ = Ze2m/k. Instead of functions S (E, r) and C (E, r), one can
introduce functions F (E, ζ, r) and G (E, ζ, r) defining them as infinite series,

F (E, ζ, r) ≡
∞∑

n=0

Fnl(E, ζ)Rnl(r) = k fl(ζ, kr) (2.30)

and

G (E, ζ, r) ≡
∞∑

n=0

Gnl(E, ζ) Rnl(r) −→
r→∞

−k gl(ζ, kr), (2.31)

in order to use Fnl(E, ζ) and Gnl(E, ζ) in constructing continuum spectrum wave func-
tions by means of Eq. (2.2). Such an approach was proposed by the Kiev group in [19].
Within this approach, the J-matrix matching condition at n = N becomes much more
complicated, resulting in difficulties in designing an inverse scattering approach and in
shell model applications. In practical calculations, the approach of [19] requires the use
of much larger values of N , i.e. a huge extension of the model space when solving the
algebraic problem (2.12), that makes it incompatible with the shell model applications.
Therefore it is desirable to find another way to extend our approach on the case of charged
particle scattering.

We use here the formalism of [16] to allow for the Coulomb interaction in the oscillator-
basis J-matrix theory. The idea of the approach is very simple. Suppose there are a long-
range V and a short-range V Sh potentials that are indistinguishable at distances 0 < r < b.
In this case, the potential V Sh generates a wave function fitting exactly (up to an overall
normalization factor) that of the long-range potential V at r < b. If the only difference
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between V and V Sh at distances r > b is the Coulomb interaction, then one can equate the
logarithmic derivatives of their wave functions at r = b and use the resulting equation to
express the long-range potential phase shifts δl in terms of the short-range potential phase
shifts δSh

l or vice versa. Note that the phase shifts δSh
l can be obtained within the standard

J-matrix approach discussed in the previous subsection. The recalculation of the phase
shifts δSh

l into δl (or vice versa) appears to be the only essential addition in formulating
such a direct (or inverse) Coulomb-extended J-matrix formalism.

To implement this idea, we introduce a channel radius b large enough to neglect the
nuclear interaction V Nucl at distances r ≥ b, i.e. b ≥ RNucl, where RNucl is the range of
the potential V Nucl. In the asymptotic region r ≥ b, the radial wave function ul(E, r) is
given by Eq. (2.27).

At short distances r ≤ b, the wave function ul(E, r) coincides with uSh
l (E, r), the one

generated by the auxiliary potential

V Sh =

{
V = V Nucl + V C , r ≤ b

0, r > b
; b ≥ RNucl (2.32)

obtained by truncating the Coulomb potential V C at r = b. The wave function uSh
l (E, r)

behaves asymptotically as a wave function obtained with a short-range interaction,

uSh
l (E, r) = k[cos δSh

l jl(kr)− sin δSh
l nl(kr)], b ≥ RNucl. (2.33)

The J-matrix formalism described in the previous subsection, should be used to calculate
the function uSh

l (E, r), the auxiliary phase shift δSh
l and the respective auxiliary S-matrix

SSh.
Matching the functions ul(E, r) and uSh

l (E, r) at r = b, the phase shift δl can be
expressed through δSh

l [16]:

tan δl =
Wb(jl, fl)−Wb(nl, fl) tan δSh

l

Wb(jl, gl)−Wb(nl, gl) tan δSh
l

, (2.34)

where quasi-Wronskian

Wb(jl, fl) ≡
{

d

dr
[jl(kr)] fl(ζ, kr)− jl(kr)

d

dr
fl(ζ, kr)

}∣∣∣∣
r=b

, (2.35)

and Wb(nl, fl), Wb(jl, gl) and Wb(nl, gl) are expressed similarly. The S-matrix is given
by

S =
Wb(h−l , g−l )−Wb(h+

l , g−l )SSh

Wb(h−l , g+
l )−Wb(h+

l , g+
l )SSh

, (2.36)

where h±l (kr) = −nl(kr)± ijl(kr), g±l (ζ, kr) = −gl(ζ, kr)± ifl(ζ, kr), and the quasi-
Wronskians Wb(h±l , g±l ) are defined by analogy with Eq. (2.35). The S-matrix poles are
obtained by solving the equation

Wb(h−l , g+
l )−Wb(h+

l , g+
l ) SSh = 0 (2.37)
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in the complex energy plane.

This formalism involves a free parameter, the channel radius b, used for construction of
the auxiliary potential V Sh. As mentioned above, b should be taken larger than the range
of the short-range nuclear interaction V Nucl. On the other hand, the truncated (N + 1)×
(N + 1) Hamiltonian matrix H l

nn′ (n, n′ = 0, 1, . . . , N ) used to calculate the sets of
eigenvalues Eλ and eigenvectors 〈N |λ〉 by solving the algebraic problem (2.12), should
carry information about the jump of potential V Sh at the point r = b. Therefore b should
be chosen less than approximately rN , the classical turning point of the oscillator function
RN l(r), the function with the largest range in the set of oscillator functions Rnl(r), n = 0,
1, . . . ,N used for the construction of the truncated Hamiltonian matrix H l

nn′ (n, n′ ≤ N ).
In a practical calculation, one should study convergence with a set of b values and pick up
the b value providing the most stable and best-converged results. As shown in [16], the
phase shift δl calculated at some energy E as a function of channel radius b, usually has a
plateau in the interval RNucl < b < rcl

N that reproduces well the exact values of δl.

In the inverse scattering approach, first, we fix a value of the channel radius b and
transform experimental phase shifts δl into the set of auxiliary phase shifts δSh

l :

tan δSh
l =

Wb(jl, fl)−Wb(jl, gl) tan δl

Wb(nl, fl)−Wb(nl, gl) tan δl
. (2.38)

Equation (2.38) can be easily obtained by inverting Eq. (2.34). Next, we employ the inverse
scattering approach of the previous subsection to calculate the sets of Eλ and 〈N |λ〉 using
auxiliary phase shifts δSh

l as an input. The J-matrix parameterization of the phase shifts δl

is given by Eq. (2.34), the S-matrix poles can be calculated through Eq. (2.37).

2.3 J -matrix and the shell model

Up to this point we have been discussing the J-matrix formalism supposing the collid-
ing particles to be structureless. In applications to the nα and pα scattering and relating
the respective J-matrix inverse scattering results to the shell model, we should have in
mind that the α particle consists of 4 nucleons identical to the scattered nucleon and the
five-nucleon wave function should be antisymmetrized. The J-matrix solutions and the
expressions (2.7) for the phase shifts and (2.8) for the S-matrix [or expressions (2.34) and
(2.36) in the case when both the projectile and the target are charged], can be used in the
case of scattering of complex systems comprising identical fermions. The components
〈N |λ〉 entering expression (2.13) for the function GNN (E) become, of course, much more
complicated: they now appear to be some particular components of the many-body eigen-
vector. However, we are not interested here in the microscopic many-body structure of
the components 〈N |λ〉; we shall obtain them by fitting the nα and pα phase shifts in the
J-matrix inverse scattering approach.
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We focus our attention here on other important ingredients entering expression (2.13)
for GNN (E), the eigenenergies Eλ, related to the energies of the states in the combined
many-body system, i.e. in the 5He or 5Li nucleus in the case of nα or pα scattering respec-
tively, obtained in the shell model or any other many-body approach utilizing the oscillator
basis. One should have however in mind that Eλ entering Eq. (2.13) correspond to the ki-
netic energy of relative motion, i.e. they are always positive, while many-body microscopic
approaches generate eigenstates with absolute energies, e. g. all the states in 5He and 5Li
with excitation energies below approximately 28 MeV (the α-particle binding energy) will
be generated negative. Therefore, before comparing with the set of Eλ values, one should
perform a simple recalculation of the shell model eigenenergies by adding to them the 4He
binding energy; or alternatively one can use the set of Eλ values to calculate the respec-
tive set of energies defined according to the shell model definitions by subtracting the 4He
binding energy from each of Eλ. The physical meaning of transforming these to the shell
model scale of values for Eλ is to provide the values required from shell model calculations
in order to reproduce the desired phase shifts.

The comparison of the inverse scattering J-matrix analysis with the shell model results
is useful, of course, only if the same ~Ω value is used both in the J-matrix and in the shell
model and model spaces of these approaches are properly correlated. A traditional nota-
tion for the model space within the shell model is Nmax~Ω where Nmax is the excitation
oscillator quanta. In the case of the J-matrix, we use, also traditionally, N , the principal
quantum number of the highest oscillator function RN l(r) included in the ‘interaction re-
gion’ of the oscillator model space where the potential energy matrix elements are retained.
The following expressions relate Nmax and N in the cases of 3

2

− and 1
2

− partial waves (p
waves) and 1

2

+ partial wave (s wave):

Nmax = 2N , N = 0, 1, . . . ,
3
2

−
and

1
2

−
partial waves, (2.39)

Nmax = 2N − 1, N = 1, 2, . . . ,
1
2

+

partial wave. (2.40)

Below we are using shell model type Nmax~Ω notations for labeling both J-matrix and
shell model results.

3 Analysis of nα scattering phase shifts

3.1 3
2

− phase shifts

We start discussion of our J-matrix analysis of nα scattering with the 3
2

− phase shifts.
First we study a dependence of the J-matrix phase shift parameterization on the size

of the model space. As is seen from Fig. 3.1, larger model spaces make it possible to
describe the phase shifts up to larger energies. Note that the experimental data are known
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Figure 3.1: The J-matrix parameterization of the 3
2

−
nα phase shifts obtained with ~Ω = 20 MeV

in various model spaces. Different panels present the same results in different energy scales. Experi-
mental phase shifts: stars — [20], filled squares — [21].
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Figure 3.2: The J-matrix parameterization of the 3
2

−
nα phase shifts obtained in the 6~Ω model

space with different values of oscillator spacing ~Ω. See Fig. 3.1 for details.

up to 20 MeV of laboratory energy and are perfectly reproduced in 4~Ω and larger model
spaces. We fail to reproduce the experiment for Elab > 12 MeV in the 2~Ω model space.
Note however that deviations from the experiment are not very large and we obtain a very
good description of the phase shifts at laboratory energies below 12 MeV including the
resonance region. The smallest possible 0~Ω model space fails to provide a reasonable
description of the phase shifts at all energies.

The description of the phase shifts can be extended to larger energies not only by using
larger model spaces but also by using larger ~Ω values. This is illustrated by Fig. 3.2. Even
with ~Ω = 5 MeV we manage to describe the phase shifts in the 6~Ω model space up to
approximately Elab = 17 MeV. The description of all experimentally known phase shifts
is perfect in this model space with ~Ω = 10 MeV and larger.

The results of calculations of the S-matrix pole position are presented in Fig. 3.3.
The calculated resonance energy Eres and width Γ are seen to be very stable in a wide
range of ~Ω values and model spaces (note a very detailed energy scale in Fig. 3.3). Our
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results are in a very good correspondence with the results of a detailed study of [22]. The
authors of this paper performed Resonating Group Method calculations of Nα scattering
with phenomenological Minnesota NN interaction fitted to reproduce with high precision
the nα and pα phase shifts and calculated the position of the S-matrix pole. The extended
multichannel R-matrix analysis of 5He and 5Li including two-body channels N + α and
d + t or d +3 He along with pseudo-two-body configurations to represent the breakup
channels n + p + t or n + p +3 He, was also performed in [22] using data of various
authors on the differential elastic scattering cross sections, polarization, analyzing-power
and polarization-transfer measurements together with neutron total cross sections. Our very
simple J-matrix analysis utilizing only the elastic scattering phase shifts, is competitive in
quality of resonance parameter description with these extended studies of [22].

We note that while the phase shifts and resonance parameters are very stable, the ener-
gies Eλ entering Eq. (2.13) vary essentially with ~Ω and model space. In particular, this is
true for the lowest of these energies Eλ=0 shown in Fig. 3.4 (note a very large difference
in energy scales in Figs. 3.3 and 3.4). This energy being obtained in shell model studies,
would be associated traditionally with the resonance energy Eres. Such a conventional
association is clearly incorrect: this lowest eigenstate Eλ=0 differs significantly in energy
from Eres while the phase shifts and resonance energy and width are well reproduced; just
this energy Eλ=0, very different from Eres, is needed to have a perfect description of scat-
tering data and resonance parameters including Eres itself. The Eλ=0 dependencies of the
type shown in Fig. 3.4 are inherent in other partial waves and in the case of pα scattering.
We study the Eλ=0 dependencies on ~Ω and model space in more detail below in Section 5
where we compare them with the results of our NCSM calculations.

3.2 1
2

− phase shifts

We present in Fig. 3.5 the J-matrix parameterizations of nα 1
2

− phase shifts obtained
with the same ~Ω in different model spaces and with different ~Ω values in the same model
space. The description of the 1

2

− phase shifts with different ~Ω values and in different
model spaces follows the same patterns as in the case of the 3

2

− phase shifts. The only
difference is that a high-quality description of the phase shifts at energies Elab > 10 MeV
is attained in larger model spaces. However, in the 8~Ω and larger model spaces the de-
scription of all known phase shifts is perfect.

Figure 3.6 presents the results of our calculations of the 1
2

− resonance energy and width.
The variations of Eres and Γ with increasing ~Ω or model space are larger than in the case
of the 3

2

− resonance; note however that the energy of the 1
2

− resonance and its width are
also much larger. At any rate, the variations of resonance parameters are not large and
our results for Eres and Γ are stable enough with respect to the choice of ~Ω value and
model space. The energy and width of the 1

2

− resonance also compare well with the results
of [22].
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−
nα phase shifts obtained with ~Ω = 20 MeV
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spacing ~Ω (right panel). See Fig. 3.1 for details.
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3.3 1
2

+ phase shifts

In describing the 1
2

+ phase shifts, one should have in mind that the lowest s states in
the α-particle are occupied and due to the Pauli principle these states should be inaccessi-
ble to the scattered nucleon. There are two conventional approaches to the problem of the
Pauli forbidden s state in the n + α system. The first approach is to add a phenomeno-
logical repulsive term to the s wave component of the nα potential (see, e. g., [23]). This
phenomenological repulsion excludes the Pauli forbidden state in the n + α system and
is supposed to simulate the Pauli principle effects in more complicated cluster systems.
Another approach is to use deep attractive nα potentials that support the Pauli forbidden s

state in the n+α system (see [18,24,25]). In the cluster model studies, the Pauli forbidden
state is excluded by projecting it out [11, 18, 25].

In our J-matrix inverse scattering approach, we can simulate both the potentials with
repulsive core and with a forbidden state. In the first case, when the system does not
have a bound state, we go on with the same procedure as in the above cases of 3

2

− and
1
2

− partial waves; the energy dependence of the input 1
2

+ phase shifts is responsible for
generating proper details of the nα interaction potential matrix. In the other case, the
simplest way to simulate the presence of the forbidden state in the system is to suppose
that this state is described by a pure 0s1/2 oscillator wave function. The energy of the
forbidden state is equal in this case to the Hamiltonian matrix element H l=0

00 which is
of no interest for us in this study, all the matrix elements H l=0

0n and H l=0
n0 should be set

equal to zero to guarantee the orthogonality of the forbidden state to scattering states which
have the wave functions given by the expansion (2.2) where the 0s1/2 oscillator state is
missing, i.e. an=0, l=0(E) = 0 for all energies E > 0. Within this model, the forbidden
state [26] does not contribute to the function GNN (E) [see Eq. (2.13)] since the component
〈N |λ = 0〉 = 0. In the inverse scattering approach, we use the first N solutions of Eq.
(2.21) disregarding the highest in energy solution EN+1 while constructing the function
GNN (E).

In Fig. 3.7 we present the J-matrix parameterization of the 1
2

+ phase shifts in elastic
nα scattering in the 7~Ω model space with different values of the oscillator spacing ~Ω.
As usual, larger ~Ω value makes it possible to describe the phase shifts in a larger energy
interval. A new and interesting issue is the difference in behavior of the phase shifts in
the models with and without a forbidden state. A more realistic model with forbidden
state provides a proper dependence of the phase shifts: starting with 180◦ at zero energy,
they tend to zero at large energies. The forbidden state makes the same contribution to
the Levinson theorem as any other bound state providing the 180◦ difference between the
phase shifts at zero and infinite energies. The model without a forbidden state generates
the phase shifts returning at large energies back to their zero energy value. In what follows,
we use the potential model with a forbidden state. Note however that in the energy interval
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Figure 3.7: The J-matrix parameterization of the 1
2

+
nα phase shifts obtained in the 7~Ω model

space with different values of oscillator spacing ~Ω. See Fig. 3.1 for details.

of known phase shifts, the parameterizations of both models are indistinguishable. The Eλ

values provided by both models in this energy interval, are the same.
The 1

2

+ phase shifts parameterizations in different model spaces with ~Ω = 20 MeV
perfectly describe the data (Fig. 3.8).

4 Analysis of pα Scattering Phase Shifts

The J-matrix approach to pα scattering involves an additional parameter b, the channel
radius used to define the auxiliary potential V Sh by truncating the Coulomb interaction at
r = b [see Eq. (2.32)]. We studied carefully the b-dependence of the J-matrix parameteri-
zation of the pα scattering. The bottom line of these studies is that the results (phase shifts,
S-matrix pole locations, lowest Eλ values) in all partial waves are nearly b-independent for
b values in some vicinity of the classical turning point rcl

N of the highest oscillator function
RN l(r) involved in the construction of the truncated Hamiltonian H l

nn′ (n, n′ ≤ N ). The
results of the calculations presented here were obtained with b = rcl

N .
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Figure 3.8: The J-matrix parameterization of the 1
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nα phase shifts obtained in the model with

forbidden state with ~Ω = 20 MeV in various model spaces. See Fig. 3.1 for details.
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4.1 3
2

− phase shifts

We present the J-matrix parameterization of the 3
2

−
pα phase shifts obtained in various

model spaces with ~Ω = 20 MeV in the left panel of Fig. 4.9. The data are well-described
in 4~Ω and higher model spaces. Some deviation from experiment is seen only for the
2~Ω model space starting from laboratory energies about 20 MeV. However, the resonance
region is perfectly described even in this very small 2~Ω model space. The J-matrix param-
eterization is also insensitive to the variation of the ~Ω value in the whole energy interval
of known phase shifts including the resonance region (see right panel of Fig. 4.9). There-
fore it is not surprising that we obtain a very stable description of the resonance energy and
width (see Fig. 4.10), one that is independent of the model space and ~Ω value.

Our results for the 3
2

− resonance parameters are very close to the ones obtained in the
analysis of [22].

4.2 1
2

− phase shifts

We obtain a high-quality J-matrix parameterization of the pα 1
2

− phase shifts, very
stable with variations of the model space or oscillator spacing ~Ω. A small deviation from
the experiment at large energies is seen in the left panel of Fig. 4.11 in the 2~Ω model space
only. The parameterizations obtained in the 10~Ω model space with ~Ω values ranging
from 10 to 30 MeV, are indistinguishable in the right panel of Fig. 4.11. The resonance
region is perfectly described. Our results for the resonance energy and width correspond
well to the analysis of [22]. The resonance parameters are stable with respect to variations
of the model space and ~Ω (see Fig. 4.12). Of course, the variations of Eres and Γ in Fig.
4.12 are much larger than in the case of the 3

2

− resonance, but the 1
2

− resonance energy
and width are also much larger than the energy and width of the 3

2

− resonance.
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Figure 4.9: The J-matrix parameterization of the pα 3
2

− phase shifts obtained with ~Ω = 20 MeV in
various model spaces (left panel) and in the 10~Ω model space with various ~Ω values (right panel).
Experimental phase shifts: open squares — [27], open circles — [28], crosses — [29].
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Figure 4.10: The pα 3
2

− resonance energy in the center-of-mass frame (left) and width (right) ob-
tained by calculating the position of the S-matrix pole by means of the J-matrix parameterizations
with different ~Ω values (upper panels) and in different model spaces (lower panels). See Fig. 3.3
for details.
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− phase shifts obtained with ~Ω = 20 MeV
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panel). See Fig. 4.9 for details.
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+ phase shifts obtained in the model with
forbidden state with ~Ω = 20 MeV in various model spaces. See Fig. 4.9 for details.
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4.3 1
2

+ phase shifts

In the case of s wave of pα scattering, we can also use interaction models with and
without a forbidden state. The main features of the J-matrix parameterizations within
these models in the case of the pα scattering are the same as in the case of nα scattering; in
particular, the phase shift description in the low-energy region covering the whole region
of known phase shifts, is identical within these interaction models. In what follows, we
present only the results obtained in the model with forbidden state which we suppose to be
more realistic.

The J-matrix parameterizations of the pα 1
2

+ phase shifts obtained in various model
spaces with ~Ω = 20 MeV, are presented in the left panel of Fig. 4.13. The low-energy
phase shifts up to approximately Elab = 10 MeV are perfectly reproduced in all model
spaces. Starting from Elab = 10 MeV, there are some deviations from the experiment. Sur-
prisingly, the deviations from experimental phase shifts are larger in larger model spaces.
The deviations are not large but not negligible.

The J-matrix parameterizations obtained with various ~Ω values in the 11~Ω model
space, are shown in the right panel of Fig. 4.13. The theoretical curves are nearly indis-
tinguishable below Elab = 10 MeV reproducing well the experimental data. Some dif-
ference between parameterizations is seen in the high-energy part of the interval of known
phase shifts. All J-matrix parameterizations presented in Fig. 4.13 reasonably describe
the phenomenological data in the whole energy interval of known phase shifts. The worst
description of the phase shifts in the 11~Ω model space is obtained with ~Ω = 15 MeV.

5 J -Matrix and Shell Model Eigenstates

Up to now, we were discussing the J-matrix inverse scattering description of scattering
observables in the n + α and p + α nuclear systems. It is very interesting to investigate
whether these observables correlate with the shell model predictions for 5He and 5Li nuclei.
It should be done, as we have shown above, by comparing the eigenenergies Eλ obtained
in the J-matrix inverse scattering approach with the energies of the states obtained in the
shell model.

We calculate the lowest 5He and 5Li states of a given spin and parity in the NCSM
approach [1, 2] using the code MFDn [3] and the JISP16 nucleon-nucleon interaction [4,
30]. We do not make use of effective interactions calculated within Lee–Suzuki or any
other approach. That is, all results presented here are obtained with the ‘bare’ JISP16 NN

interaction which is known [4–6] to provide a reasonable convergence as basis space size
increases.

In all cases, the calculations of the 4He ground state energy is performed with the same
~Ω value and in the same Nmax~Ω model space. These 4He ground state energies are used
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to calculate the reaction threshold while comparing the J-matrix Eλ values (defined with
regard to the reaction threshold) with the shell model results. Therefore our reaction thresh-
old is model space and ~Ω-dependent, however these dependencies are strongly suppressed
in large enough model spaces. This definition of the reaction threshold is, of course, some-
what arbitrary. We use it supposing that our definition provides a consistent way to generate
energies relative to the 4He ground state energy within the NCSM approach employing a
finite basis.

The NCSM results for the lowest 5He and 5Li 3
2

−, 1
2

− and 1
2

+ states are compared with
the respective J-matrix Eλ=0 values in Fig. 5.14. For each spin and parity, the J-matrix
Eλ=0 values obtained with the same ~Ω value, are seen to decrease with increasing model
space (see also Fig. 3.4); the same model space dependence is well-known to be inherent
for the shell model eigenstates. However the ~Ω dependences of the J-matrix Eλ=0 and
shell model eigenstates, are very different: the shell model eigenstates are known to have a
minimum at some ~Ω value while the inverse scattering Eλ=0 are seen from Fig. 5.14 to
increase nearly linearly with ~Ω; the slope of the ~Ω dependence of Eλ=0 is larger for wider
resonances. As a result, the shell model predictions differ from the results of the inverse
scattering analysis for small enough ~Ω values. However, a remarkable correspondence
between the shell model and inverse scattering results is seen at large enough ~Ω values
starting from approximately ~Ω = 20 MeV. The agreement between the shell model and
J-matrix inverse scattering analysis is improved with increasing model space; it is probable
that this is partly due to the improvement in larger model spaces of the calculated threshold
energy in our approach. The shell model description of the lowest 1

2

− and 1
2

+ states is
somewhat better than the lowest 3

2

− state description in both 5He and 5Li nuclear systems.
The lowest 3

2

− state description is however not so bad (note a more detailed energy scale
for the 3

2

− state in Fig. 5.14): the difference between the shell model predictions and the
J-matrix analysis results is about 0.5 MeV in large enough model spaces and for large
enough ~Ω values. An excellent description of the 1

2

− states in 5He and 5Li combined with
some deficiency in description of the 3

2

− states in the same nuclei, is probably a signal of
a somewhat underestimated strength of the spin-orbit interaction generated by the JISP16
NN interaction in the p shell.

We suppose that the results presented here illustrate well the power of the proposed J-
matrix analysis, a new method that makes it possible to verify a consistency of shell model
results with experimental phase shifts. To the best of our knowledge, this is the only method
which can relate the shell model results to the scattering data in the case of non-resonant
scattering like the 1

2

+
nα and pα scattering. In the case of negative parity resonances in

5He and 5Li discussed here, the J-matrix analysis generally suggests that the shell model
should generate the respective states above the resonance energies supplemented by their
widths. Note that the J-matrix Eλ=0 only in some cases lie inside shaded areas showing
the resonance energies together with their widths in Fig. 5.14, and in all these cases, the
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Figure 5.14: Eλ=0 values for nα (left) and pα (right) scattering obtained in the J-matrix inverse
scattering approach in the center-of-mass frame (filled symbols) and respective lowest eigenstates
of the 5He and 5Li nuclei obtained in NCSM (respective empty symbols). The resonance energies
together with their widths are shown by shaded areas.
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intersection of the Eλ=0 with the resonance is seen only at small enough ~Ω values where
the shell model predictions fail to follow the J-matrix analysis results. This is a clear indi-
cation that one should be very accurate in relating the shell model results to the resonance
energies, at least in the case of wide enough resonances.

6 Conclusions

We suggest a method of J-matrix inverse scattering analysis of elastic scattering phase
shifts and test this method in applications to nα and pα elastic scattering. We demonstrate
that the method is able to reproduce 3

2

−, 1
2

− and 1
2

+
nα and pα elastic scattering phase

shifts with high accuracy in a wide range of the parameters of the method like the oscil-
lator spacing ~Ω, model space and the channel radius b in the case of pα scattering. The
method is very simple in applications, it involves only a numerical solution of a simple
transcendental equation (2.21).

When the J-matrix phase shift parameterization is obtained, the resonance parameters,
resonance energy and width, can be obtained by locating the S-matrix pole by solving
numerically another simple transcendental equation (2.20). The resonance energies and
widths are shown to be stable when ~Ω or other J-matrix parameters are varied. Our results
for 3

2

− and 1
2

− resonant states in 5He and 5Li are in line with the results of [22]. Csótó and
Hale performed two different analyses in [22]: (i) RGM search for the S-matrix poles based
on a complicated enough calculations within the Resonating Group Model with effective
Minnesota NN interaction fitted to the nucleon-α phase shifts, and (ii) Extended R-matrix
analysis of 5He and 5Li including not only N +α channel but also d+t or d+3He channels
along with pseudo-two-body configurations to represent the breakup channels n + p + t or
n + p +3 He and using a wide range of data on various reactions. We note that our very
simple J-matrix approach uses only a very limited set of data as an input, nα or pα phase
shifts. We suppose that the proposed approach can be useful in analysis of elastic scattering
in other nuclear systems and serve as an alternative to the conventional R-matrix analysis.

A very interesting and important output of the J-matrix inverse scattering analysis of
the phase shifts is the set of Eλ values which are directly related to the eigenenergies
obtained in the shell model or any other model utilizing the oscillator basis, for example,
the Resonating Group Model. The J-matrix parameterizations provide the energies of the
states that should be obtained in the shell model or Resonating Group Model to generate the
given phase shifts. These energies are shown to be model space and ~Ω-dependent and very
different from the energies of at least wide enough resonances which are conventionally
used to compare with the shell model results. More, the J-matrix analysis is shown to
provide the shell model energies even in the case of non-resonant scattering such as the 1

2

+

nucleon–α scattering.
Our comparison of the lowest Eλ=0 with the NCSM results shows that the shell model



No-Core Shell Model and Continuum Spectrum States of Light Nuclei 269

fails to reproduce the phase shifts if small ~Ω values are employed in the calculations.
When ~Ω and/or model space size is increased, the shell model predictions approach Eλ=0

values obtained in the J-matrix signaling that the shell model results become more and
more consistent with the experimental phase shifts. However some difference between
the NCSM predictions and the J-matrix analysis results is seen even in the largest model
spaces used in this study. This difference is really not large, its possible sources are the
following. (i) There is an ambiguity in the threshold energies used to relate the absolute
negative energies obtained in the shell model and positive Eλ values defined relative to the
reaction threshold. (ii) Unfortunately, there is no NN interaction providing correct ener-
gies for, at least, light nuclei. The JISP16 NN interaction is good enough and provides
reliable predictions for energies of levels in all s and p shell nuclei [4–6]. However, there
are small differences between JISP16 level energy predictions and experiment; these dif-
ferences are of the same order as the differences between the J-matrix Eλ=0 values and
our NCSM results. Probably we shall use the J-matrix results discussed above while at-
tempting to design a new improved version of the JISP16 interaction by trying to eliminate
the discrepancy between the shell model results and the J-matrix analysis of nucleon-α
scattering.

Of course, the J-matrix can be used to relate the shell model energies and data on
nucleon scattering by other nuclei. Generally, one can also use other elastic scattering
data, for example, nucleus-nucleus elastic scattering phase shifts to get the Eλ values that
should be obtained in the shell model studies of the respective compound nuclear systems:
the shell model must generate the states with the same energies in the same model space
and with the same ~Ω value to have a chance to generate the experimental phase shifts.
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